Articles | Volume 17, issue 1
https://doi.org/10.5194/tc-17-175-2023
https://doi.org/10.5194/tc-17-175-2023
Research article
 | 
16 Jan 2023
Research article |  | 16 Jan 2023

Snow stratigraphy observations from Operation IceBridge surveys in Alaska using S and C band airborne ultra-wideband FMCW (frequency-modulated continuous wave) radar

Jilu Li, Fernando Rodriguez-Morales, Xavier Fettweis, Oluwanisola Ibikunle, Carl Leuschen, John Paden, Daniel Gomez-Garcia, and Emily Arnold

Related authors

An age scale for new climate records from Sherman Island, West Antarctica
Isobel Rowell, Carlos Martin, Robert Mulvaney, Helena Pryer, Dieter Tetzner, Emily Doyle, Hara Madhav Talasila, Jilu Li, and Eric Wolff
Clim. Past, 19, 1699–1714, https://doi.org/10.5194/cp-19-1699-2023,https://doi.org/10.5194/cp-19-1699-2023, 2023
Short summary
Multi-channel and multi-polarization radar measurements around the NEEM site
Jilu Li, Jose A. Vélez González, Carl Leuschen, Ayyangar Harish, Prasad Gogineni, Maurine Montagnat, Ilka Weikusat, Fernando Rodriguez-Morales, and John Paden
The Cryosphere, 12, 2689–2705, https://doi.org/10.5194/tc-12-2689-2018,https://doi.org/10.5194/tc-12-2689-2018, 2018
Short summary
A new bed elevation model for the Weddell Sea sector of the West Antarctic Ice Sheet
Hafeez Jeofry, Neil Ross, Hugh F. J. Corr, Jilu Li, Mathieu Morlighem, Prasad Gogineni, and Martin J. Siegert
Earth Syst. Sci. Data, 10, 711–725, https://doi.org/10.5194/essd-10-711-2018,https://doi.org/10.5194/essd-10-711-2018, 2018
Short summary
Sheet, stream, and shelf flow as progressive ice-bed uncoupling: Byrd Glacier, Antarctica and Jakobshavn Isbrae, Greenland
T. Hughes, A. Sargent, J. Fastook, K. Purdon, J. Li, J.-B. Yan, and S. Gogineni
The Cryosphere, 10, 193–225, https://doi.org/10.5194/tc-10-193-2016,https://doi.org/10.5194/tc-10-193-2016, 2016
Short summary
Quantifying the Jakobshavn Effect: Jakobshavn Isbrae, Greenland, compared to Byrd Glacier, Antarctica
T. Hughes, A. Sargent, J. Fastook, K. Purdon, J. Li, J.-B. Yan, and S. Gogineni
The Cryosphere Discuss., https://doi.org/10.5194/tcd-8-2043-2014,https://doi.org/10.5194/tcd-8-2043-2014, 2014
Revised manuscript not accepted

Related subject area

Discipline: Snow | Subject: Remote Sensing
Temperature-dominated spatiotemporal variability in snow phenology on the Tibetan Plateau from 2002 to 2022
Jiahui Xu, Yao Tang, Linxin Dong, Shujie Wang, Bailang Yu, Jianping Wu, Zhaojun Zheng, and Yan Huang
The Cryosphere, 18, 1817–1834, https://doi.org/10.5194/tc-18-1817-2024,https://doi.org/10.5194/tc-18-1817-2024, 2024
Short summary
Snow water equivalent retrieved from X- and dual Ku-band scatterometer measurements at Sodankylä using the Markov Chain Monte Carlo method
Jinmei Pan, Michael Durand, Juha Lemmetyinen, Desheng Liu, and Jiancheng Shi
The Cryosphere, 18, 1561–1578, https://doi.org/10.5194/tc-18-1561-2024,https://doi.org/10.5194/tc-18-1561-2024, 2024
Short summary
Bayesian physical–statistical retrieval of snow water equivalent and snow depth from X- and Ku-band synthetic aperture radar – demonstration using airborne SnowSAr in SnowEx'17
Siddharth Singh, Michael Durand, Edward Kim, and Ana P. Barros
The Cryosphere, 18, 747–773, https://doi.org/10.5194/tc-18-747-2024,https://doi.org/10.5194/tc-18-747-2024, 2024
Short summary
Snow water equivalent retrieval over Idaho – Part 1: Using Sentinel-1 repeat-pass interferometry
Shadi Oveisgharan, Robert Zinke, Zachary Hoppinen, and Hans Peter Marshall
The Cryosphere, 18, 559–574, https://doi.org/10.5194/tc-18-559-2024,https://doi.org/10.5194/tc-18-559-2024, 2024
Short summary
Passive microwave remote-sensing-based high-resolution snow depth mapping for Western Himalayan zones using multifactor modeling approach
Dhiraj Kumar Singh, Srinivasarao Tanniru, Kamal Kant Singh, Harendra Singh Negi, and RAAJ Ramsankaran
The Cryosphere, 18, 451–474, https://doi.org/10.5194/tc-18-451-2024,https://doi.org/10.5194/tc-18-451-2024, 2024
Short summary

Cited articles

Amory, C., Kittel, C., Le Toumelin, L., Agosta, C., Delhasse, A., Favier, V., and Fettweis, X.: Performance of MAR (v3.11) in simulating the drifting-snow climate and surface mass balance of Adélie Land, East Antarctica, Geosci. Model Dev., 14, 3487–3510, https://doi.org/10.5194/gmd-14-3487-2021, 2021. 
Arcone, S. A.: Airborne-radar stratigraphy and electrical structure of temperate firn: Bagley Ice Field, Alaska, U.S.A., J. Glaciol., 48, 317–334, https://doi.org/10.3189/172756502781831412, 2002. 
Beaumont, R. T.: Mt. Hood pressure pillow snow gage, J. Appl. Meteorol., 4, 626–631, https://doi.org/10.1175/1520-0450(1965)004<0626:MHPPSG>2.0.CO;2, 1965. 
Benson, C. S.: Glaciological studies on Mount Wrangell, Alaska, 1961, Arctic, 21, 127–152, 1968. 
Benson, C. S.: Ice core drilling on Mt. Wrangell, Alaska, 1982, CRREL Spec. Rep. 84-34, 61–68, 1984. 
Download
Short summary
Alaskan glaciers' loss of ice mass contributes significantly to ocean surface rise. It is important to know how deeply and how much snow accumulates on these glaciers to comprehend and analyze the glacial mass loss process. We reported the observed seasonal snow depth distribution from our radar data taken in Alaska in 2018 and 2021, developed a method to estimate the annual snow accumulation rate at Mt. Wrangell caldera, and identified transition zones from wet-snow zones to ablation zones.