Articles | Volume 11, issue 6
The Cryosphere, 11, 2867–2881, 2017
The Cryosphere, 11, 2867–2881, 2017

Research article 12 Dec 2017

Research article | 12 Dec 2017

Optical properties of sea ice doped with black carbon – an experimental and radiative-transfer modelling comparison

Amelia A. Marks, Maxim L. Lamare, and Martin D. King Amelia A. Marks et al.
  • Department of Earth Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK

Abstract. Radiative-transfer calculations of the light reflectivity and extinction coefficient in laboratory-generated sea ice doped with and without black carbon demonstrate that the radiative-transfer model TUV-snow can be used to predict the light reflectance and extinction coefficient as a function of wavelength. The sea ice is representative of first-year sea ice containing typical amounts of black carbon and other light-absorbing impurities. The experiments give confidence in the application of the model to predict albedo of other sea ice fabrics.

Sea ices,  ∼  30 cm thick, were generated in the Royal Holloway Sea Ice Simulator ( ∼  2000 L tanks) with scattering cross sections measured between 0.012 and 0.032 m2 kg−1 for four ices. Sea ices were generated with and without  ∼  5 cm upper layers containing particulate black carbon. Nadir reflectances between 0.60 and 0.78 were measured along with extinction coefficients of 0.1 to 0.03 cm−1 (e-folding depths of 10–30 cm) at a wavelength of 500 nm. Values were measured between light wavelengths of 350 and 650 nm. The sea ices generated in the Royal Holloway Sea Ice Simulator were found to be representative of natural sea ices.

Particulate black carbon at mass ratios of  ∼  75,  ∼  150 and  ∼  300 ng g−1 in a 5 cm ice layer lowers the albedo to 97, 90 and 79 % of the reflectivity of an undoped clean sea ice (at a wavelength of 500 nm).

Short summary
Arctic sea ice extent is declining rapidly. Prediction of sea ice trends relies on sea ice models that need to be evaluated with real data. A realistic sea ice environment is created in a laboratory by the Royal Holloway sea ice simulator and is used to show a sea ice model can replicate measured properties of sea ice, e.g. reflectance. Black carbon, a component of soot found in atmospheric pollution, is also experimentally shown to reduce the sea ice reflectance, which could exacerbate melting.