Articles | Volume 15, issue 10
The Cryosphere, 15, 4975–4980, 2021
https://doi.org/10.5194/tc-15-4975-2021
The Cryosphere, 15, 4975–4980, 2021
https://doi.org/10.5194/tc-15-4975-2021
Brief communication
26 Oct 2021
Brief communication | 26 Oct 2021

Brief communication: Evaluation of the snow cover detection in the Copernicus High Resolution Snow & Ice Monitoring Service

Zacharie Barrou Dumont et al.

Related authors

Revisiting the global mean ocean mass budget over 2005–2020
Anne Barnoud, Julia Pfeffer, Anny Cazenave, and Michaël Ablain
EGUsphere, https://doi.org/10.5194/egusphere-2022-716,https://doi.org/10.5194/egusphere-2022-716, 2022
Short summary
A non-stationary extreme-value approach for climate projection ensembles: application to snow loads in the French Alps
Erwan Le Roux, Guillaume Evin, Nicolas Eckert, Juliette Blanchet, and Samuel Morin
Earth Syst. Dynam., 13, 1059–1075, https://doi.org/10.5194/esd-13-1059-2022,https://doi.org/10.5194/esd-13-1059-2022, 2022
Short summary
Current observed global mean sea level rise and acceleration estimated from satellite altimetry and the associated uncertainty
Adrien Guérou, Benoit Meyssignac, Pierre Prandi, Michaël Ablain, Aurélien Ribes, and François Bignalet-Cazalet
EGUsphere, https://doi.org/10.5194/egusphere-2022-330,https://doi.org/10.5194/egusphere-2022-330, 2022
Short summary
BUILDING DAMAGE ASSESSMENT WITH DEEP LEARNING
S. May, A. Dupuis, A. Lagrange, F. De Vieilleville, and C. Fernandez-Martin
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 1133–1138, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1133-2022,https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1133-2022, 2022
The S2M meteorological and snow cover reanalysis over the French mountainous areas: description and evaluation (1958–2021)
Matthieu Vernay, Matthieu Lafaysse, Diego Monteiro, Pascal Hagenmuller, Rafife Nheili, Raphaëlle Samacoïts, Deborah Verfaillie, and Samuel Morin
Earth Syst. Sci. Data, 14, 1707–1733, https://doi.org/10.5194/essd-14-1707-2022,https://doi.org/10.5194/essd-14-1707-2022, 2022
Short summary

Related subject area

Discipline: Snow | Subject: Remote Sensing
Potential of X-band polarimetric synthetic aperture radar co-polar phase difference for arctic snow depth estimation
Joëlle Voglimacci-Stephanopoli, Anna Wendleder, Hugues Lantuit, Alexandre Langlois, Samuel Stettner, Andreas Schmitt, Jean-Pierre Dedieu, Achim Roth, and Alain Royer
The Cryosphere, 16, 2163–2181, https://doi.org/10.5194/tc-16-2163-2022,https://doi.org/10.5194/tc-16-2163-2022, 2022
Short summary
Snow water equivalent change mapping from slope-correlated synthetic aperture radar interferometry (InSAR) phase variations
Jayson Eppler, Bernhard Rabus, and Peter Morse
The Cryosphere, 16, 1497–1521, https://doi.org/10.5194/tc-16-1497-2022,https://doi.org/10.5194/tc-16-1497-2022, 2022
Short summary
Automated avalanche mapping from SPOT 6/7 satellite imagery: results, evaluation, potential and limitations
Elisabeth D. Hafner, Patrick Barton, Rodrigo Caye Daudt, Jan Dirk Wegner, Konrad Schindler, and Yves Bühler
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-80,https://doi.org/10.5194/tc-2022-80, 2022
Revised manuscript accepted for TC
Short summary
Sentinel-1 time series for mapping snow cover depletion and timing of snowmelt in Arctic periglacial environments: case study from Zackenberg and Kobbefjord, Greenland
Sebastian Buchelt, Kirstine Skov, Kerstin Krøier Rasmussen, and Tobias Ullmann
The Cryosphere, 16, 625–646, https://doi.org/10.5194/tc-16-625-2022,https://doi.org/10.5194/tc-16-625-2022, 2022
Short summary
Sentinel-1 snow depth retrieval at sub-kilometer resolution over the European Alps
Hans Lievens, Isis Brangers, Hans-Peter Marshall, Tobias Jonas, Marc Olefs, and Gabriëlle De Lannoy
The Cryosphere, 16, 159–177, https://doi.org/10.5194/tc-16-159-2022,https://doi.org/10.5194/tc-16-159-2022, 2022
Short summary

Cited articles

Baba, M. W., Gascoin, S., and Hanich, L.: Assimilation of Sentinel-2 data into a snowpack model in the High Atlas of Morocco, Remote Sens., 10, 1982, https://doi.org/10.3390/rs10121982, 2018. 
Buchhorn, M., Smets, B., Bertels, L., De Roo, B., Lesiv, M., Tsendbazar, N.-E., Li, L., and Tarko, A.: Copernicus Global Land Service: Land Cover 100m: version 3 Globe 2015–2019: Product User Manual, Zenodo [data set], https://doi.org/10.5281/zenodo.3938963, 2020. 
Copernicus Land Monitoring Service:High Resolution Snow and Ice Monitoring, available at: https://land.copernicus.eu/pan-european/biophysical-parameters/high-resolution-snow-and-ice-monitoring, last access: 21 October 2021. 
Copernicus Land Monitoring Service: Tree Cover Density, available at: https://land.copernicus.eu/pan-european/high-resolution-layers/forests/tree-cover-density, last access: 21 October 2021. 
Dedieu, J.-P., Carlson, B. Z., Bigot, S., Sirguey, P., Vionnet, V., and Choler, P.: On the Importance of High-Resolution Time Series of Optical Imagery for Quantifying the Effects of Snow Cover Duration on Alpine Plant Habitat, Remote Sens., 8, 481, https://doi.org/10.3390/rs8060481, 2016. 
Download
Short summary
Since 2020, the Copernicus High Resolution Snow & Ice Monitoring Service has distributed snow cover maps at 20 m resolution over Europe in near-real time. These products are derived from the Sentinel-2 Earth observation mission, with a revisit time of 5 d or less (cloud-permitting). Here we show the good accuracy of the snow detection over a wide range of regions in Europe, except in dense forest regions where the snow cover is hidden by the trees.