Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 4.713
IF4.713
IF 5-year value: 4.927
IF 5-year
4.927
CiteScore value: 8.0
CiteScore
8.0
SNIP value: 1.425
SNIP1.425
IPP value: 4.65
IPP4.65
SJR value: 2.353
SJR2.353
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 53
h5-index53
TC | Articles | Volume 12, issue 9
The Cryosphere, 12, 2981–2999, 2018
https://doi.org/10.5194/tc-12-2981-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
The Cryosphere, 12, 2981–2999, 2018
https://doi.org/10.5194/tc-12-2981-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 21 Sep 2018

Research article | 21 Sep 2018

Seasonal mass variations show timing and magnitude of meltwater storage in the Greenland Ice Sheet

Jiangjun Ran et al.

Related authors

Diverging future surface mass balance between the Antarctic ice shelves and grounded ice sheet
Christoph Kittel, Charles Amory, Cécile Agosta, Nicolas C. Jourdain, Stefan Hofer, Alison Delhasse, Sébastien Doutreloup, Pierre-Vincent Huot, Charlotte Lang, Thierry Fichefet, and Xavier Fettweis
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-291,https://doi.org/10.5194/tc-2020-291, 2020
Preprint under review for TC
Short summary
Intercomparison of surface meltwater routing models for the Greenland ice sheet and influence on subglacial effective pressures
Kang Yang, Aleah Sommers, Lauren C. Andrews, Laurence C. Smith, Xin Lu, Xavier Fettweis, and Manchun Li
The Cryosphere, 14, 3349–3365, https://doi.org/10.5194/tc-14-3349-2020,https://doi.org/10.5194/tc-14-3349-2020, 2020
Short summary
Impact of updated radiative transfer scheme in RACMO2.3p3 on the surface mass and energy budget of the Greenland ice sheet
Christiaan T. van Dalum, Willem Jan van de Berg, and Michiel R. van den Broeke
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-259,https://doi.org/10.5194/tc-2020-259, 2020
Preprint under review for TC
Short summary
Surface melting over the Greenland ice sheet from enhanced resolution passive microwave brightness temperatures (1979–2019)
Paolo Colosio, Marco Tedesco, Xavier Fettweis, and Roberto Ranzi
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-250,https://doi.org/10.5194/tc-2020-250, 2020
Preprint under review for TC
Short summary
The future sea-level contribution of the Greenland ice sheet: a multi-model ensemble study of ISMIP6
Heiko Goelzer, Sophie Nowicki, Anthony Payne, Eric Larour, Helene Seroussi, William H. Lipscomb, Jonathan Gregory, Ayako Abe-Ouchi, Andrew Shepherd, Erika Simon, Cécile Agosta, Patrick Alexander, Andy Aschwanden, Alice Barthel, Reinhard Calov, Christopher Chambers, Youngmin Choi, Joshua Cuzzone, Christophe Dumas, Tamsin Edwards, Denis Felikson, Xavier Fettweis, Nicholas R. Golledge, Ralf Greve, Angelika Humbert, Philippe Huybrechts, Sebastien Le clec'h, Victoria Lee, Gunter Leguy, Chris Little, Daniel P. Lowry, Mathieu Morlighem, Isabel Nias, Aurelien Quiquet, Martin Rückamp, Nicole-Jeanne Schlegel, Donald A. Slater, Robin S. Smith, Fiamma Straneo, Lev Tarasov, Roderik van de Wal, and Michiel van den Broeke
The Cryosphere, 14, 3071–3096, https://doi.org/10.5194/tc-14-3071-2020,https://doi.org/10.5194/tc-14-3071-2020, 2020
Short summary

Related subject area

Discipline: Ice sheets | Subject: Greenland
Surface velocity of the Northeast Greenland Ice Stream (NEGIS): assessment of interior velocities derived from satellite data by GPS
Christine S. Hvidberg, Aslak Grinsted, Dorthe Dahl-Jensen, Shfaqat Abbas Khan, Anders Kusk, Jonas Kvist Andersen, Niklas Neckel, Anne Solgaard, Nanna B. Karlsson, Helle Astrid Kjær, and Paul Vallelonga
The Cryosphere, 14, 3487–3502, https://doi.org/10.5194/tc-14-3487-2020,https://doi.org/10.5194/tc-14-3487-2020, 2020
Short summary
Intercomparison of surface meltwater routing models for the Greenland ice sheet and influence on subglacial effective pressures
Kang Yang, Aleah Sommers, Lauren C. Andrews, Laurence C. Smith, Xin Lu, Xavier Fettweis, and Manchun Li
The Cryosphere, 14, 3349–3365, https://doi.org/10.5194/tc-14-3349-2020,https://doi.org/10.5194/tc-14-3349-2020, 2020
Short summary
Sensitivity of Greenland ice sheet projections to spatial resolution in higher-order simulations: the Alfred Wegener Institute (AWI) contribution to ISMIP6 Greenland using the Ice-sheet and Sea-level System Model (ISSM)
Martin Rückamp, Heiko Goelzer, and Angelika Humbert
The Cryosphere, 14, 3309–3327, https://doi.org/10.5194/tc-14-3309-2020,https://doi.org/10.5194/tc-14-3309-2020, 2020
Short summary
The future sea-level contribution of the Greenland ice sheet: a multi-model ensemble study of ISMIP6
Heiko Goelzer, Sophie Nowicki, Anthony Payne, Eric Larour, Helene Seroussi, William H. Lipscomb, Jonathan Gregory, Ayako Abe-Ouchi, Andrew Shepherd, Erika Simon, Cécile Agosta, Patrick Alexander, Andy Aschwanden, Alice Barthel, Reinhard Calov, Christopher Chambers, Youngmin Choi, Joshua Cuzzone, Christophe Dumas, Tamsin Edwards, Denis Felikson, Xavier Fettweis, Nicholas R. Golledge, Ralf Greve, Angelika Humbert, Philippe Huybrechts, Sebastien Le clec'h, Victoria Lee, Gunter Leguy, Chris Little, Daniel P. Lowry, Mathieu Morlighem, Isabel Nias, Aurelien Quiquet, Martin Rückamp, Nicole-Jeanne Schlegel, Donald A. Slater, Robin S. Smith, Fiamma Straneo, Lev Tarasov, Roderik van de Wal, and Michiel van den Broeke
The Cryosphere, 14, 3071–3096, https://doi.org/10.5194/tc-14-3071-2020,https://doi.org/10.5194/tc-14-3071-2020, 2020
Short summary
Present-day and future Greenland Ice Sheet precipitation frequency from CloudSat observations and the Community Earth System Model
Jan T. M. Lenaerts, M. Drew Camron, Christopher R. Wyburn-Powell, and Jennifer E. Kay
The Cryosphere, 14, 2253–2265, https://doi.org/10.5194/tc-14-2253-2020,https://doi.org/10.5194/tc-14-2253-2020, 2020

Cited articles

A, G., Wahr, J., and Zhong, S.: Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: an application to Glacial Isostatic Adjustment in Antarctica and Canada, Geophys. J. Inte., 192, 557–572, https://doi.org/10.1093/gji/ggs030, 2013. a
Ahlstrøm, A. P., Andersen, S. B., Andersen, M. L., Machguth, H., Nick, F. M., Joughin, I., Reijmer, C. H., van de Wal, R. S. W., Merryman Boncori, J. P., Box, J. E., Citterio, M., van As, D., Fausto, R. S., and Hubbard, A.: Seasonal velocities of eight major marine-terminating outlet glaciers of the Greenland ice sheet from continuous in situ GPS instruments, Earth Syst. Sci. Data, 5, 277–287, https://doi.org/10.5194/essd-5-277-2013, 2013. a
Alexander, P. M., Tedesco, M., Schlegel, N.-J., Luthcke, S. B., Fettweis, X., and Larour, E.: Greenland Ice Sheet seasonal and spatial mass variability from model simulations and GRACE (2003–2012), The Cryosphere, 10, 1259–1277, https://doi.org/10.5194/tc-10-1259-2016, 2016. a, b, c, d
Baur, O. and Sneeuw, N.: Assessing Greenland ice mass loss by means of point-mass modeling: A viable methodology, J. Geodesy, 85, 607–615, 2011. a
Chandler, D., Wadham, J., Lis, G., Cowton, T., Sole, A., Bartholomew, I., Telling, J., Nienow, P., Bagshaw, E., Mair, D., Vinen, S., and Hubbard, A.: Evolution of the subglacial drainage system beneath the Greenland Ice Sheet revealed by tracers, Nat. Geosci., 6, 195–198, 2013. a
Publications Copernicus
Download
Short summary
To accurately predict future sea level rise, the mechanisms driving the observed mass loss must be better understood. Here, we combine data from the satellite gravimetry, surface mass balance, and ice discharge to analyze the mass budget of Greenland at various temporal scales. This study, for the first time, suggests the existence of a substantial meltwater storage during summer, with a peak value of 80–120 Gt in July. We highlight its importance for understanding ice sheet mass variability
To accurately predict future sea level rise, the mechanisms driving the observed mass loss must...
Citation