Articles | Volume 10, issue 2
The Cryosphere, 10, 895–912, 2016
The Cryosphere, 10, 895–912, 2016

Research article 26 Apr 2016

Research article | 26 Apr 2016

Improved GRACE regional mass balance estimates of the Greenland ice sheet cross-validated with the input–output method

Zheng Xu1, Ernst J. O. Schrama1, Wouter van der Wal1, Michiel van den Broeke2, and Ellyn M. Enderlin3 Zheng Xu et al.
  • 1Faculty of Aerospace Engineering, Delft University of Technology, Delft, the Netherlands
  • 2Institute for Marine and Atmospheric Research, Utrecht University (UU/IMAU), Utrecht, the Netherlands
  • 3Climate Change Institute and School of Earth and Climate Science, University of Maine, Orono, ME 04469, USA

Abstract. In this study, we use satellite gravimetry data from the Gravity Recovery and Climate Experiment (GRACE) to estimate regional mass change of the Greenland ice sheet (GrIS) and neighboring glaciated regions using a least squares inversion approach. We also consider results from the input–output method (IOM). The IOM quantifies the difference between the mass input and output of the GrIS by studying the surface mass balance (SMB) and the ice discharge (D). We use the Regional Atmospheric Climate Model version 2.3 (RACMO2.3) to model the SMB and derive the ice discharge from 12 years of high-precision ice velocity and thickness surveys.

We use a simulation model to quantify and correct for GRACE approximation errors in mass change between different subregions of the GrIS, and investigate the reliability of pre-1990s ice discharge estimates, which are based on the modeled runoff. We find that the difference between the IOM and our improved GRACE mass change estimates is reduced in terms of the long-term mass change when using a reference discharge derived from runoff estimates in several subareas. In most regions our GRACE and IOM solutions are consistent with other studies, but differences remain in the northwestern GrIS. We validate the GRACE mass balance in that region by considering several different GIA models and mass change estimates derived from data obtained by the Ice, Cloud and land Elevation Satellite (ICESat). We conclude that the approximated mass balance between GRACE and IOM is consistent in most GrIS regions. The difference in the northwest is likely due to underestimated uncertainties in the IOM solutions.

Short summary
In this paper, we compare the regional mass changes of the Greenland ice sheet between the solutions based on GRACE data and input/output method. Differences are found in some regions and indicate errors in those solutions. Therefore we improve our GRACE and IOM solutions by applying a simulation. We show the improved regional mass changes approximations are more consistent in regions. The remaining difference in the northwester Greenland is due to the underestimated uncertainty in IOM solution.