Articles | Volume 11, issue 2
https://doi.org/10.5194/tc-11-1015-2017
https://doi.org/10.5194/tc-11-1015-2017
Research article
 | 
25 Apr 2017
Research article |  | 25 Apr 2017

Reconstructions of the 1900–2015 Greenland ice sheet surface mass balance using the regional climate MAR model

Xavier Fettweis, Jason E. Box, Cécile Agosta, Charles Amory, Christoph Kittel, Charlotte Lang, Dirk van As, Horst Machguth, and Hubert Gallée

Related authors

Assessing the sensitivity of storm surge simulation to the atmospheric forcing resolutions across the estuary-sea continuum
Ny Riana Randresihaja, Olivier Gourgue, Lauranne Alaerts, Xavier Fettweis, Jonathan Lambrechts, Miguel De Le Court, Marilaure Grégoire, and Emmanuel Hanert
EGUsphere, https://doi.org/10.5194/egusphere-2025-634,https://doi.org/10.5194/egusphere-2025-634, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
GCL-Mascon2024: a novel satellite gravimetry mascon solution using the short-arc approach
Zhengwen Yan, Jiangjun Ran, Pavel Ditmar, C. K. Shum, Roland Klees, Patrick Smith, and Xavier Fettweis
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-512,https://doi.org/10.5194/essd-2024-512, 2025
Preprint under review for ESSD
Short summary
Assessing spatio-temporal variability of firn volume scattering over Greenland with satellite altimeters
Weiran Li, Stef Lhermitte, Bert Wouters, Cornelis Slobbe, Max Brils, and Xavier Fettweis
EGUsphere, https://doi.org/10.5194/egusphere-2024-3251,https://doi.org/10.5194/egusphere-2024-3251, 2024
Short summary
Modelling snowpack on ice surfaces with the ORCHIDEE land surface model: application to the Greenland ice sheet
Sylvie Charbit, Christophe Dumas, Fabienne Maignan, Catherine Ottlé, Nina Raoult, Xavier Fettweis, and Philippe Conesa
The Cryosphere, 18, 5067–5099, https://doi.org/10.5194/tc-18-5067-2024,https://doi.org/10.5194/tc-18-5067-2024, 2024
Short summary
Runoff from Greenland's firn area – why do MODIS, RCMs and a firn model disagree?
Horst Machguth, Andrew Tedstone, Peter Kuipers Munneke, Max Brils, Brice Noël, Nicole Clerx, Nicolas Jullien, Xavier Fettweis, and Michiel van den Broeke
EGUsphere, https://doi.org/10.5194/egusphere-2024-2750,https://doi.org/10.5194/egusphere-2024-2750, 2024
Short summary

Related subject area

Greenland
Ice speed of a Greenlandic tidewater glacier modulated by tide, melt, and rain
Shin Sugiyama, Shun Tsutaki, Daiki Sakakibara, Izumi Asaji, Ken Kondo, Yefan Wang, Evgeny Podolskiy, Guillaume Jouvet, and Martin Funk
The Cryosphere, 19, 525–540, https://doi.org/10.5194/tc-19-525-2025,https://doi.org/10.5194/tc-19-525-2025, 2025
Short summary
A topographically controlled tipping point for complete Greenland ice sheet melt
Michele Petrini, Meike D. W. Scherrenberg, Laura Muntjewerf, Miren Vizcaino, Raymond Sellevold, Gunter R. Leguy, William H. Lipscomb, and Heiko Goelzer
The Cryosphere, 19, 63–81, https://doi.org/10.5194/tc-19-63-2025,https://doi.org/10.5194/tc-19-63-2025, 2025
Short summary
Projections of precipitation and temperatures in Greenland and the impact of spatially uniform anomalies on the evolution of the ice sheet
Nils Bochow, Anna Poltronieri, and Niklas Boers
The Cryosphere, 18, 5825–5863, https://doi.org/10.5194/tc-18-5825-2024,https://doi.org/10.5194/tc-18-5825-2024, 2024
Short summary
Seasonal snow cover indicators in coastal Greenland from in situ observations, a climate model, and reanalysis
Jorrit van der Schot, Jakob Abermann, Tiago Silva, Kerstin Rasmussen, Michael Winkler, Kirsty Langley, and Wolfgang Schöner
The Cryosphere, 18, 5803–5823, https://doi.org/10.5194/tc-18-5803-2024,https://doi.org/10.5194/tc-18-5803-2024, 2024
Short summary
Impacts of differing melt regimes on satellite radar waveforms and elevation retrievals
Alexander C. Ronan, Robert L. Hawley, and Jonathan W. Chipman
The Cryosphere, 18, 5673–5683, https://doi.org/10.5194/tc-18-5673-2024,https://doi.org/10.5194/tc-18-5673-2024, 2024
Short summary

Cited articles

Alexander, P. M., Tedesco, M., Fettweis, X., van de Wal, R. S. W., Smeets, C. J. P. P., and van den Broeke, M. R.: Assessing spatio-temporal variability and trends in modelled and measured Greenland Ice Sheet albedo (2000–2013), The Cryosphere, 8, 2293–2312, https://doi.org/10.5194/tc-8-2293-2014, 2014.
Alexander, P. M., Tedesco, M., Schlegel, N.-J., Luthcke, S. B., Fettweis, X., and Larour, E.: Greenland Ice Sheet seasonal and spatial mass variability from model simulations and GRACE (2003–2012), The Cryosphere, 10, 1259–1277, https://doi.org/10.5194/tc-10-1259-2016, 2016.
Armstrong, R. L., Knowles, K. W., Brodzik, M. J., and Hardman M. A.: DMSP SSM/I Pathfinder daily EASE-Grid brightness temperatures, May 1987 to April 2009, Boulder, CO, USA, National Snow and Ice Data Center, Digital media and CD-ROM, 1994.
Bamber, J. L., Layberry, R. L., and Gogenini, S. P.: A new ice thickness and bed dataset for the Greenland ice sheet 1: measurement, data reduction, and errors, J. Geophys. Res., 106, 33773–33780, 2001.
Download
Short summary
This paper shows that the surface melt increase over the Greenland ice sheet since the end of the 1990s has been unprecedented, with respect to the last 120 years, using a regional climate model. These simulations also suggest an increase of the snowfall accumulation through the last century before a surface mass decrease in the 2000s. Such a mass gain could have impacted the ice sheet's dynamic stability and could explain the recent observed increase of the glaciers' velocity.
Share