Articles | Volume 11, issue 5
https://doi.org/10.5194/tc-11-2003-2017
https://doi.org/10.5194/tc-11-2003-2017
Research article
 | 
01 Sep 2017
Research article |  | 01 Sep 2017

Application of a two-step approach for mapping ice thickness to various glacier types on Svalbard

Johannes Jakob Fürst, Fabien Gillet-Chaulet, Toby J. Benham, Julian A. Dowdeswell, Mariusz Grabiec, Francisco Navarro, Rickard Pettersson, Geir Moholdt, Christopher Nuth, Björn Sass, Kjetil Aas, Xavier Fettweis, Charlotte Lang, Thorsten Seehaus, and Matthias Braun

Related authors

Massive permafrost rock slide under a warming polythermal glacier deciphered through mechanical modeling (Bliggspitze, Austria)
Felix Pfluger, Samuel Weber, Joseph Steinhauser, Christian Zangerl, Christine Fey, Johannes Fürst, and Michael Krautblatter
Earth Surf. Dynam., 13, 41–70, https://doi.org/10.5194/esurf-13-41-2025,https://doi.org/10.5194/esurf-13-41-2025, 2025
Short summary
The Parraguirre ice-rock avalanche 1987, semi-arid Andes, Chile – A holistic revision
Johannes Jakob Fürst, David Farías-Barahona, Thomas Bruckner, Lucia Scaff, Martin Mergili, Santiago Montserrat, and Humberto Peña
EGUsphere, https://doi.org/10.5194/egusphere-2024-3103,https://doi.org/10.5194/egusphere-2024-3103, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
A reconstruction of the ice thickness of the Antarctic Peninsula Ice Sheet north of 70º S
Kaian Shahateet, Johannes J. Fürst, Francisco Navarro, Thorsten Seehaus, Daniel Farinotti, and Matthias Braun
EGUsphere, https://doi.org/10.5194/egusphere-2024-1571,https://doi.org/10.5194/egusphere-2024-1571, 2024
Short summary
Out-of-the-box calving-front detection method using deep learning
Oskar Herrmann, Nora Gourmelon, Thorsten Seehaus, Andreas Maier, Johannes J. Fürst, Matthias H. Braun, and Vincent Christlein
The Cryosphere, 17, 4957–4977, https://doi.org/10.5194/tc-17-4957-2023,https://doi.org/10.5194/tc-17-4957-2023, 2023
Short summary
Strategies for regional modeling of surface mass balance at the Monte Sarmiento Massif, Tierra del Fuego
Franziska Temme, David Farías-Barahona, Thorsten Seehaus, Ricardo Jaña, Jorge Arigony-Neto, Inti Gonzalez, Anselm Arndt, Tobias Sauter, Christoph Schneider, and Johannes J. Fürst
The Cryosphere, 17, 2343–2365, https://doi.org/10.5194/tc-17-2343-2023,https://doi.org/10.5194/tc-17-2343-2023, 2023
Short summary

Related subject area

Numerical Modelling
Quantifying radiative effects of light-absorbing particle deposition on snow at the SnowMIP sites
Enrico Zorzetto, Paul Ginoux, Sergey Malyshev, and Elena Shevliakova
The Cryosphere, 19, 1313–1334, https://doi.org/10.5194/tc-19-1313-2025,https://doi.org/10.5194/tc-19-1313-2025, 2025
Short summary
A minimal machine-learning glacier mass balance model
Marijn van der Meer, Harry Zekollari, Matthias Huss, Jordi Bolibar, Kamilla Hauknes Sjursen, and Daniel Farinotti
The Cryosphere, 19, 805–826, https://doi.org/10.5194/tc-19-805-2025,https://doi.org/10.5194/tc-19-805-2025, 2025
Short summary
Improving large-scale snow albedo modeling using a climatology of light-absorbing particle deposition
Manon Gaillard, Vincent Vionnet, Matthieu Lafaysse, Marie Dumont, and Paul Ginoux
The Cryosphere, 19, 769–792, https://doi.org/10.5194/tc-19-769-2025,https://doi.org/10.5194/tc-19-769-2025, 2025
Short summary
Physically based modelling of glacier evolution under climate change in the tropical Andes
Jonathan D. Mackay, Nicholas E. Barrand, David M. Hannah, Emily Potter, Nilton Montoya, and Wouter Buytaert
The Cryosphere, 19, 685–712, https://doi.org/10.5194/tc-19-685-2025,https://doi.org/10.5194/tc-19-685-2025, 2025
Short summary
Present-day mass loss rates are a precursor for West Antarctic Ice Sheet collapse
Tim van den Akker, William H. Lipscomb, Gunter R. Leguy, Jorjo Bernales, Constantijn J. Berends, Willem Jan van de Berg, and Roderik S. W. van de Wal
The Cryosphere, 19, 283–301, https://doi.org/10.5194/tc-19-283-2025,https://doi.org/10.5194/tc-19-283-2025, 2025
Short summary

Cited articles

Aas, K., Dunse, T., Collier, E., Schuler, T., Berntsen, T., Kohler, J., and Luks, B.: The climatic mass balance of Svalbard glaciers: a 10-year simulation with a coupled atmosphere–glacier mass balance model, The Cryosphere, 10, 1089–1104, https://doi.org/10.5194/tc-10-1089-2016, 2016.
Atwood, D. K., Meyer, F., and Arendt, A.: Using L-band SAR coherence to delineate glacier extent, Can. J. Remote Sens., 36, S186–S195, https://doi.org/10.5589/m10-014, 2010.
Berthier, E., Schiefer, E., Clarke, G., and Menounos, B.: Contribution of Alaskan glaciers to sea-level rise derived from satellite imagery, Nat. Geosci., 3, 92–95, https://doi.org/10.1038/ngeo737, 2010.
Berthier, E., Cabot, V., Vincent, C., and Six, D.: Decadal Region-Wide and Glacier-Wide Mass Balances Derived from Multi-Temporal ASTER Satellite Digital Elevation Models. Validation over the Mont-Blanc Area, Front. Earth Sci., 4, 1–16, https://doi.org/10.3389/feart.2016.00063, 2016.
Bishop, M., Olsenholler, J., Shroder, J., Barry, R., Raup, B., Bush, A., Copland, L., Dwyer, J., Fountain, A., Haeberli, W., Kääb, A., Paul, F., Hall, D., Kargel, J., Molnia, B., Trabant, D., and Wessels, R.: Global Land Ice Measurements from Space (GLIMS): Remote Sensing and GIS Investigations of the Earth's Cryosphere, Geocarto Int., 19, 57–84, https://doi.org/10.1080/10106040408542307, 2004.
Download
Short summary
For the large majority of glaciers and ice caps, there is no information on the thickness of the ice cover. Any attempt to predict glacier demise under climatic warming and to estimate the future contribution to sea-level rise is limited as long as the glacier thickness is not well constrained. Here, we present a two-step mass-conservation approach for mapping ice thickness. Measurements are naturally reproduced. The reliability is readily assessible from a complementary map of error estimates.
Share