Articles | Volume 17, issue 1
https://doi.org/10.5194/tc-17-175-2023
https://doi.org/10.5194/tc-17-175-2023
Research article
 | 
16 Jan 2023
Research article |  | 16 Jan 2023

Snow stratigraphy observations from Operation IceBridge surveys in Alaska using S and C band airborne ultra-wideband FMCW (frequency-modulated continuous wave) radar

Jilu Li, Fernando Rodriguez-Morales, Xavier Fettweis, Oluwanisola Ibikunle, Carl Leuschen, John Paden, Daniel Gomez-Garcia, and Emily Arnold

Data sets

CReSIS Snow Radar Data Products John Paden and Jilu Li https://data.cresis.ku.edu/data/snow/

IceBridge Snow Radar L1B Geolocated Radar Echo Strength Profiles, Version 2 J. Paden, J. Li, C. Leuschen, F. Rodriguez-Morales, and R. Hale https://doi.org/10.5067/FAZTWP500V70

Download
Short summary
Alaskan glaciers' loss of ice mass contributes significantly to ocean surface rise. It is important to know how deeply and how much snow accumulates on these glaciers to comprehend and analyze the glacial mass loss process. We reported the observed seasonal snow depth distribution from our radar data taken in Alaska in 2018 and 2021, developed a method to estimate the annual snow accumulation rate at Mt. Wrangell caldera, and identified transition zones from wet-snow zones to ablation zones.