Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 4.713
IF4.713
IF 5-year value: 4.927
IF 5-year
4.927
CiteScore value: 8.0
CiteScore
8.0
SNIP value: 1.425
SNIP1.425
IPP value: 4.65
IPP4.65
SJR value: 2.353
SJR2.353
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 53
h5-index53
Volume 11, issue 6
The Cryosphere, 11, 2867–2881, 2017
https://doi.org/10.5194/tc-11-2867-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
The Cryosphere, 11, 2867–2881, 2017
https://doi.org/10.5194/tc-11-2867-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 12 Dec 2017

Research article | 12 Dec 2017

Optical properties of sea ice doped with black carbon – an experimental and radiative-transfer modelling comparison

Amelia A. Marks et al.

Related authors

The effect of snow/sea ice type on the response of albedo and light penetration depth (e-folding depth) to increasing black carbon
A. A. Marks and M. D. King
The Cryosphere, 8, 1625–1638, https://doi.org/10.5194/tc-8-1625-2014,https://doi.org/10.5194/tc-8-1625-2014, 2014
The effects of additional black carbon on the albedo of Arctic sea ice: variation with sea ice type and snow cover
A. A. Marks and M. D. King
The Cryosphere, 7, 1193–1204, https://doi.org/10.5194/tc-7-1193-2013,https://doi.org/10.5194/tc-7-1193-2013, 2013

Related subject area

Sea Ice
Statistical predictability of the Arctic sea ice volume anomaly: identifying predictors and optimal sampling locations
Leandro Ponsoni, François Massonnet, David Docquier, Guillian Van Achter, and Thierry Fichefet
The Cryosphere, 14, 2409–2428, https://doi.org/10.5194/tc-14-2409-2020,https://doi.org/10.5194/tc-14-2409-2020, 2020
Short summary
Satellite-based sea ice thickness changes in the Laptev Sea from 2002 to 2017: comparison to mooring observations
H. Jakob Belter, Thomas Krumpen, Stefan Hendricks, Jens Hoelemann, Markus A. Janout, Robert Ricker, and Christian Haas
The Cryosphere, 14, 2189–2203, https://doi.org/10.5194/tc-14-2189-2020,https://doi.org/10.5194/tc-14-2189-2020, 2020
Short summary
Modeling the annual cycle of daily Antarctic sea ice extent
Mark S. Handcock and Marilyn N. Raphael
The Cryosphere, 14, 2159–2172, https://doi.org/10.5194/tc-14-2159-2020,https://doi.org/10.5194/tc-14-2159-2020, 2020
Short summary
Changes of the Arctic marginal ice zone during the satellite era
Rebecca J. Rolph, Daniel L. Feltham, and David Schröder
The Cryosphere, 14, 1971–1984, https://doi.org/10.5194/tc-14-1971-2020,https://doi.org/10.5194/tc-14-1971-2020, 2020
Short summary
An enhancement to sea ice motion and age products at the National Snow and Ice Data Center (NSIDC)
Mark A. Tschudi, Walter N. Meier, and J. Scott Stewart
The Cryosphere, 14, 1519–1536, https://doi.org/10.5194/tc-14-1519-2020,https://doi.org/10.5194/tc-14-1519-2020, 2020
Short summary

Cited articles

Abramoff, M., Magalhaes, P., and Ram, S.: Image Processing with ImageJ, Biophotonics Int., 11, 36–42, 2004.
Atkinson, M. and Bingman, C.: Elemental composition of commercial seasalts, J. Aquariculture Aquatic Sci., 8, 39–43, 1997.
Ball, C., Levick, A., Woolliams, E., Green, P., Dury, M., Winkler, R., Deadman, A., Fox, N., and King, M.: Effect of polytetrafluoroethylene (PTFE) phase transition at 19 °C on the use of Spectralon as a reference standard for reflectance, Appl. Optics, 52, 4806–4812, 2013.
Bond, T., Doherty, S., Fahey, D., Forster, P., Berntsen, T., DeAngelo, B., Flanner, M., Ghan, S., Kärcher, B., and Koch, D.: Bounding the role of black carbon in the climate system: A scientific assessment, J. Geophys. Res.-Atmos., 118, 5380–5552, 2013.
Publications Copernicus
Download
Short summary
Arctic sea ice extent is declining rapidly. Prediction of sea ice trends relies on sea ice models that need to be evaluated with real data. A realistic sea ice environment is created in a laboratory by the Royal Holloway sea ice simulator and is used to show a sea ice model can replicate measured properties of sea ice, e.g. reflectance. Black carbon, a component of soot found in atmospheric pollution, is also experimentally shown to reduce the sea ice reflectance, which could exacerbate melting.
Arctic sea ice extent is declining rapidly. Prediction of sea ice trends relies on sea ice...
Citation