Articles | Volume 16, issue 8
https://doi.org/10.5194/tc-16-3215-2022
https://doi.org/10.5194/tc-16-3215-2022
Research article
 | Highlight paper
 | 
12 Aug 2022
Research article | Highlight paper |  | 12 Aug 2022

TermPicks: a century of Greenland glacier terminus data for use in scientific and machine learning applications

Sophie Goliber, Taryn Black, Ginny Catania, James M. Lea, Helene Olsen, Daniel Cheng, Suzanne Bevan, Anders Bjørk, Charlie Bunce, Stephen Brough, J. Rachel Carr, Tom Cowton, Alex Gardner, Dominik Fahrner, Emily Hill, Ian Joughin, Niels J. Korsgaard, Adrian Luckman, Twila Moon, Tavi Murray, Andrew Sole, Michael Wood, and Enze Zhang

Related authors

Basal channels, ice thinning and grounding zone retreat at Thwaites Glacier, West Antarctica
Allison M. Chartrand, Ian M. Howat, Ian R. Joughin, and Benjamin E. Smith
EGUsphere, https://doi.org/10.5194/egusphere-2024-1132,https://doi.org/10.5194/egusphere-2024-1132, 2024
Short summary
Characterizing Southeast Greenland fjord surface ice and freshwater flux to support biological applications
Twila A. Moon, Benjamin Cohen, Taryn E. Black, Kristin L. Laidre, Harry Stern, and Ian Joughin
EGUsphere, https://doi.org/10.5194/egusphere-2024-184,https://doi.org/10.5194/egusphere-2024-184, 2024
Short summary
Ice mélange melt drives changes in observed water column stratification at a tidewater glacier in Greenland
Nicole Abib, David A. Sutherland, Rachel Peterson, Ginny Catania, Jonathan D. Nash, Emily L. Shroyer, Leigh A. Stearns, and Timothy C. Bartholomaus
EGUsphere, https://doi.org/10.5194/egusphere-2024-504,https://doi.org/10.5194/egusphere-2024-504, 2024
Short summary
Evidence of Middle Holocene landslide-generated tsunamis recorded in lake sediments from Saqqaq, West Greenland
Niels J. Korsgaard, Kristian Svennevig, Anne S. Søndergaard, Gregor Luetzenburg, Mimmi Oksman, and Nicolaj K. Larsen
Nat. Hazards Earth Syst. Sci., 24, 757–772, https://doi.org/10.5194/nhess-24-757-2024,https://doi.org/10.5194/nhess-24-757-2024, 2024
Short summary
Arctic glacier snowline altitudes rise 150 meters over the last four decades
Laura J. Larocca, James M. Lea, Michael P. Erb, Nicholas P. McKay, Megan Phillips, Kara A. Lamantia, and Darrell S. Kaufman
EGUsphere, https://doi.org/10.5194/egusphere-2024-522,https://doi.org/10.5194/egusphere-2024-522, 2024
Short summary

Related subject area

Discipline: Glaciers | Subject: Remote Sensing
A low-cost and open-source approach for supraglacial debris thickness mapping using UAV-based infrared thermography
Jérôme Messmer and Alexander Raphael Groos
The Cryosphere, 18, 719–746, https://doi.org/10.5194/tc-18-719-2024,https://doi.org/10.5194/tc-18-719-2024, 2024
Short summary
Refined glacial lake extraction in a high-Asia region by deep neural network and superpixel-based conditional random field methods
Yungang Cao, Rumeng Pan, Meng Pan, Ruodan Lei, Puying Du, and Xueqin Bai
The Cryosphere, 18, 153–168, https://doi.org/10.5194/tc-18-153-2024,https://doi.org/10.5194/tc-18-153-2024, 2024
Short summary
Annual to seasonal glacier mass balance in High Mountain Asia derived from Pléiades stereo images: examples from the Pamir and the Tibetan Plateau
Daniel Falaschi, Atanu Bhattacharya, Gregoire Guillet, Lei Huang, Owen King, Kriti Mukherjee, Philipp Rastner, Tandong Yao, and Tobias Bolch
The Cryosphere, 17, 5435–5458, https://doi.org/10.5194/tc-17-5435-2023,https://doi.org/10.5194/tc-17-5435-2023, 2023
Short summary
Out-of-the-box calving-front detection method using deep learning
Oskar Herrmann, Nora Gourmelon, Thorsten Seehaus, Andreas Maier, Johannes J. Fürst, Matthias H. Braun, and Vincent Christlein
The Cryosphere, 17, 4957–4977, https://doi.org/10.5194/tc-17-4957-2023,https://doi.org/10.5194/tc-17-4957-2023, 2023
Short summary
GLAcier Feature Tracking testkit (GLAFT): a statistically and physically based framework for evaluating glacier velocity products derived from optical satellite image feature tracking
Whyjay Zheng, Shashank Bhushan, Maximillian Van Wyk De Vries, William Kochtitzky, David Shean, Luke Copland, Christine Dow, Renette Jones-Ivey, and Fernando Pérez
The Cryosphere, 17, 4063–4078, https://doi.org/10.5194/tc-17-4063-2023,https://doi.org/10.5194/tc-17-4063-2023, 2023
Short summary

Cited articles

Andersen, J. K., Fausto, R. S., Hansen, K., Box, J. E., Andersen, S. B., Ahlstrom, A., As, D. v., Citterio, M., Colgan, W., Karlsson, N. B., Kjellerup, K. K., Korsgaard, N. J., Larsen, S. H., Mankoff, K. D., Pedersen, A., Shields, C. L., Solgaard, A. M., and Vandecrux, B.: Update of annual calving front lines for 47 marine terminating outlet glaciers in Greenland (1999–2018), Geol. Surv. Denmark Greenland Bull., 43, 1–6, https://doi.org/10.34194/geusb-201943-02-02, 2019. a
Aschwanden, A., Fahnestock, M. A., Truffer, M., Brinkerhoff, D. J., Hock, R., Khroulev, C., Mottram, R. H., and Khan, S. A.: Contribution of the Greenland Ice Sheet to sea level over the next millennium, Sci. Adv., 5, 6, https://doi.org/10.1126/sciadv.aav9396, 2019. a, b
Baumhoer, C. A., Dietz, A. J., Kneisel, C., and Kuenzer, C.: Automated Extraction of Antarctic Glacier and Ice Shelf Fronts from Sentinel-1 Imagery Using Deep Learning, Remote Sens., 11, 2529–22, https://doi.org/10.3390/rs11212529, 2019. a
Bevan, S. L., Luckman, A. J., and Murray, T.: Glacier dynamics over the last quarter of a century at Helheim, Kangerdlugssuaq and 14 other major Greenland outlet glaciers, The Cryosphere, 6, 923–937, https://doi.org/10.5194/tc-6-923-2012, 2012. a
Bevan, S. L., Luckman, A. J., Benn, D. I., Cowton, T., and Todd, J.: Impact of warming shelf waters on ice mélange and terminus retreat at a large SE Greenland glacier, The Cryosphere, 13, 2303–2315, https://doi.org/10.5194/tc-13-2303-2019, 2019. a, b
Download
Co-editor-in-chief
Goliber et al. present a rich new dataset for the lengths of 278 glaciers around Greenland. This dataset, "TermPicks", contains 39,060 detailed traces of the edges of these glaciers, where ice meets ocean. TermPicks spans the entire satellite record (1970s-present), with air photo coverage for some glaciers going back >100 years to 1916. TermPicks is designed for use as training data in machine learning applications, which are the future of the tedious "terminus picking" work that has largely been performed by students to date. Thus, TermPicks will facilitate a significant leap forward in Greenland glacier research by facilitating machine-learning-enabled analysis of the continual high-flux, big-data output of high-resolution imagery by our international constellation of earth-observing satellites.
Short summary
Terminus traces have been used to understand how Greenland's glaciers have changed over time; however, manual digitization is time-intensive, and a lack of coordination leads to duplication of efforts. We have compiled a dataset of over 39 000 terminus traces for 278 glaciers for scientific and machine learning applications. We also provide an overview of an updated version of the Google Earth Engine Digitization Tool (GEEDiT), which has been developed specifically for the Greenland Ice Sheet.