Articles | Volume 10, issue 1
Research article
21 Jan 2016
Research article |  | 21 Jan 2016

Sheet, stream, and shelf flow as progressive ice-bed uncoupling: Byrd Glacier, Antarctica and Jakobshavn Isbrae, Greenland

T. Hughes, A. Sargent, J. Fastook, K. Purdon, J. Li, J.-B. Yan, and S. Gogineni

Abstract. The first-order control of ice thickness and height above sea level is linked to the decreasing strength of ice-bed coupling along flowlines from an interior ice divide to the calving front of an ice shelf. Uncoupling progresses as a frozen bed progressively thaws for sheet flow, as a thawed bed is progressively drowned for stream flow, and as lateral and/or local grounding vanish for shelf flow. This can reduce ice thicknesses by 90 % and ice elevations by 99 % along flowlines. Original work presented here includes (1) replacing flow and sliding laws for sheet flow with upper and lower yield stresses for creep in cold overlying ice and basal ice sliding over deforming till, respectively, (2) replacing integrating the Navier–Stokes equations for stream flow with geometrical solutions to the force balance, and (3) including resistance to shelf flow caused by lateral confinement in a fjord and local grounding at ice rumples and ice rises. A comparison is made between our approach and two approaches based on continuum mechanics. Applications are made to Byrd Glacier in Antarctica and Jakobshavn Isbrae in Greenland.

Short summary
The Antarctic and Greenland ice sheets are drained primarily by fast ice streams that end as ice shelves if they become afloat. Smooth transitions from slow sheet flow to fast stream flow to confined shelf flow are obtained and applied to Byrd Glacier in Antarctica after two upstream subglacial lakes suddenly drained in 2006, and to Jakobshavn Isbrae in Greenland after a confined ice shelf suddenly disintegrated in 2002. Byrd Glacier quickly stabilized, but Jakobshavn Isbrae remains unstable.