Articles | Volume 12, issue 7
https://doi.org/10.5194/tc-12-2371-2018
https://doi.org/10.5194/tc-12-2371-2018
Research article
 | 
20 Jul 2018
Research article |  | 20 Jul 2018

On the reflectance spectroscopy of snow

Alexander Kokhanovsky, Maxim Lamare, Biagio Di Mauro, Ghislain Picard, Laurent Arnaud, Marie Dumont, François Tuzet, Carsten Brockmann, and Jason E. Box

Related authors

Intra-pixel variability in satellite tropospheric NO2 column densities derived from simultaneous space-borne and airborne observations over the South African Highveld
Stephen Broccardo, Klaus-Peter Heue, David Walter, Christian Meyer, Alexander Kokhanovsky, Ronald van der A, Stuart Piketh, Kristy Langerman, and Ulrich Platt
Atmos. Meas. Tech., 11, 2797–2819, https://doi.org/10.5194/amt-11-2797-2018,https://doi.org/10.5194/amt-11-2797-2018, 2018
Short summary
The GOME-2 instrument on the Metop series of satellites: instrument design, calibration, and level 1 data processing – an overview
Rosemary Munro, Rüdiger Lang, Dieter Klaes, Gabriele Poli, Christian Retscher, Rasmus Lindstrot, Roger Huckle, Antoine Lacan, Michael Grzegorski, Andriy Holdak, Alexander Kokhanovsky, Jakob Livschitz, and Michael Eisinger
Atmos. Meas. Tech., 9, 1279–1301, https://doi.org/10.5194/amt-9-1279-2016,https://doi.org/10.5194/amt-9-1279-2016, 2016
Short summary
Parameterization of single-scattering properties of snow
P. Räisänen, A. Kokhanovsky, G. Guyot, O. Jourdan, and T. Nousiainen
The Cryosphere, 9, 1277–1301, https://doi.org/10.5194/tc-9-1277-2015,https://doi.org/10.5194/tc-9-1277-2015, 2015
Short summary
Retrieval of aerosol optical depth over land surfaces from AVHRR data
L. L. Mei, Y. Xue, A. A. Kokhanovsky, W. von Hoyningen-Huene, G. de Leeuw, and J. P. Burrows
Atmos. Meas. Tech., 7, 2411–2420, https://doi.org/10.5194/amt-7-2411-2014,https://doi.org/10.5194/amt-7-2411-2014, 2014
Linear trends in cloud top height from passive observations in the oxygen A-band
L. Lelli, A. A. Kokhanovsky, V. V. Rozanov, M. Vountas, and J. P. Burrows
Atmos. Chem. Phys., 14, 5679–5692, https://doi.org/10.5194/acp-14-5679-2014,https://doi.org/10.5194/acp-14-5679-2014, 2014

Related subject area

Discipline: Snow | Subject: Remote Sensing
Evaluating snow depth retrievals from Sentinel-1 volume scattering over NASA SnowEx sites
Zachary Hoppinen, Ross T. Palomaki, George Brencher, Devon Dunmire, Eric Gagliano, Adrian Marziliano, Jack Tarricone, and Hans-Peter Marshall
The Cryosphere, 18, 5407–5430, https://doi.org/10.5194/tc-18-5407-2024,https://doi.org/10.5194/tc-18-5407-2024, 2024
Short summary
Improved snow property retrievals by solving for topography in the inversion of at-sensor radiance measurements
Brenton A. Wilder, Joachim Meyer, Josh Enterkine, and Nancy F. Glenn
The Cryosphere, 18, 5015–5029, https://doi.org/10.5194/tc-18-5015-2024,https://doi.org/10.5194/tc-18-5015-2024, 2024
Short summary
Simulation of Arctic snow microwave emission in surface-sensitive atmosphere channels
Melody Sandells, Nick Rutter, Kirsty Wivell, Richard Essery, Stuart Fox, Chawn Harlow, Ghislain Picard, Alexandre Roy, Alain Royer, and Peter Toose
The Cryosphere, 18, 3971–3990, https://doi.org/10.5194/tc-18-3971-2024,https://doi.org/10.5194/tc-18-3971-2024, 2024
Short summary
Retrieval of snow and soil properties for forward radiative transfer modeling of airborne Ku-band SAR to estimate snow water equivalent: the Trail Valley Creek 2018/19 snow experiment
Benoit Montpetit, Joshua King, Julien Meloche, Chris Derksen, Paul Siqueira, J. Max Adam, Peter Toose, Mike Brady, Anna Wendleder, Vincent Vionnet, and Nicolas R. Leroux
The Cryosphere, 18, 3857–3874, https://doi.org/10.5194/tc-18-3857-2024,https://doi.org/10.5194/tc-18-3857-2024, 2024
Short summary
Evaluating L-band InSAR snow water equivalent retrievals with repeat ground-penetrating radar and terrestrial lidar surveys in northern Colorado
Randall Bonnell, Daniel McGrath, Jack Tarricone, Hans-Peter Marshall, Ella Bump, Caroline Duncan, Stephanie Kampf, Yunling Lou, Alex Olsen-Mikitowicz, Megan Sears, Keith Williams, Lucas Zeller, and Yang Zheng
The Cryosphere, 18, 3765–3785, https://doi.org/10.5194/tc-18-3765-2024,https://doi.org/10.5194/tc-18-3765-2024, 2024
Short summary

Cited articles

Basart, S., Pérez, C., Nickovic, S., Cuevas, E., and Baldasano, J. M.: Development and evaluation of the BSC-DREAM8b dust regional model over Northern Africa, the Mediterranean and the Middle East, Tellus B, 64, 2012, https://doi.org/10.3402/tellusb.v64i0.18539, 2012. 
Belosi, F., Rinaldi, M., Decesari, S., Tarozzi, L., Nicosia, A., and Santachiara, G.: Ground level ice nuclei particle measurements including Saharan dust events at a Po Valley rural site (San Pietro Capofiume, Italy), Atmos. Res., 186, 116–126, 2017. 
Di Mauro, B., Fava, F., Ferrero, R., Garzonio, R., Baccolo, G., Delmonte, B., and Colombo, R.: Mineral dust impact on snow radiative properties in the European Alps combining ground, UAV, and satellite observations, J. Geophys. Res.-Atmos., 120, 6080–6097, 2015. 
Doherty, S. J., Warren, S. G., Grenfell, T. C., Clarke, A. D., and Brandt, R. E.: Light-absorbing impurities in Arctic snow, Atmos. Chem. Phys., 10, 11647–11680, https://doi.org/10.5194/acp-10-11647-2010, 2010. 
Dozier, J., Green, R. O., Nolin, A. W., and Painter, T. H.: Interpretation of snow properties from imaging spectrometry, Remote Sens. Environ., 113, S25–S37, 2009. 
Download
Short summary
This work presents a new technique with which to derive the snow microphysical and optical properties from snow spectral reflectance measurements. The technique is robust and easy to use, and it does not require the extraction of snow samples from a given snowpack. It can be used in processing satellite imagery over extended fresh dry, wet and polluted snowfields.