Agosta, C., Amory, C., Kittel, C., Orsi, A., Favier, V., Gallée, H., van den Broeke, M. R., Lenaerts, J. T. M., van Wessem, J. M.,
van de Berg, W. J., and Fettweis, X.: Estimation of the Antarctic surface mass balance using the regional climate model MAR
(1979–2015) and identification of dominant processes, The Cryosphere, 13, 281–296, https://doi.org/10.5194/tc-13-281-2019, 2019.
Arthern, R. and Williams, C.: The sensitivity of West Antarctica to the
submarine melting feedback, Geophys. Res. Lett., 44, 2352–2359,
https://doi.org/10.1002/2017GL072514, 2017.
Arthern, R. J., Winebrenner, D., and Vaughan, D.: Antarctic snow accumulation
mapped using polarization of 4.3-cm wavelength microwave emission, J.
Geophys. Res., 111, D06107, https://doi.org/10.1029/2004JD005667, 2006.
Arthern, R. J., Hindmarsh, R. C. A., and Williams, C. R.: Flow speed within
the Antarctic ice sheet and its controls inferred from satellite
observations, J. Geophys. Res., 120, 1171–1188,
https://doi.org/10.1002/2014JF003239, 2015.
Asay-Davis, X. S., Jourdain, N. C., and Nakayama, Y.: Developments in
Simulating and Parameterizing Interactions between the Southern Ocean and the
Antarctic Ice Sheet, Current Climate Change Reports manuscript, 3, 316–329,
https://doi.org/10.1007/s40641-017-0071-0, 2017.
Aschwanden, A., Bueler, E., Khroulev, C., and Blatter, H.: An enthalpy
formulation for glaciers and ice sheets, J. Glaciol., 58, 441–457,
https://doi.org/10.3189/2012JoG11J088, 2012.
Aschwanden, A., Aðalgeirsdóttir, G., and Khroulev, C.: Hindcasting to measure ice sheet model sensitivity to initial
states, The Cryosphere, 7, 1083–1093, https://doi.org/10.5194/tc-7-1083-2013, 2013.
Banwell, A. F., MacAyeal, D. R., and Sergienko, O. V.: Breakup of the Larsen
B Ice Shelf triggered by chain reaction drainage of supraglacial lakes,
Geophys. Res. Lett., 40, 5872–5876, https://doi.org/10.1002/2013GL057694,
2013.
Bassis, J. N. and Ma, Y.: Evolution of basal crevasses links ice shelf
stability to ocean forcing, Earth Planet. Sc. Lett., 409, 203–211,
https://doi.org/10.1016/j.epsl.2014.11.003, 2015.
Beckmann, A. and Goosse, H.: A parameterization of ice shelf–ocean
interaction for climate models, Ocean Model., 5, 157–170, 2003.
Bernales, J., Rogozhina, I., Greve, R., and Thomas, M.: Comparison of hybrid schemes for the combination of shallow approximations in
numerical simulations of the Antarctic Ice Sheet, The Cryosphere, 11, 247–265, https://doi.org/10.5194/tc-11-247-2017, 2017.
Berrisford, P., Dee, D., Fielding, K., Fuentes, M., Kallberg, P., Kobayashi,
S., and Uppala, S.: The ERA-Interim Archive Version 2.0, Tech. Rep., Reading,
UK, ECMWF, available at:
https://www.ecmwf.int/en/elibrary/8174-era-interim-archive-version-20
(last access: 8 May 2019), 2011.
Bindschadler, R., Nowicki, S., Abe-Ouchi, A., Aschwanden, A., Choi, H.,
Fastook, J., Granzow, G., Greve, R., Gutowski, G., Herzfeld, U., Jackson, C.,
Johnson, J., Khroulev, C., Levermann, A., Lipscomb, W., Martin, M.,
Morlighem, M., Parizek, B., Pollard, D., Price, S., Ren, D., Saito, F., Sato,
T., Seddik, H., Seroussi, H., Takahashi, K., Walker, R., and Wang, W.:
Ice-Sheet Model Sensitivities to Environmental Forcing and Their Use in
Projecting Future Sea-Level (The SeaRISE Project), J. Glaciol., 59, 195–224,
https://doi.org/10.3189/2013JoG12J125, 2013.
Blatter, H.: Velocity And Stress-Fields In Grounded Glaciers: A Simple
Algorithm For Including Deviatoric Stress Gradients, J. Glaciol., 41,
333–344, 1995.
Bueler, E. and Brown, J.: Shallow shelf approximation as a “sliding law” in
a thermomechanically coupled ice sheet model, J. Geophys. Res., 114, 1–21,
https://doi.org/10.1029/2008JF001179, 2009.
Bueler, E. and van Pelt, W.: Mass-conserving subglacial hydrology in the
Parallel Ice Sheet Model version 0.6, Geosci. Model Dev., 8, 1613–1635,
https://doi.org/10.5194/gmd-8-1613-2015, 2015.
Bueler, E., Brown, J., and Lingle, C.: Exact solutions to the
thermomechanically coupled shallow-ice approximation: effective tools for
verification, J. Glaciol., 53, 499–516, 2007.
Christie, F. D. W., Bingham, R. G., Gourmelen, N., Tett, S. F. B., and Muto,
A.: Four-decade record of pervasive grounding line retreat along the
Bellingshausen margin of West Antarctica, Geophys. Res. Lett., 43,
5741–5749, https://doi.org/10.1002/2016GL068972, 2016.
Christie, F. D. W., Bingham, R. G., Gourmelen, N., Steig, E. J., Bisset, R.
R., Pritchard, H. D., Snow, K., and Tett, S. F. B.: Glacier change along West
Antarctica's Marie Byrd Land Sector and links to inter-decadal
atmosphere–ocean variability, The Cryosphere, 12, 2461–2479,
https://doi.org/10.5194/tc-12-2461-2018, 2018.
Church, J., Clark, P., Cazenave, A., Gregory, J., Jevrejeva, S., Levermann,
A., Merrifield, M., Milne, G., Nerem, R., Nunn, P., Payne, A., Pfeffer, W.,
Stammer, D., and Unnikrishnan, A.: Climate Change 2013: The Physical Science
Basis Change, book section 13, Cambridge University Press, Cambridge, United
Kingdom and New York, NY, USA, 1137–1216,
https://doi.org/10.1017/CBO9781107415324.026, 2013.
Comiso, J.: Variability and trends in Antarctic surface temperatures from in
situ and satellite infrared measurements, J. Clim., 13, 1674–1696, 2000.
Cornford, S., Martin, D., Graves, D., Ranken, D. F., Le Brocq, A. M.,
Gladstone, R., Payne, A., Ng, E., and Lipscomb, W.: Adaptive mesh, finite
volume modeling of marine ice sheets, J. Comput. Phys., 232, 529–549,
https://doi.org/10.1016/j.jcp.2012.08.037, 2013.
Cornford, S. L., Martin, D. F., Payne, A. J., Ng, E. G., Le Brocq, A. M.,
Gladstone, R. M., Edwards, T. L., Shannon, S. R., Agosta, C., van den Broeke,
M. R., Hellmer, H. H., Krinner, G., Ligtenberg, S. R. M., Timmermann, R., and
Vaughan, D. G.: Century-scale simulations of the response of the West
Antarctic Ice Sheet to a warming climate, The Cryosphere, 9, 1579–1600,
https://doi.org/10.5194/tc-9-1579-2015, 2015.
Cornford, S. L., Martin, D. F., Lee, V., Payne, A. J., and Ng, E.: Adaptive
mesh refinement versus subgrid friction interpolation in simulations of
Antarctic ice dynamics, Ann. Glaciol., 73, 1–9, https://doi.org/10.1017/aog.2016.13,
2016.
De Angelis, H. and Skvarca, P.: Glacier surge after ice shelf collapse,
Science, 299, 1560–1562, https://doi.org/10.1126/science.1077987, 2003.
de Boer, B., Stocchi, P., and van de Wal, R. S. W.: A fully coupled 3-D
ice-sheet-sea-level model, algorithm and applications, Geosci. Model Dev., 7,
2141–2156, https://doi.org/10.5194/gmd-7-2141-2014, 2014.
DeConto, R. and Pollard, D.: Contribution of Antarctica to past and future
sea-level rise, Nature, 531, 591–597, https://doi.org/10.1038/nature17145,
2016.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., and Vitart, F.: The ERA-Interim reanalysis: configuration and
performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137,
553–597, https://doi.org/10.1002/qj.828, 2011.
Depoorter, M. A., Bamber, J. L., Griggs, J. A., Lenaerts, J. T. M.,
Ligtenberg, S. R. M., van den Broeke, M. R., and Moholdt, G.: Calving fluxes
and basal melt rates of Antarctic ice shelves, Nature, 502, 89–92,
https://doi.org/10.1038/nature12567, 2013.
Doake, C. S. M. and Vaughan, D. G.: Rapid disintegration of the Wordie Ice
Shelf in response to atmospheric warming, Nature, 350, 328–330, 1991.
Donat-Magnin, M., Jourdain, N. C., Spence, P., Le Sommer, J., Gallee, H., and
Durand, G.: Ice-Shelf Melt Response to Changing Winds and Glacier Dynamics in
the Amundsen Sea Sector, Antarctica, J. Geophys. Res., 122, 10206–10224,
https://doi.org/10.1002/2017JC013059, 2017.
Favier, L., Durand, G., Cornford, S. L., Gudmundsson, G. H., Gagliardini, O.,
Gillet-Chaulet, F., Zwinger, T., Payne, A. J., and Le Brocq, A.: Retreat of
Pine Island Glacier controlled by marine ice-sheet instability, Nat. Clim.
Change, 4, 117–121, https://doi.org/10.1038/NCLIMATE2094, 2014.
Feldmann, J., Albrecht, T., Khroulev, C., F., P., and Levermann, A.:
Resolution-dependent performance of grounding line motion in a shallow model
compared with a full-Stokes model according to the MISMIP3d intercomparison,
J. Glaciol., 60, 353–359, https://doi.org/10.3189/2014JoG13J093, 2014.
Fortuin, J. P. F. and Oerlemans, J.: Parameterization of the annual surface
temperature and mass balance of Antarctica, Ann. Glaciol., 14, 78–84, 1990.
Fretwell, P., Pritchard, H. D., Vaughan, D. G., Bamber, J. L., Barrand, N.
E., Bell, R., Bianchi, C., Bingham, R. G., Blankenship, D. D., Casassa, G.,
Catania, G., Callens, D., Conway, H., Cook, A. J., Corr, H. F. J., Damaske,
D., Damm, V., Ferraccioli, F., Forsberg, R., Fujita, S., Gim, Y., Gogineni,
P., Griggs, J. A., Hindmarsh, R. C. A., Holmlund, P., Holt, J. W., Jacobel,
R. W., Jenkins, A., Jokat, W., Jordan, T., King, E. C., Kohler, J., Krabill,
W., Riger-Kusk, M., Langley, K. A., Leitchenkov, G., Leuschen, C., Luyendyk,
B. P., Matsuoka, K., Mouginot, J., Nitsche, F. O., Nogi, Y., Nost, O. A.,
Popov, S. V., Rignot, E., Rippin, D. M., Rivera, A., Roberts, J., Ross, N.,
Siegert, M. J., Smith, A. M., Steinhage, D., Studinger, M., Sun, B., Tinto,
B. K., Welch, B. C., Wilson, D., Young, D. A., Xiangbin, C., and Zirizzotti,
A.: Bedmap2: improved ice bed, surface and thickness datasets for Antarctica,
The Cryosphere, 7, 375–393, https://doi.org/10.5194/tc-7-375-2013, 2013.
Fürst, J., Durand, G., Gillet-Chaulet, F., Merino, N., Tavard, L.,
Mouginot, J., Gourmelen, N., and Gagliardini, O.: Assimilation of Antarctic
velocity observations provides evidence for uncharted pinning points, The
Cryosphere, 9, 1427–1443, https://doi.org/10.5194/tc-9-1427-2015, 2015.
Fürst, J., Durand, G., Gillet-Chaulet, F., Tavard, T., Rankl, M., Braun,
M., and Gagliardini, O.: The safety band of Antarctic ice shelves, Nat. Clim.
Change, 6, 479–482, https://doi.org/10.1038/NCLIMATE2912, 2016.
Gillet-Chaulet, F., Gagliardini, O., Seddik, H., Nodet, M., Durand, G., Ritz,
C., Zwinger, T., Greve, R., and Vaughan, D.: Greenland Ice Sheet contribution
to sea-level rise from a new-generation ice-sheet model, The Cryosphere, 6,
1561–1576, https://doi.org/10.5194/tc-6-1561-2012, 2012.
Giovinetto, M. B. and Zwally, H. J.: Spatial distribution of net surface
accumulation on the Antarctic ice sheet, Ann. Glaciol., 31, 171–178, 2000.
Gladstone, R. M., Payne, A. J., and Cornford, S. L.: Parameterising the
grounding line in flow-line ice sheet models, The Cryosphere, 4, 605–619,
https://doi.org/10.5194/tc-4-605-2010, 2010.
Goelzer, H., Huybrechts, P., Loutre, M.-F., and Fichefet, T.: Last
Interglacial climate and sea-level evolution from a coupled ice sheet-climate
model, Clim. Past, 12, 2195–2213, https://doi.org/10.5194/cp-12-2195-2016,
2016.
Goelzer, H., Nowicki, S., Edwards, T., Beckley, M., Abe-Ouchi, A.,
Aschwanden, A., Calov, R., Gagliardini, O., Gillet-Chaulet, F., Golledge, N.
R., Gregory, J., Greve, R., Humbert, A., Huybrechts, P., Kennedy, J. H.,
Larour, E., Lipscomb, W. H., Leclec'h, S., Lee, V., Morlighem, M., Pattyn,
F., Payne, A. J., Rodehacke, C., Ruckamp, M., Saito, F., Schlegel, N.,
Seroussi, H., Shepherd, A., Sun, S., van de Wal, R., and Ziemen, F. A.:
Design and results of the ice sheet model initialisation experiments
initMIP-Greenland: an ISMIP6 intercomparison, The Cryosphere, 12, 1433–1460,
https://doi.org/10.5194/tc-12-1433-2018, 2018.
Goldberg, D. N.: A variationally derived, depth-integrated approximation to a
higher-order glaciological flow model, J. Glaciol., 57, 157–170,
https://doi.org/10.3189/002214311795306763, 2011.
Goldberg, D. N., Heimbach, P., Joughin, I., and Smith, B.: Committed retreat
of Smith, Pope, and Kohler Glaciers over the next 30 years inferred by
transient model calibration, The Cryosphere, 9, 2429–2446,
https://doi.org/10.5194/tc-9-2429-2015, 2015.
Golledge, N. R., Kowalewski, D. E., Naish, T. R., Levy, R. H., Fogwill, C.
J., and Gasson, E. G. W.: The multi-millennial Antarctic commitment to future
sea-level rise, Nature, 526, 421–425, https://doi.org/10.1038/nature15706, 2015.
Greenbaum, J. S., Blankenship, D. D., Young, D. A., Richter, T. G., Roberts,
J. L., Aitken, A. R. A., Legresy, B., Schroeder, D. M., Warner, R. C., van
Ommen, T. D., and Siegert, M. J.: Ocean access to a cavity beneath Totten
Glacier in East Antarctica, Nat. Geosci., 8, 294–298,
https://doi.org/10.1038/NGEO2388, 2015.
Greve, R. and Blatter, H.: Comparison of thermodynamics solvers in the
polythermal ice sheet model SICOPOLIS, Polar Sci., 10, 11–23,
https://doi.org/10.1016/j.polar.2015.12.004, 2016.
Greve, R. and Galton-Fenzi, B.: InitMIP-Antarctica experiments with the ice
sheet model SICOPOLIS, Abstract No. MIS10-01, JpGU-AGU Joint Meeting,
Makuhari, Chiba, Japan, May 2017, 2017.
Greve, R. and Herzfeld, U. C.: Resolution of ice streams and outlet glaciers
in large-scale simulations of the Greenland ice sheet, Ann. Glaciol., 54,
209–220, https://doi.org/10.3189/2013AoG63A085, 2013.
Hellmer, H. and Olber, D.: A two-dimensional model of the thermohaline
circulation under an ice shelf, Antarct. Sci., 1, 325–336, 1989.
Hindmarsh, R.: A numerical comparison of approximations to the Stokes
equations used in ice sheet and glacier modeling, J. Geophys. Res., 109,
1–15, https://doi.org/10.1029/2003JF000065, 2004.
Hoffman, M. J., Perego, M., Price, S. F., Lipscomb, W. H., Zhang, T.,
Jacobsen, D., Tezaur, I., Salinger, A. G., Tuminaro, R., and Bertagna, L.:
MPAS-Albany Land Ice (MALI): a variable-resolution ice sheet model for Earth
system modeling using Voronoi grids, Geosci. Model Dev., 11, 3747–3780,
https://doi.org/10.5194/gmd-11-3747-2018, 2018.
Hutter, K.: Theoretical glaciology: material science of ice and the mechanics
of glaciers and ice sheets, D. Reidel Publishing Co, Dordrecht, the
Netherlands, 1983.
Huybrechts, P.: A 3-D model for the Antarctic ice sheet: a sensitivity study
on the glacial-interglacial contrast, Clim. Dynam., 5, 79–92, 1990.
Huybrechts, P., Steinhage, D., Wilhelms, F., and Bamber, J.: Balance
velocities and measured properties of the Antarctic ice sheet from a new
compilation of gridded data for modelling, Ann. Glaciol., 30, 52–60, 2000.
Huybrechts, P.: Sea-level changes at the LGM from ice-dynamic reconstructions
of the Greenland and Antarctic ice sheets during the glacial cycles,
Quaternary Sci. Rev., 21, 203–231, 2002.
Huybrechts, P., Rybak, O., Pattyn, F., Ruth, U., and Steinhage, D.: Ice
thinning, upstream advection, and non-climatic biases for the upper 89 % of
the EDML ice core from a nested model of the Antarctic ice sheet, Clim. Past,
3, 577–589, https://doi.org/10.5194/cp-3-577-2007, 2007.
Jacobs, S., Jenkins, A., Hellmer, H., Giulivi, C., Nitsche, F., Huber, B.,
and Guerrero, R.: The Amundsen Sea and the Antarctic Ice Sheet, Oceanography,
25, 154–163, https://doi.org/10.5670/oceanog.2012.90, 2012.
Jacobs, S. S., Jenkins, A., Giulivi, C. F., and Dutrieux, P.: Stronger ocean
circulation and increased melting under Pine Island Glacier ice shelf, Nat.
Geosci., 4, 519–523, https://doi.org/10.1038/NGEO1188, 2011.
Janssens, I. and Huybrechts, P.: The treatment of meltwater retention in
mass-balance parameterizations of the Greenland ice sheet, Ann. Glaciol., 31,
133–140, 2000.
Jenkins, A., Dutrieux, P., Jacobs, S., McPhail, S., Perrett, J., Webb, A.,
and White, D.: Observations beneath Pine Island Glacier in West Antarctica
and implications for its retreat, Nat. Geosci., 3, 468–472, 2010.
Jenkins, A., Shoosmith, D., Dutrieux, P., Jacobs, S., Kim, T. W., Lee, S. H.,
Ha, H. K., and Stammerjohn, S.: West Antarctic Ice Sheet retreat in the
Amundsen Sea driven by decadal oceanic variability, Nat. Geosci., 11,
733–738, https://doi.org/10.1038/s41561-018-0207-4, 2018.
Jones, P. W.: First- and Second-Order Conservative Remapping Schemes for
Grids in Spherical Coordinates, Mon. Weather Rev., 127, 2204,
https://doi.org/10.1175/1520-0493(1999)127<2204:FASOCR>2.0.CO;2, 1999.
Joughin, I., Smith, B., and Medley, B.: Marine Ice Sheet Collapse Potentially
Underway for the Thwaites Glacier Basin, West Antarctica, Science, 344,
735–738, https://doi.org/10.1126/science.1249055, 2014.
Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S.,
Hoffmann, G., Minster, B., Nouet, J., Barnola, J. M., Chappellaz, J.,
Fischer, H., Gallet, J. C., Johnsen, S., Leuenberger, M., Loulergue, L.,
Luethi, D., Oerter, H., Parrenin, F., Raisbeck, G., Raynaud, D., Schilt, A.,
Schwander, J., Selmo, E., Souchez, R., Spahni, R., Stauffer, B., Steffensen,
J. P., Stenni, B., Stocker, T. F., Tison, J. L., Werner, M., and Wolff, E.
W.: Orbital and Millennial Antarctic Climate Variability over the Past
800,000 Years, Science, 317, 793–796,
https://doi.org/10.1126/science.1141038, 2007.
Khazendar, A., Schodlok, M., Fenty, I., Ligtenberg, S., Rignot, E., and van
den Broeke, M.: Observed thinning of Totten Glacier is linked to coastal
polynya variability, Nat. Commun., 4, 2857, https://doi.org/10.1038/ncomms3857, 2013.
Larour, E., Utke, J., Csatho, B., Schenk, A., Seroussi, H., Morlighem, M.,
Rignot, E., Schlegel, N., and Khazendar, A.: Inferred basal friction and
surface mass balance of the Northeast Greenland Ice Stream using data
assimilation of ICESat (Ice Cloud and land Elevation Satellite) surface
altimetry and ISSM (Ice Sheet System Model), The Cryosphere, 8, 2335–2351,
https://doi.org/10.5194/tc-8-2335-2014, 2014.
Le Brocq, A. M., Payne, A. J., and Vieli, A.: An improved Antarctic dataset
for high resolution numerical ice sheet models (ALBMAP v1), Earth Syst. Sci.
Data, 2, 247–260, https://doi.org/10.5194/essd-2-247-2010, 2010.
Le clec'h, S., Quiquet, A., Charbit, S., Dumas, C., Kageyama, M., and Ritz,
C.: A rapidly converging spin-up method for the present-day Greenland ice
sheet using the GRISLI ice-sheet model, Geosci. Model Dev. Discuss.,
https://doi.org/10.5194/gmd-2017-322, in review, 2018.
Leguy, G., Asay-Davis, X., and Lipscomb, W.: Parameterization of basal
friction near grounding lines in a one-dimensional ice sheet model, The
Cryosphere, 8, 1239–1259, https://doi.org/10.5194/tc-8-1239-2014, 2014.
Lenaerts, J. T. M., van den Broeke, M. R., van de Berg, W. J., van Meijgaard,
E., and Munneke, P. K.: A new, high-resolution surface mass balance map of
Antarctica (1979–2010) based on regional atmospheric climate modeling,
Geophys. Res. Lett., 39, 1–5, https://doi.org/10.1029/2011GL050713, 2012.
Levermann, A., Albrecht, T., Winkelmann, R., Martin, M. A., Haseloff, M., and
Joughin, I.: Kinematic first-order calving law implies potential for abrupt
ice-shelf retreat, The Cryosphere, 6, 273–286,
https://doi.org/10.5194/tc-6-273-2012, 2012.
Levitus, S., Antonov, J. I., Boyer, T. P., Baranova, O. K., Garcia, H. E.,
Locarnini, R. A., Mishonov, A. V., Reagan, J. R., Seidov, D., Yarosh, E. S.,
and Zweng, M. M.: World ocean heat content and thermosteric sea level change
(0–2000 m), 1955–2010, Geophys. Res. Lett., 39, L10603,
https://doi.org/10.1029/2012GL051106, 2012.
Ligtenberg, S. R. M., van de Berg, W. J., van den Broeke, M. R., Rae, J. G.
L., and van Meijgaard, E.: Future surface mass balance of the Antarctic ice
sheet and its influence on sea level change, simulated by a regional
atmospheric climate model, Clim. Dynam., 41, 867–884,
https://doi.org/10.1007/s00382-013-1749-1, 2013.
Lipscomb, W. H., Price, S. F., Hoffman, M. J., Leguy, G. R., Bennett, A. R.,
Bradley, S. L., Evans, K. J., Fyke, J. G., Kennedy, J. H., Perego, M.,
Ranken, D. M., Sacks, W. J., Salinger, A. G., Vargo, L. J., and Worley, P.
H.: Description and evaluation of the Community Ice Sheet Model (CISM) v2.1,
Geosci. Model Dev., 12, 387–424, https://doi.org/10.5194/gmd-12-387-2019,
2019.
Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Garcia, H.
E., Baranova, O. K., Zweng, M. M., and Johnson, D. R.: World Ocean Atlas
2009, Volume 1: Temperature, US Government Printing Office, Washington, DC,
https://www.nodc.noaa.gov/OC5/WOA09/pubwoa09.html (last access:
9 May 2019), 2010.
MacAyeal, D.: Binge/Purge oscillations of the Laurentide ice-sheet as a cause
of the North-Atlantic's Heinrich events, Paleoceanography, 8, 775–784, 1993.
MacAyeal, D. R.: Large-scale ice flow over a viscous basal sediment: Theory
and application to Ice Stream B, Antarctica, J. Geophys. Res., 94,
4071–4087, 1989.
Martin, M. A., Winkelmann, R., Haseloff, M., Albrecht, T., Bueler, E.,
Khroulev, C., and Levermann, A.: The Potsdam Parallel Ice Sheet Model
(PISM-PIK) – Part 2: Dynamic equilibrium simulation of the Antarctic ice
sheet, The Cryosphere, 5, 727–740, https://doi.org/10.5194/tc-5-727-2011,
2011.
Maule, C. F., Purucker, M. E., Olsen, N., and Mosegaard, K.: Heat Flux
Anomalies in Antarctica Revealed by Satellite Magnetic Data, Science, 309,
464–467, https://doi.org/10.1126/science.1106888, 2005.
Millan, R., Rignot, E., Bernier, V., Morlighem, M., and Dutrieux, P.:
Bathymetry of the Amundsen Sea Embayment sector of West Antarctica from
Operation IceBridge gravity and other data, Geophys. Res. Lett., 44,
1360–1368, https://doi.org/10.1002/2016GL072071, 2017.
Miller, K. G., Wright, J. D., Browning, J. V., Kulpecz, A., Kominz, M.,
Naish, T. R., Cramer, B. S., Rosenthal, Y., Peltier, W. R., and Sosdian, S.:
High tide of the warm Pliocene: Implications of global sea level for
Antarctic deglaciation, Geology, 40, 407–410,
https://doi.org/10.1130/G32869.1, 2012.
Morlighem, M., Rignot, E., Seroussi, H., Larour, E., Ben Dhia, H., and Aubry,
D.: Spatial patterns of basal drag inferred using control methods from a
full-Stokes and simpler models for Pine Island Glacier, West Antarctica,
Geophys. Res. Lett., 37, 1–6, https://doi.org/10.1029/2010GL043853, 2010.
Morlighem, M., Rignot, E., Seroussi, H., Larour, E., Ben Dhia, H., and Aubry,
D.: A mass conservation approach for mapping glacier ice thickness, Geophys.
Res. Lett., 38, 1–6, https://doi.org/10.1029/2011GL048659, 2011.
Morlighem, M., Seroussi, H., Larour, E., and Rignot, E.: Inversion of basal
friction in Antarctica using exact and incomplete adjoints of a higher-order
model, J. Geophys. Res., 118, 1746–1753, https://doi.org/10.1002/jgrf.20125,
2013.
Mouginot, J., Rignot, E., and Scheuchl, B.: Sustained increase in ice
discharge from the Amundsen Sea Embayment, West Antarctica, from 1973 to
2013, Geophys. Res. Lett., 41, 1–9, https://doi.org/10.1002/2013GL059069,
2014.
Munneke, P. K., Ligtenberg, S. R. M., Van Den Broeke, M. R., and Vaughan, D.
G.: Firn air depletion as a precursor of Antarctic ice-shelf collapse, J.
Glaciol., 60, 205–214, https://doi.org/10.3189/2014JoG13J183, 2014.
Nakayama, Y., Timmermann, R., M., S., and Hellmer, H.: On the difficulty of
modeling Circumpolar Deep Water intrusions onto the Amundsen Sea continental
shelf, Ocean Model., 84, 26–34,
https://doi.org/10.1016/j.ocemod.2014.09.007, 2014.
Nowicki, S., Bindschadler, R., Abe-Ouchi, A., Aschwanden, A., Bueler, E.,
Choi, H., Fastook, J., Granzow, G., Greve, R., Gutowski, G., Herzfeld, U.,
Jackson, C., Johnson, J., Khroulev, C., Larour, E., Levermann, A., Lipscomb,
W., Martin, M., Morlighem, M., Parizek, B., Pollard, D., Price, S., Ren, D.,
Rignot, E., Saito, F., Sato, T., Seddik, H., Seroussi, H., Takahashi, K.,
Walker, R., and Wang, W.: Insights into spatial sensitivities of ice mass
response to environmental change from the SeaRISE ice sheet modeling project
II: Greenland, J. Geophys. Res., 118, 1–20,
https://doi.org/10.1002/jgrf.20076, 2013a.
Nowicki, S., Bindschadler, R. A., Abe-Ouchi, A., Aschwanden, A., Bueler, E.,
Choi, H., Fastook, J., Granzow, G., Greve, R., Gutowski, G., Herzfeld, U.,
Jackson, C., Johnson, J., Khroulev, C., Larour, E., Levermann, A., Lipscomb,
W. H., Martin, M. A., Morlighem, M., Parizek, B. R., Pollard, D., Price, S.
F., Ren, D., Rignot, E., Saito, F., Sato, T., Seddik, H., Seroussi, H.,
Takahashi, K., Walker, R., and Wang, W. L.: Insights into spatial
sensitivities of ice mass response to environmental change from the SeaRISE
ice sheet modeling project I: Antarctica, J. Geophys. Res., 118, 1–23,
https://doi.org/10.1002/jgrf.20081, 2013b.
Nowicki, S., Payne, A., Larour, E., Seroussi, H., Goelzer, H., Lipscomb, W.,
Gregory, J., Abe-Ouchi, A., and Shepherd, A.: Ice Sheet Model Intercomparison
Project (ISMIP6) contribution to CMIP6 , Geosci. Model Dev., 9, 4521–4545,
https://doi.org/10.5194/gmd-9-4521-2016, 2016.
Palerme, C., Genthon, C., Claud, C., Kay, J., Wood, N., and L'Ecuyer, T.:
Evaluation of current and projected Antarctic precipitation in CMIP5 models,
Clim. Dynam., 48, 225–239, https://doi.org/10.1007/s00382-016-3071-1, 2016.
Paolo, F., Fricker, H., and Padman, L.: Volume loss from Antarctic ice
shelves is accelerating, Science, 348, 6232, 327–331,
https://doi.org/10.1126/science.aaa0940, 2015.
Pattyn, F.: A new three-dimensional higher-order thermomechanical ice sheet
model: Basic sensitivity, ice stream development, and ice flow across
subglacial lakes, J. Geophys. Res., 108, 1–15,
https://doi.org/10.1029/2002JB002329, 2003.
Pattyn, F.: Antarctic subglacial conditions inferred from a hybrid ice
sheet/ice stream model, Earth Planet. Sc. Lett., 295, 451–461,
https://doi.org/10.1016/j.epsl.2010.04.025, 2010.
Pattyn, F.: Sea-level response to melting of Antarctic ice shelves on
multi-centennial timescales with the fast Elementary Thermomechanical Ice
Sheet model (f.ETISh v1.0), The Cryosphere, 11, 1851–1878,
https://doi.org/10.5194/tc-11-1851-2017, 2017.
Pattyn, F., Schoof, C., Perichon, L., Hindmarsh, R. C. A., Bueler, E., de
Fleurian, B., Durand, G., Gagliardini, O., Gladstone, R., Goldberg, D.,
Gudmundsson, G. H., Huybrechts, P., Lee, V., Nick, F. M., Payne, A. J.,
Pollard, D., Rybak, O., Saito, F., and Vieli, A.: Results of the Marine Ice
Sheet Model Intercomparison Project, MISMIP, The Cryosphere, 6, 573–588,
https://doi.org/10.5194/tc-6-573-2012, 2012.
Pattyn, F., Perichon, L., Durand, G., Favier, L., Gagliardini, O., Hindmarsh,
R. C. A., Zwinger, T., Albrecht, T., Cornford, S., Docquier, D., Fuerst, J.,
Goldberg, D., Gudmundsson, H., Hum- bert, A., Hutten, M., Huybrecht, P.,
Jouvet, G., Kleiner, T., Larour, E., Martin, D., Morlighem, M., Payne, A.,
Pollard, D., Ruckamp, M., Rybak, O., Seroussi, H., Thoma, M., and Wilkens,
N.: Grounding-line migration in plan-view marine ice-sheet models: results of
the ice2sea MISMIP3d intercomparison, J. Glaciol., 59, 410–422,
https://doi.org/10.3189/2013JoG12J129, 2013.
Pattyn, F., Favier, L., Sun, S., and Durand, G.: Progress in Numerical
Modeling of Antarctic Ice-Sheet Dynamics, Curr. Clim. Change Rep., 3,
174–184, https://doi.org/10.1007/s40641-017- 0069-7, 2017.
Payne, A., Vieli, A., Shepherd, A., Wingham, D., and Rignot, E.: Recent
dramatic thinning of largest West Antarctic ice stream triggered by oceans,
Geophys. Res. Lett., 31, 1–4, https://doi.org/10.1029/2004GL021284, 2004.
Perego, M., Price, S., and Stadler, G.: Optimal initial conditions for
coupling ice sheet models to Earth system models, J. Geophys. Res.-Earth,
119, 1–24, https://doi.org/10.1002/2014JF003181, 2014.
Petit, J., Jouzel, J., Raynaud, D., Barkov, N., Barnola, J., Basile, I.,
Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov,
V., Legrand, M., Lipenkov, V., Lorius, C., Pepin, L., Ritz, C., Saltzman, E.,
and Stievenard, M.: Climate and atmospheric history of the past 420,000 years
from the Vostok ice core, Antarctica, Nature, 399, 429–436,
https://doi.org/10.1038/20859, 1999.
Pfeiffer, M. and Lohmann, G.: Greenland Ice Sheet influence on Last
Interglacial climate: global sensitivity studies performed with an
atmosphere–ocean general circulation model, Clim. Past, 12, 1313–1338,
https://doi.org/10.5194/cp-12-1313-2016, 2016.
Pollard, D. and DeConto, R. M.: A simple inverse method for the distribution
of basal sliding coefficients under ice sheets, applied to Antarctica, The
Cryosphere, 6, 953–971, https://doi.org/10.5194/tc-6-953-2012, 2012a.
Pollard, D. and DeConto, R. M.: Description of a hybrid ice sheet-shelf
model, and application to Antarctica, Geosci. Model Dev., 5, 1273–1295,
https://doi.org/10.5194/gmd-5-1273-2012, 2012b.
Pollard, D., DeConto, R. M., and Alley, R. B.: Potential Antarctic Ice Sheet
retreat driven by hydrofracturing and ice cliff failure, Earth Planet Sc.
Lett., 412, 112–121, https://doi.org/10.1016/j.epsl.2014.12.035, 2015.
Pollard, D., Chang, W., Haran, M., Applegate, P., and DeConto, R.: Large
ensemble modeling of the last deglacial retreat of the West Antarctic Ice
Sheet: comparison of simple and advanced statistical techniques, Geosci.
Model Dev., 9, 1697–1723, https://doi.org/10.5194/gmd-9-1697-2016, 2016.
Pritchard, H. D., Ligtenberg, S. R. M., Fricker, H. A., Vaughan, D. G., van
den Broeke, M. R., and Padman, L.: Antarctic ice-sheet loss driven by basal
melting of ice shelves, Nature, 484, 502–505,
https://doi.org/10.1038/nature10968, 2012.
Purucker, M. E.: Geothermal heat flux data set based on low resolution
observations collected by the CHAMP satellite between 2000 and 2010, and
produced from the MF-6 model following the technique described in Fox Maule
et al. (2005), available at:
http://websrv.cs.umt.edu/isis/index.php/Antarctica_Basal_Heat_Flux
(last access: 9 May 2019), 2012.
Quiquet, A., Dumas, C., Ritz, C., Peyaud, V., and Roche, D. M.: The GRISLI
ice sheet model (version 2.0): calibration and validation for
multi-millennial changes of the Antarctic ice sheet, Geosci. Model Dev., 11,
5003–5025, https://doi.org/10.5194/gmd-11-5003-2018, 2018.
Reeh, N.: Parameterization of melt rate and surface temperature on the
Greenland Ice Sheet, Polarforschung, 59, 113–128, hdl:10013/epic.13107,
1991.
Reerink, T. J., Kliphuis, M. A., and van de Wal, R. S. W.: Mapping technique
of climate fields between GCM's and ice models, Geosci. Model Dev., 3,
13–41, https://doi.org/10.5194/gmd-3-13-2010, 2010.
Reerink, T. J., van de Berg, W. J., and van de Wal, R. S. W.: OBLIMAP 2.0: a
fast climate model–ice sheet model coupler including online embeddable
mapping routines, Geosci. Model Dev., 9, 4111–4132,
https://doi.org/10.5194/gmd-9-4111-2016, 2016.
Reese, R., Albrecht, T., Mengel, M., Asay-Davis, X., and Winkelmann, R.:
Antarctic sub-shelf melt rates via PICO, The Cryosphere, 12, 1969–1985,
https://doi.org/10.5194/tc-12-1969-2018, 2018.
Rignot, E., Mouginot, J., and Scheuchl, B.: Ice Flow of the Antarctic Ice
Sheet, Science, 333, 1427–1430, https://doi.org/10.1126/science.1208336,
2011a.
Rignot, E., Velicogna, I., van den Broeke, M., Monaghan, A., and Lenaerts,
J.: Acceleration of the contribution of the Greenland and Antarctic ice
sheets to sea level rise, Geophys. Res. Lett., 38, 1–5,
https://doi.org/10.1029/2011GL046583, 2011b.
Rignot, E., Jacobs, S., Mouginot, J., and Scheuchl, B.: Ice shelf melting
around Antarctica, Science, 341, 266–270,
https://doi.org/10.1126/science.1235798, 2013.
Rignot, E., Mouginot, J., Morlighem, M., Seroussi, H., and Scheuchl, B.:
Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith and
Kohler glaciers, West Antarctica from 1992 to 2011, Geophys. Res. Lett., 41,
3502–3509, https://doi.org/10.1002/2014GL060140, 2014.
Ritz, C.: Un modele thermo-mecanique d'evolution pour le bassin glaciaire
antarctique Vostok-Glacier Byrd: Sensibilite aux valeurs des parametres mal
connus, Ph.D. thesis, Universite Joseph-Fourier – Grenoble I, 1992.
Ritz, C., Fabre, A., and Letreguilly, A.: Sensitivity of a Greenland ice
sheet model to ice flow and ablation parameters: Consequences for the
evolution through the last climatic cycle, Clim. Dynam., 13, 11–24, 1997.
Ritz, C., Rommelaere, V., and Dumas, C.: Modeling the evolution of Antarctic
ice sheet over the last 420,000 years: Implications for altitude changes in
the Vostok region, J. Geophys. Res., 106, 31943–31964,
https://doi.org/10.1029/2001JD900232, 2001.
Ritz, C., Edwards, T., Durand, G., Payne, A., V., P., and Hindmarsh, R.:
Potential sea-level rise from Antarctic ice-sheet instability constrained by
observations, Nature, 528, 115–118, https://doi.org/10.1038/nature16147, 2015.
Rommelaere, V.: EISMINT: Ice shelf models intercomparison, setup of the
experiments, Laboratoire de Glaciologie et Geophysique de l'Environnement,
54, rue Moliere BP 96 38402 Saint Martin d'Heres cedex FRANCE, 1996.
Rott, H., Rack, W., Skvarca, P., and De Angelis, H.: Northern Larsen Ice
Shelf, Antarctica: further retreat after collapse, Ann. Glaciol., 34,
277–282, https://doi.org/10.3189/172756402781817716, 2002.
Sato, T. and Greve, R.: Sensitivity experiments for the Antarctic ice sheet
with varied sub-ice-shelf melting rates, Ann. Glaciol., 53, 221–228,
https://doi.org/10.3189/2012AoG60A042, 2012.
Scambos, T., Hulbe, C., Fahnestock, M., and Bohlander, J.: The link between
climate warming and break-up of ice shelves in the Antarctic Peninsula, J.
Glaciol., 46, 516–530, 2000.
Scambos, T., Bohlander, J., Shuman, C., and Skvarca, P.: Glacier acceleration
and thinning after ice shelf collapse in the Larsen B embayment, Antarctica,
Geophys. Res. Lett., 31, 1–4, https://doi.org/10.1029/2004GL020670, 2004.
Scheuchl, B., Mouginot, J., Rignot, E., Morlighem, M., and Khazendar, A.:
Grounding line retreat of Pope, Smith, and Kohler Glaciers, West Antarctica,
measured with Sentinel-1a radar interferometry data, Geophys. Res. Lett., 43,
8572–8579, https://doi.org/10.1002/2016GL069287, 2016.
Schlegel, N.-J., Larour, E., Seroussi, H., Morlighem, M., and Box, J. E.:
Decadal-scale sensitivity of Northeast Greenland ice flow to errors in
surface mass balance using ISSM, J. Geophys. Res.-Earth, 118, 667–680,
https://doi.org/10.1002/jgrf.20062, 2013.
Schlegel, N.-J., Larour, E., Seroussi, H., Morlighem, M., and Box, J. E.: Ice
discharge uncertainties in Northeast Greenland from boundary conditions and
climate forcing of an ice flow model, J. Geophys. Res.-Earth, 120, 29–54,
https://doi.org/10.1002/2014JF003359, 2015.
Schlegel, N.-J., Seroussi, H., Schodlok, M. P., Larour, E. Y., Boening, C.,
Limonadi, D., Watkins, M. M., Morlighem, M., and van den Broeke, M. R.:
Exploration of Antarctic Ice Sheet 100-year contribution to sea level rise
and associated model uncertainties using the ISSM framework, The Cryosphere,
12, 3511–3534, https://doi.org/10.5194/tc-12-3511-2018, 2018.
Schmidtko, S., Heywood, K., Thompson, A., and Aoki, S.: Multidecadal warming
of Antarctic waters, Science, 346, 1227–1231, https://doi.org/10.1126/science.1256117,
2014.
Schodlok, M., Menemenlis, D., and Rignot, E.: Ice shelf basal melt rates
around Antarctica from simulations and observations, J. Geophys. Res., 121,
1085–1109, https://doi.org/10.1002/2015JC011117, 2016.
Schoof, C.: The effect of cavitation on glacier sliding, Proc. R. Soc. A,
461, 609–627, https://doi.org/10.1098/rspa.2004.1350, 2005.
Schoof, C.: A variational approach to ice stream flow, J. Fluid Mech., 556,
227–251, https://doi.org/10.1017/S0022112006009591, 2006.
Schoof, C.: Ice sheet grounding line dynamics: Steady states, stability, and
hysteresis, J. Geophys. Res., 112, 1–19,
https://doi.org/10.1029/2006JF000664, 2007.
Seroussi, H. and Morlighem, M.: Representation of basal melting at the
grounding line in ice flow models, The Cryosphere, 12, 3085–3096,
https://doi.org/10.5194/tc-12-3085-2018, 2018.
Seroussi, H., Morlighem, M., Rignot, E., Larour, E., Aubry, D., Ben Dhia, H.,
and Kristensen, S. S.: Ice flux divergence anomalies on 79north Glacier,
Greenland, Geophys. Res. Lett., 38, L09501, https://doi.org/10.1029/2011GL047338, 2011.
Seroussi, H., Morlighem, M., Rignot, E., Khazendar, A., Larour, E., and
Mouginot, J.: Dependence of century-scale projections of the Greenland ice
sheet on its thermal regime, J. Glaciol., 59, 1024–1034,
https://doi.org/10.3189/2013JoG13J054, 2013.
Seroussi, H., Morlighem, M., Rignot, E., Mouginot, J., Larour, E., Schodlok,
M. P., and Khazendar, A.: Sensitivity of the dynamics of Pine Island Glacier,
West Antarctica, to climate forcing for the next 50 years, The Cryosphere, 8,
1699–1710, https://doi.org/10.5194/tc-8-1699-2014, 2014.
Seroussi, H., Nakayama, Y., Larour, E., Menemenlis, D., Morlighem, M.,
Rignot, E., and Khazendar, A.: Continued retreat of Thwaites Glacier, West
Antarctica, controlled by bed topography and ocean circulation, Geophys. Res.
Lett., 44, 6191–6199, https://doi.org/10.1002/2017GL072910, 2017.
Shapiro, N. M. and Ritzwoller, M. H.: Inferring surface heat flux
distributions guided by a global seismic model: particular application to
Antarctica, Earth Planet. Sc. Lett., 223, 213–224,
https://doi.org/10.1016/j.epsl.2004.04.011, 2004.
Sutter, J., Gierz, P., Grosfeld, K., Thoma, M., and Lohmann, G.: Ocean
temperature thresholds for Last Interglacial West Antarctic Ice Sheet
collapse, Geophys. Res. Lett., 43, 2675–2682,
https://doi.org/10.1002/2016GL067818, 2016.
Taylor, K., Stouffer, R., and Meehl, G.: An Overview of CMIP5 and the
experiment design, Bull. Am. Math. Soc., 93, 485–498,
https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
Thomas, R., Rignot, E., Casassa, G., Kanagaratnam, P., Acuna, C., Akins, T.,
Brecher, H., Frederick, E., Gogineni, P., Krabill, W., Manizade, S.,
Ramamoorthy, H., Rivera, A., Russell, R., Sonntag, J., Swift, R., Yungel, J.,
and Zwally, J.: Accelerated sea-level rise from West Antarctica, Science,
306, 255–258, https://doi.org/10.1126/science.1099650, 2004.
Tsai, V., Stewart, A., and Thompson, A.: Marine ice-sheet profiles and
stability under Coulomb basal conditions, J. Glaciol., 61, 205–215,
https://doi.org/10.3189/2015JoG14J221, 2015.
van Wessem, J. M., Reijmer, C. H., Morlighem, M., Mouginot, J., Rignot, E.,
Medley, B., Joughin, I., Wouters, B., Depoorter, M. A., Bamber, J. L.,
Lenaerts, J. T. M., van de Berg, W. J., van den Broeke, M. R., and van
Meijgaard, E.: Improved representation of East Antarctic surface mass balance
in a regional atmospheric climate model, J. Glaciol., 60, 761–770,
https://doi.org/10.3189/2014JoG14J051, 2014.
van Wessem, J. M., Van De Berg, W. J., Noël, B. P. Y., Van Meijgaard, E.,
Amory, C., Birnbaum, G., Jakobs, C. L., Krüger, K., Lenaerts, J.,
Lhermitte, S., Ligtenberg, S. R. M., Medley, B., Reijmer, C. H., van Tricht,
K., Trusel, L. D., van Ulft, L. H., Wouters, B., Wuite, J., and van den
Broeke, M. R.: Modelling the climate and surface mass balance of polar ice
sheets using RACMO2 – Part 2: Antarctica (1979–2016), The Cryosphere, 12,
1479–1498, https://doi.org/10.5194/tc-12-1479-2018, 2018.
Vaughan, D. G. and Doake, C. S. M.: Recent atmospheric warming and retreat of
ice shelves on the Antarctic Peninsula, Nature, 379, 328–331, 1996.
Waelbroeck, C., Labeyrie, L., Michel, E., Duplessy, J. C., McManus, J. F.,
Lambeck, K., Balbon, E., and Labracherie, M.: Sea-level and deep water
temperature changes derived from benthic foraminifera isotopic records,
Quaternary Sci. Rev., 21, 295–305,
https://doi.org/10.1016/S0277-3791(01)00101-9, 2002.
Weertman, J.: On the sliding of glaciers, J. Glaciol., 3, 33–38, 1957.
Winkelmann, R., Martin, M. A., Haseloff, M., Albrecht, T., Bueler, E.,
Khroulev, C., and Levermann, A.: The Potsdam Parallel Ice Sheet Model
(PISM-PIK) – Part 1: Model description, The Cryosphere, 5, 715–726,
https://doi.org/10.5194/tc-5-715-2011, 2011.
Wouters, B., Martin-Espanol, A., Helm, V., Flament, T., van Wessem, J. M.,
Ligtenberg, S. R. M., van den Broeke, M. R., and Bamber, J. L.: Dynamic
thinning of glaciers on the Southern Antarctic Peninsula, Science, 348,
899–903, https://doi.org/10.1126/science.aaa5727, 2015.
Zhang, X., Lohmann, G., Knorr, G., and Purcell, C.: Abrupt glacial climate
shifts controlled by ice sheet changes, Nature, 512, 7514,
https://doi.org/10.1038/nature13592, 2014.