Articles | Volume 16, issue 8
https://doi.org/10.5194/tc-16-3215-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-3215-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
TermPicks: a century of Greenland glacier terminus data for use in scientific and machine learning applications
Sophie Goliber
CORRESPONDING AUTHOR
Department of Geological Sciences, University of Texas at Austin, Austin, TX, USA
Institute for Geophysics, University of Texas at Austin, Austin, TX, USA
Taryn Black
Department of Earth and Space Sciences, University of Washington, Seattle, WA, USA
Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
Ginny Catania
Department of Geological Sciences, University of Texas at Austin, Austin, TX, USA
Institute for Geophysics, University of Texas at Austin, Austin, TX, USA
James M. Lea
Department of Geography and Planning, University of Liverpool, Liverpool, UK
Helene Olsen
Institute for Geophysics, University of Texas at Austin, Austin, TX, USA
Daniel Cheng
Department of Computer Science, University of California at Irvine, Irvine, CA, USA
Suzanne Bevan
Geography Department, College of Science, Swansea University, Swansea, UK
Anders Bjørk
Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
Charlie Bunce
School of Geography, Politics and Sociology, Newcastle University, Newcastle upon Tyne, UK
School of Geosciences, University of Edinburgh, Edinburgh, UK
Stephen Brough
Department of Geography and Planning, University of Liverpool, Liverpool, UK
J. Rachel Carr
School of Geography, Politics and Sociology, Newcastle University, Newcastle upon Tyne, UK
Tom Cowton
School of Geography and Sustainable Development, University of St Andrews, St Andrews, UK
Alex Gardner
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Dominik Fahrner
Department of Geography and Planning, University of Liverpool, Liverpool, UK
Institute for Risk and Uncertainty, University of Liverpool, Liverpool, UK
Emily Hill
Department of Geography and Environmental Sciences, University of Northumbria, Newcastle upon Tyne, UK
Ian Joughin
Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
Niels J. Korsgaard
The Geological Survey of Denmark and Greenland, Østervoldgade 10, 1350 København K, Copenhagen, Denmark
Adrian Luckman
Geography Department, College of Science, Swansea University, Swansea, UK
Twila Moon
National Snow and Ice Data Center, Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
Tavi Murray
Geography Department, College of Science, Swansea University, Swansea, UK
Andrew Sole
Department of Geography, University of Sheffield, Sheffield, UK
Michael Wood
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Enze Zhang
Earth System Science Programme, The Chinese University of Hong Kong, Hong Kong SAR, China
Related authors
No articles found.
Aman KC, Ellyn M. Enderlin, Dominik Fahrner, Twila Moon, and Dustin Carroll
EGUsphere, https://doi.org/10.5194/egusphere-2024-3543, https://doi.org/10.5194/egusphere-2024-3543, 2024
Short summary
Short summary
The sum of ice flowing towards a glacier’s terminus and changes in the position of the terminus over time collectively make up terminus ablation. We found that terminus ablation has more seasonal variability than previously estimated from flux-based estimates of ice discharge. The findings are of importance in understanding timing and location of the freshwater input to the fjords, and surrounding ocean basins affecting local and regional ecosystems and ocean properties.
Jonas Kvist Andersen, Rasmus Probst Meyer, Flora Salome Huiban, Mads Lykke Dømgaard, Romain Millan, and Anders Anker Bjørk
EGUsphere, https://doi.org/10.5194/egusphere-2024-3382, https://doi.org/10.5194/egusphere-2024-3382, 2024
Short summary
Short summary
Storstrømmen Glacier in northeast Greenland goes through cycles of sudden flow speed-ups (known as surges) followed by long quiet phases. Currently in its quiet phase, recent measurements suggest it may be nearing conditions for a new surge, possibly between 2027 and 2040. We also observed several lake drainages that caused brief increases in glacier flow but did not trigger a surge. Continued monitoring is essential to understand how these processes influence glacier behavior.
Allison M. Chartrand, Ian M. Howat, Ian R. Joughin, and Benjamin E. Smith
The Cryosphere, 18, 4971–4992, https://doi.org/10.5194/tc-18-4971-2024, https://doi.org/10.5194/tc-18-4971-2024, 2024
Short summary
Short summary
This study uses high-resolution remote-sensing data to show that shrinking of the West Antarctic Thwaites Glacier’s ice shelf (floating extension) is exacerbated by several sub-ice-shelf meltwater channels that form as the glacier transitions from full contact with the seafloor to fully floating. In mapping these channels, the position of the transition zone, and thinning rates of the Thwaites Glacier, this work elucidates important processes driving its rapid contribution to sea level rise.
Twila A. Moon, Benjamin Cohen, Taryn E. Black, Kristin L. Laidre, Harry L. Stern, and Ian Joughin
The Cryosphere, 18, 4845–4872, https://doi.org/10.5194/tc-18-4845-2024, https://doi.org/10.5194/tc-18-4845-2024, 2024
Short summary
Short summary
The complex geomorphology of southeast Greenland (SEG) creates dynamic fjord habitats for top marine predators, featuring glacier-derived floating ice, pack and landfast sea ice, and freshwater flux. We study the physical environment of SEG fjords, focusing on surface ice conditions, to provide a regional characterization that supports biological research. As Arctic warming persists, SEG may serve as a long-term refugium for ice-dependent wildlife due to the persistence of regional ice sheets.
Nicole Abib, David A. Sutherland, Rachel Peterson, Ginny Catania, Jonathan D. Nash, Emily L. Shroyer, Leigh A. Stearns, and Timothy C. Bartholomaus
The Cryosphere, 18, 4817–4829, https://doi.org/10.5194/tc-18-4817-2024, https://doi.org/10.5194/tc-18-4817-2024, 2024
Short summary
Short summary
The melting of ice mélange, or dense packs of icebergs and sea ice in glacial fjords, can influence the water column by releasing cold fresh water deep under the ocean surface. However, direct observations of this process have remained elusive. We use measurements of ocean temperature, salinity, and velocity bookending an episodic ice mélange event to show that this meltwater input changes the density profile of a glacial fjord and has implications for understanding tidewater glacier change.
Johan Nilsson and Alex S. Gardner
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-311, https://doi.org/10.5194/essd-2024-311, 2024
Preprint under review for ESSD
Short summary
Short summary
Integrating data from multiple satellite altimetry missions, we analyzed Greenland’s peripheral glaciers and Ice Sheet (GrIS) from 1992–2023. Our methodology ensures consistent, reliable elevation change data, now publicly available via NASA's ITS_LIVE project. The GrIS lost an average of -173 ± 19 Gt a-1 and peripheral glaciers -23 ± 5 Gt a-1 from 1992–2022. The study highlights the importance of continued monitoring to understand climate change impacts on Earth's Cryosphere.
Laura J. Larocca, James M. Lea, Michael P. Erb, Nicholas P. McKay, Megan Phillips, Kara A. Lamantia, and Darrell S. Kaufman
The Cryosphere, 18, 3591–3611, https://doi.org/10.5194/tc-18-3591-2024, https://doi.org/10.5194/tc-18-3591-2024, 2024
Short summary
Short summary
Here we present summer snowline altitude (SLA) time series for 269 Arctic glaciers. Between 1984 and 2022, SLAs rose ∼ 150 m, equating to a ∼ 127 m shift per 1 °C of summer warming. SLA is most strongly correlated with annual temperature variables, highlighting their dual effect on ablation and accumulation processes. We show that SLAs are rising fastest on low-elevation glaciers and that > 50 % of the studied glaciers could have SLAs that exceed the maximum ice elevation by 2100.
Sonam Rinzin, Stuart Dunning, Rachel Carr, Ashim Sattar, and Martin Mergili
EGUsphere, https://doi.org/10.5194/egusphere-2024-1819, https://doi.org/10.5194/egusphere-2024-1819, 2024
Short summary
Short summary
We evaluated the sensitivity of model outputs to input parameter uncertainties by performing multiple GLOF simulations using the r.avaflow model. We found out that GLOF modelling outputs are highly sensitive to six parameters: volume of mass movements entering lakes, DEM datasets, origin of mass movements, mesh size, basal frictional angle, and entrainment coefficient. Future modelling should carefully consider the output uncertainty from these sensitive parameters.
J. Rachel Carr, Emily A. Hill, and G. Hilmar Gudmundsson
The Cryosphere, 18, 2719–2737, https://doi.org/10.5194/tc-18-2719-2024, https://doi.org/10.5194/tc-18-2719-2024, 2024
Short summary
Short summary
The Greenland Ice Sheet is one of the world's largest glaciers and is melting quickly in response to climate change. It contains fast-flowing channels of ice that move ice from Greenland's centre to its coasts and allow Greenland to react quickly to climate warming. As a result, we want to predict how these glaciers will behave in the future, but there are lots of uncertainties. Here we assess the impacts of two main sources of uncertainties in glacier models.
Ian Joughin, Daniel Shapero, and Pierre Dutrieux
The Cryosphere, 18, 2583–2601, https://doi.org/10.5194/tc-18-2583-2024, https://doi.org/10.5194/tc-18-2583-2024, 2024
Short summary
Short summary
The Pine Island and Thwaites glaciers are losing ice to the ocean rapidly as warmer water melts their floating ice shelves. Models help determine how much such glaciers will contribute to sea level. We find that ice loss varies in response to how much melting the ice shelves are subjected to. Our estimated losses are also sensitive to how much the friction beneath the glaciers is reduced as it goes afloat. Melt-forced sea level rise from these glaciers is likely to be less than 10 cm by 2300.
Niels J. Korsgaard, Kristian Svennevig, Anne S. Søndergaard, Gregor Luetzenburg, Mimmi Oksman, and Nicolaj K. Larsen
Nat. Hazards Earth Syst. Sci., 24, 757–772, https://doi.org/10.5194/nhess-24-757-2024, https://doi.org/10.5194/nhess-24-757-2024, 2024
Short summary
Short summary
A tsunami wave will leave evidence of erosion and deposition in coastal lakes, making it possible to determine the runup height and when it occurred. Here, we use four lakes now located at elevations of 19–91 m a.s.l. close to the settlement of Saqqaq, West Greenland, to show that at least two giant tsunamis occurred 7300–7600 years ago with runup heights larger than 40 m. We infer that any tsunamis from at least nine giga-scale landslides must have happened 8500–10 000 years ago.
Brian Menounos, Alex Gardner, Caitlyn Florentine, and Andrew Fountain
The Cryosphere, 18, 889–894, https://doi.org/10.5194/tc-18-889-2024, https://doi.org/10.5194/tc-18-889-2024, 2024
Short summary
Short summary
Glaciers in western North American outside of Alaska are often overlooked in global studies because their potential to contribute to changes in sea level is small. Nonetheless, these glaciers represent important sources of freshwater, especially during times of drought. We show that these glaciers lost mass at a rate of about 12 Gt yr-1 for about the period 2013–2021; the rate of mass loss over the period 2018–2022 was similar.
Oliver J. Marsh, Adrian J. Luckman, and Dominic A. Hodgson
The Cryosphere, 18, 705–710, https://doi.org/10.5194/tc-18-705-2024, https://doi.org/10.5194/tc-18-705-2024, 2024
Short summary
Short summary
The Brunt Ice Shelf has accelerated rapidly after calving an iceberg in January 2023. A decade of GPS data show that the rate of acceleration in August 2023 was 30 times higher than before calving, and velocity has doubled in 6 months. Satellite velocity maps show the extent of the change. The acceleration is due to loss of contact between the ice shelf and a pinning point known as the McDonald Ice Rumples. The observations highlight how iceberg calving can directly impact ice shelves.
An Li, Michelle Koutnik, Stephen Brough, Matteo Spagnolo, and Iestyn Barr
EGUsphere, https://doi.org/10.5194/egusphere-2023-2568, https://doi.org/10.5194/egusphere-2023-2568, 2024
Short summary
Short summary
On Earth, glacial cirques are a type of landform eroded by wet-based glaciers, which are glaciers with liquid water at the base of a glacier. While select alcoves have been interpreted as glacial cirques on Mars, we map and assess a large-scale population of ~2000 alcoves as potential cirques in the northern mid-latitudes of Mars. From physical measurements and characteristics, we find 386 cirque-like alcoves. This extends our knowledge of the extent and type of glaciation in the region.
Andrew O. Hoffman, Knut Christianson, Ching-Yao Lai, Ian Joughin, Nicholas Holschuh, Elizabeth Case, Jonathan Kingslake, and the GHOST science team
EGUsphere, https://doi.org/10.5194/egusphere-2023-2956, https://doi.org/10.5194/egusphere-2023-2956, 2024
Short summary
Short summary
We use satellite and ice-penetrating radar technology to segment crevasses in the Amundsen Sea Embayment. Inspection of satellite time series reveals inland expansion of crevasses where surface stresses have increased. We develop a simple model for the strength of densifying snow and show that these crevasses are likely restricted to the near surface. This result bridges discrepancies between satellite and lab experiments and reveals the importance of porosity on surface crevasse formation.
Youngmin Choi, Helene Seroussi, Mathieu Morlighem, Nicole-Jeanne Schlegel, and Alex Gardner
The Cryosphere, 17, 5499–5517, https://doi.org/10.5194/tc-17-5499-2023, https://doi.org/10.5194/tc-17-5499-2023, 2023
Short summary
Short summary
Ice sheet models are often initialized using snapshot observations of present-day conditions, but this approach has limitations in capturing the transient evolution of the system. To more accurately represent the accelerating changes in glaciers, we employed time-dependent data assimilation. We found that models calibrated with the transient data better capture past trends and more accurately reproduce changes after the calibration period, even with limited observations.
Dominik Fahrner, Donald Slater, Aman KC, Claudia Cenedese, David A. Sutherland, Ellyn Enderlin, Femke de Jong, Kristian K. Kjeldsen, Michael Wood, Peter Nienow, Sophie Nowicki, and Till Wagner
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-411, https://doi.org/10.5194/essd-2023-411, 2023
Preprint withdrawn
Short summary
Short summary
Marine-terminating glaciers can lose mass through frontal ablation, which comprises submarine and surface melting, and iceberg calving. We estimate frontal ablation for 49 marine-terminating glaciers in Greenland by combining existing, satellite derived data and calculating volume change near the glacier front over time. The dataset offers exciting opportunities to study the influence of climate forcings on marine-terminating glaciers in Greenland over multi-decadal timescales.
Lauren D. Rawlins, David M. Rippin, Andrew J. Sole, Stephen J. Livingstone, and Kang Yang
The Cryosphere, 17, 4729–4750, https://doi.org/10.5194/tc-17-4729-2023, https://doi.org/10.5194/tc-17-4729-2023, 2023
Short summary
Short summary
We map and quantify surface rivers and lakes at Humboldt Glacier to examine seasonal evolution and provide new insights of network configuration and behaviour. A widespread supraglacial drainage network exists, expanding up the glacier as seasonal runoff increases. Large interannual variability affects the areal extent of this network, controlled by high- vs. low-melt years, with late summer network persistence likely preconditioning the surface for earlier drainage activity the following year.
Timo Schmid, Valentina Radić, Andrew Tedstone, James M. Lea, Stephen Brough, and Mauro Hermann
The Cryosphere, 17, 3933–3954, https://doi.org/10.5194/tc-17-3933-2023, https://doi.org/10.5194/tc-17-3933-2023, 2023
Short summary
Short summary
The Greenland Ice Sheet contributes strongly to sea level rise in the warming climate. One process that can affect the ice sheet's mass balance is short-term ice speed-up events. These can be caused by high melting or rainfall as the water flows underneath the glacier and allows for faster sliding. In this study we found three main weather patterns that cause such ice speed-up events on the Russell Glacier in southwest Greenland and analyzed how they induce local melting and ice accelerations.
Emily A. Hill, Benoît Urruty, Ronja Reese, Julius Garbe, Olivier Gagliardini, Gaël Durand, Fabien Gillet-Chaulet, G. Hilmar Gudmundsson, Ricarda Winkelmann, Mondher Chekki, David Chandler, and Petra M. Langebroek
The Cryosphere, 17, 3739–3759, https://doi.org/10.5194/tc-17-3739-2023, https://doi.org/10.5194/tc-17-3739-2023, 2023
Short summary
Short summary
The grounding lines of the Antarctic Ice Sheet could enter phases of irreversible retreat or advance. We use three ice sheet models to show that the present-day locations of Antarctic grounding lines are reversible with respect to a small perturbation away from their current position. This indicates that present-day retreat of the grounding lines is not yet irreversible or self-enhancing.
Ronja Reese, Julius Garbe, Emily A. Hill, Benoît Urruty, Kaitlin A. Naughten, Olivier Gagliardini, Gaël Durand, Fabien Gillet-Chaulet, G. Hilmar Gudmundsson, David Chandler, Petra M. Langebroek, and Ricarda Winkelmann
The Cryosphere, 17, 3761–3783, https://doi.org/10.5194/tc-17-3761-2023, https://doi.org/10.5194/tc-17-3761-2023, 2023
Short summary
Short summary
We use an ice sheet model to test where current climate conditions in Antarctica might lead. We find that present-day ocean and atmosphere conditions might commit an irreversible collapse of parts of West Antarctica which evolves over centuries to millennia. Importantly, this collapse is not irreversible yet.
Enze Zhang, Ginny Catania, and Daniel T. Trugman
The Cryosphere, 17, 3485–3503, https://doi.org/10.5194/tc-17-3485-2023, https://doi.org/10.5194/tc-17-3485-2023, 2023
Short summary
Short summary
Glacier termini are essential for studying why glaciers retreat, but they need to be mapped automatically due to the volume of satellite images. Existing automated mapping methods have been limited due to limited automation, lack of quality control, and inadequacy in highly diverse terminus environments. We design a fully automated, deep-learning-based method to produce termini with quality control. We produced 278 239 termini in Greenland and provided a way to deliver new termini regularly.
Fernando S. Paolo, Alex S. Gardner, Chad A. Greene, Johan Nilsson, Michael P. Schodlok, Nicole-Jeanne Schlegel, and Helen A. Fricker
The Cryosphere, 17, 3409–3433, https://doi.org/10.5194/tc-17-3409-2023, https://doi.org/10.5194/tc-17-3409-2023, 2023
Short summary
Short summary
We report on a slowdown in the rate of thinning and melting of West Antarctic ice shelves. We present a comprehensive assessment of the Antarctic ice shelves, where we analyze at a continental scale the changes in thickness, flow, and basal melt over the past 26 years. We also present a novel method to estimate ice shelf change from satellite altimetry and a time-dependent data set of ice shelf thickness and basal melt rates at an unprecedented resolution.
Alex S. Gardner, Nicole-Jeanne Schlegel, and Eric Larour
Geosci. Model Dev., 16, 2277–2302, https://doi.org/10.5194/gmd-16-2277-2023, https://doi.org/10.5194/gmd-16-2277-2023, 2023
Short summary
Short summary
This is the first description of the open-source Glacier Energy and Mass Balance (GEMB) model. GEMB models the ice sheet and glacier surface–atmospheric energy and mass exchange, as well as the firn state. The model is evaluated against the current state of the art and in situ observations and is shown to perform well.
Yubin Fan, Chang-Qing Ke, Xiaoyi Shen, Yao Xiao, Stephen J. Livingstone, and Andrew J. Sole
The Cryosphere, 17, 1775–1786, https://doi.org/10.5194/tc-17-1775-2023, https://doi.org/10.5194/tc-17-1775-2023, 2023
Short summary
Short summary
We used the new-generation ICESat-2 altimeter to detect and monitor active subglacial lakes in unprecedented spatiotemporal detail. We created a new inventory of 18 active subglacial lakes as well as their elevation and volume changes during 2019–2020, which provides an improved understanding of how the Greenland subglacial water system operates and how these lakes are fed by water from the ice surface.
Inès N. Otosaka, Andrew Shepherd, Erik R. Ivins, Nicole-Jeanne Schlegel, Charles Amory, Michiel R. van den Broeke, Martin Horwath, Ian Joughin, Michalea D. King, Gerhard Krinner, Sophie Nowicki, Anthony J. Payne, Eric Rignot, Ted Scambos, Karen M. Simon, Benjamin E. Smith, Louise S. Sørensen, Isabella Velicogna, Pippa L. Whitehouse, Geruo A, Cécile Agosta, Andreas P. Ahlstrøm, Alejandro Blazquez, William Colgan, Marcus E. Engdahl, Xavier Fettweis, Rene Forsberg, Hubert Gallée, Alex Gardner, Lin Gilbert, Noel Gourmelen, Andreas Groh, Brian C. Gunter, Christopher Harig, Veit Helm, Shfaqat Abbas Khan, Christoph Kittel, Hannes Konrad, Peter L. Langen, Benoit S. Lecavalier, Chia-Chun Liang, Bryant D. Loomis, Malcolm McMillan, Daniele Melini, Sebastian H. Mernild, Ruth Mottram, Jeremie Mouginot, Johan Nilsson, Brice Noël, Mark E. Pattle, William R. Peltier, Nadege Pie, Mònica Roca, Ingo Sasgen, Himanshu V. Save, Ki-Weon Seo, Bernd Scheuchl, Ernst J. O. Schrama, Ludwig Schröder, Sebastian B. Simonsen, Thomas Slater, Giorgio Spada, Tyler C. Sutterley, Bramha Dutt Vishwakarma, Jan Melchior van Wessem, David Wiese, Wouter van der Wal, and Bert Wouters
Earth Syst. Sci. Data, 15, 1597–1616, https://doi.org/10.5194/essd-15-1597-2023, https://doi.org/10.5194/essd-15-1597-2023, 2023
Short summary
Short summary
By measuring changes in the volume, gravitational attraction, and ice flow of Greenland and Antarctica from space, we can monitor their mass gain and loss over time. Here, we present a new record of the Earth’s polar ice sheet mass balance produced by aggregating 50 satellite-based estimates of ice sheet mass change. This new assessment shows that the ice sheets have lost (7.5 x 1012) t of ice between 1992 and 2020, contributing 21 mm to sea level rise.
Mads Dømgaard, Kristian K. Kjeldsen, Flora Huiban, Jonathan L. Carrivick, Shfaqat A. Khan, and Anders A. Bjørk
The Cryosphere, 17, 1373–1387, https://doi.org/10.5194/tc-17-1373-2023, https://doi.org/10.5194/tc-17-1373-2023, 2023
Short summary
Short summary
Sudden releases of meltwater from glacier-dammed lakes can influence ice flow, cause flooding hazards and landscape changes. This study presents a record of 14 drainages from 2007–2021 from a lake in west Greenland. The time series reveals how the lake fluctuates between releasing large and small amounts of drainage water which is caused by a weakening of the damming glacier following the large events. We also find a shift in the water drainage route which increases the risk of flooding hazards.
Sarah S. Thompson, Bernd Kulessa, Adrian Luckman, Jacqueline A. Halpin, Jamin S. Greenbaum, Tyler Pelle, Feras Habbal, Jingxue Guo, Lenneke M. Jong, Jason L. Roberts, Bo Sun, and Donald D. Blankenship
The Cryosphere, 17, 157–174, https://doi.org/10.5194/tc-17-157-2023, https://doi.org/10.5194/tc-17-157-2023, 2023
Short summary
Short summary
We use satellite imagery and ice penetrating radar to investigate the stability of the Shackleton system in East Antarctica. We find significant changes in surface structures across the system and observe a significant increase in ice flow speed (up to 50 %) on the floating part of Scott Glacier. We conclude that knowledge remains woefully insufficient to explain recent observed changes in the grounded and floating regions of the system.
Connor J. Shiggins, James M. Lea, and Stephen Brough
The Cryosphere, 17, 15–32, https://doi.org/10.5194/tc-17-15-2023, https://doi.org/10.5194/tc-17-15-2023, 2023
Short summary
Short summary
Iceberg detection is spatially and temporally limited around the Greenland Ice Sheet. This study presents a new, accessible workflow to automatically detect icebergs from timestamped ArcticDEM strip data. The workflow successfully produces comparable output to manual digitisation, with results revealing new iceberg area-to-volume conversion equations that can be widely applied to datasets where only iceberg outlines can be extracted (e.g. optical and SAR imagery).
Taryn E. Black and Ian Joughin
The Cryosphere, 17, 1–13, https://doi.org/10.5194/tc-17-1-2023, https://doi.org/10.5194/tc-17-1-2023, 2023
Short summary
Short summary
The frontal positions of most ice-sheet-based glaciers in Greenland vary seasonally. On average, these glaciers begin retreating in May and begin advancing in October, and the difference between their most advanced and most retreated positions is 220 m. The timing may be related to the timing of melt on the ice sheet, and the seasonal length variation may be related to glacier speed. These seasonal variations can affect glacier behavior and, consequently, how much ice is lost from the ice sheet.
Yang Lei, Alex S. Gardner, and Piyush Agram
Earth Syst. Sci. Data, 14, 5111–5137, https://doi.org/10.5194/essd-14-5111-2022, https://doi.org/10.5194/essd-14-5111-2022, 2022
Short summary
Short summary
This work describes NASA MEaSUREs ITS_LIVE project's Version 2 Sentinel-1 image-pair ice velocity product and processing methodology. We show the refined offset tracking algorithm, autoRIFT, calibration for Sentinel-1 geolocation biases and correction of the ionosphere streaking problems. Validation was performed over three typical test sites covering the globe by comparing with other similar global and regional products.
Evan Carnahan, Ginny Catania, and Timothy C. Bartholomaus
The Cryosphere, 16, 4305–4317, https://doi.org/10.5194/tc-16-4305-2022, https://doi.org/10.5194/tc-16-4305-2022, 2022
Short summary
Short summary
The Greenland Ice Sheet primarily loses mass through increased ice discharge. We find changes in discharge from outlet glaciers are initiated by ocean warming, which causes a change in the balance of forces resisting gravity and leads to acceleration. Vulnerable conditions for sustained retreat and acceleration are predetermined by the glacier-fjord geometry and exist around Greenland, suggesting increases in ice discharge may be sustained into the future despite a pause in ocean warming.
Johan Nilsson, Alex S. Gardner, and Fernando S. Paolo
Earth Syst. Sci. Data, 14, 3573–3598, https://doi.org/10.5194/essd-14-3573-2022, https://doi.org/10.5194/essd-14-3573-2022, 2022
Short summary
Short summary
The longest observational record available to study the mass balance of the Earth’s ice sheets comes from satellite altimeters. This record consists of multiple satellite missions with different measurements and quality, and it must be cross-calibrated and integrated into a consistent record for scientific use. Here, we present a novel approach for generating such a record providing a seamless record of elevation change for the Antarctic Ice Sheet that spans the period 1985 to 2020.
Romain Millan, Jeremie Mouginot, Anna Derkacheva, Eric Rignot, Pietro Milillo, Enrico Ciraci, Luigi Dini, and Anders Bjørk
The Cryosphere, 16, 3021–3031, https://doi.org/10.5194/tc-16-3021-2022, https://doi.org/10.5194/tc-16-3021-2022, 2022
Short summary
Short summary
We detect for the first time a dramatic retreat of the grounding line of Petermann Glacier, a major glacier of the Greenland Ice Sheet. Using satellite data, we also observe a speedup of the glacier and a fracturing of the ice shelf. This sequence of events is coherent with ocean warming in this region and suggests that Petermann Glacier has initiated a phase of destabilization, which is of prime importance for the stability and future contribution of the Greenland Ice Sheet to sea level rise.
John Erich Christian, Alexander A. Robel, and Ginny Catania
The Cryosphere, 16, 2725–2743, https://doi.org/10.5194/tc-16-2725-2022, https://doi.org/10.5194/tc-16-2725-2022, 2022
Short summary
Short summary
Marine-terminating glaciers have recently retreated dramatically, but the role of anthropogenic forcing remains uncertain. We use idealized model simulations to develop a framework for assessing the probability of rapid retreat in the context of natural climate variability. Our analyses show that century-scale anthropogenic trends can substantially increase the probability of retreats. This provides a roadmap for future work to formally assess the role of human activity in recent glacier change.
Gregor Luetzenburg, Kristian Svennevig, Anders A. Bjørk, Marie Keiding, and Aart Kroon
Earth Syst. Sci. Data, 14, 3157–3165, https://doi.org/10.5194/essd-14-3157-2022, https://doi.org/10.5194/essd-14-3157-2022, 2022
Short summary
Short summary
We produced the first landslide inventory for Denmark. Over 3200 landslides were mapped using a high-resolution elevation model and orthophotos. We implemented an independent validation into our mapping and found an overall level of completeness of 87 %. The national inventory represents a range of landslide sizes covering all regions that were covered by glacial ice during the last glacial period. This inventory will be used for investigating landslide causes and for natural hazard mitigation.
Douglas I. Benn, Adrian Luckman, Jan A. Åström, Anna J. Crawford, Stephen L. Cornford, Suzanne L. Bevan, Thomas Zwinger, Rupert Gladstone, Karen Alley, Erin Pettit, and Jeremy Bassis
The Cryosphere, 16, 2545–2564, https://doi.org/10.5194/tc-16-2545-2022, https://doi.org/10.5194/tc-16-2545-2022, 2022
Short summary
Short summary
Thwaites Glacier (TG), in West Antarctica, is potentially unstable and may contribute significantly to sea-level rise as global warming continues. Using satellite data, we show that Thwaites Eastern Ice Shelf, the largest remaining floating extension of TG, has started to accelerate as it fragments along a shear zone. Computer modelling does not indicate that fragmentation will lead to imminent glacier collapse, but it is clear that major, rapid, and unpredictable changes are underway.
Johannes Oerlemans, Jack Kohler, and Adrian Luckman
The Cryosphere, 16, 2115–2126, https://doi.org/10.5194/tc-16-2115-2022, https://doi.org/10.5194/tc-16-2115-2022, 2022
Short summary
Short summary
Tunabreen is a 26 km long tidewater glacier. It is the most frequently surging glacier in Svalbard, with four documented surges in the past 100 years. We have modelled this glacier to find out how it reacts to future climate change. Careful calibration was done against the observed length record for the past 100 years. For a 50 m increase in the equilibrium line altitude (ELA) the length of the glacier will be shortened by 10 km after about 100 years.
William Colgan, Agnes Wansing, Kenneth Mankoff, Mareen Lösing, John Hopper, Keith Louden, Jörg Ebbing, Flemming G. Christiansen, Thomas Ingeman-Nielsen, Lillemor Claesson Liljedahl, Joseph A. MacGregor, Árni Hjartarson, Stefan Bernstein, Nanna B. Karlsson, Sven Fuchs, Juha Hartikainen, Johan Liakka, Robert S. Fausto, Dorthe Dahl-Jensen, Anders Bjørk, Jens-Ove Naslund, Finn Mørk, Yasmina Martos, Niels Balling, Thomas Funck, Kristian K. Kjeldsen, Dorthe Petersen, Ulrik Gregersen, Gregers Dam, Tove Nielsen, Shfaqat A. Khan, and Anja Løkkegaard
Earth Syst. Sci. Data, 14, 2209–2238, https://doi.org/10.5194/essd-14-2209-2022, https://doi.org/10.5194/essd-14-2209-2022, 2022
Short summary
Short summary
We assemble all available geothermal heat flow measurements collected in and around Greenland into a new database. We use this database of point measurements, in combination with other geophysical datasets, to model geothermal heat flow in and around Greenland. Our geothermal heat flow model is generally cooler than previous models of Greenland, especially in southern Greenland. It does not suggest any high geothermal heat flows resulting from Icelandic plume activity over 50 million years ago.
Chloe A. Whicker, Mark G. Flanner, Cheng Dang, Charles S. Zender, Joseph M. Cook, and Alex S. Gardner
The Cryosphere, 16, 1197–1220, https://doi.org/10.5194/tc-16-1197-2022, https://doi.org/10.5194/tc-16-1197-2022, 2022
Short summary
Short summary
Snow and ice surfaces are important to the global climate. Current climate models use measurements to determine the reflectivity of ice. This model uses physical properties to determine the reflectivity of snow, ice, and darkly pigmented impurities that reside within the snow and ice. Therefore, the modeled reflectivity is more accurate for snow/ice columns under varying climate conditions. This model paves the way for improvements in the portrayal of snow and ice within global climate models.
Benjamin Joseph Davison, Tom Cowton, Andrew Sole, Finlo Cottier, and Pete Nienow
The Cryosphere, 16, 1181–1196, https://doi.org/10.5194/tc-16-1181-2022, https://doi.org/10.5194/tc-16-1181-2022, 2022
Short summary
Short summary
The ocean is an important driver of Greenland glacier retreat. Icebergs influence ocean temperature in the vicinity of glaciers, which will affect glacier retreat rates, but the effect of icebergs on water temperature is poorly understood. In this study, we use a model to show that icebergs cause large changes to water properties next to Greenland's glaciers, which could influence ocean-driven glacier retreat around Greenland.
Taryn E. Black and Ian Joughin
The Cryosphere, 16, 807–824, https://doi.org/10.5194/tc-16-807-2022, https://doi.org/10.5194/tc-16-807-2022, 2022
Short summary
Short summary
We used satellite images to create a comprehensive record of annual glacier change in northwest Greenland from 1972 through 2021. We found that nearly all glaciers in our study area have retreated and glacier retreat accelerated from around 1996. Comparing these results with climate data, we found that glacier retreat is most sensitive to water runoff and moderately sensitive to ocean temperatures. These can affect glacier fronts in several ways, so no process clearly dominates glacier retreat.
David W. Ashmore, Douglas W. F. Mair, Jonathan E. Higham, Stephen Brough, James M. Lea, and Isabel J. Nias
The Cryosphere, 16, 219–236, https://doi.org/10.5194/tc-16-219-2022, https://doi.org/10.5194/tc-16-219-2022, 2022
Short summary
Short summary
In this paper we explore the use of a transferrable and flexible statistical technique to try and untangle the multiple influences on marine-terminating glacier dynamics, as measured from space. We decompose a satellite-derived ice velocity record into ranked sets of static maps and temporal coefficients. We present evidence that the approach can identify velocity variability mainly driven by changes in terminus position and velocity variation mainly driven by subglacial hydrological processes.
Peter A. Tuckett, Jeremy C. Ely, Andrew J. Sole, James M. Lea, Stephen J. Livingstone, Julie M. Jones, and J. Melchior van Wessem
The Cryosphere, 15, 5785–5804, https://doi.org/10.5194/tc-15-5785-2021, https://doi.org/10.5194/tc-15-5785-2021, 2021
Short summary
Short summary
Lakes form on the surface of the Antarctic Ice Sheet during the summer. These lakes can generate further melt, break up floating ice shelves and alter ice dynamics. Here, we describe a new automated method for mapping surface lakes and apply our technique to the Amery Ice Shelf between 2005 and 2020. Lake area is highly variable between years, driven by large-scale climate patterns. This technique will help us understand the role of Antarctic surface lakes in our warming world.
Karen E. Alley, Christian T. Wild, Adrian Luckman, Ted A. Scambos, Martin Truffer, Erin C. Pettit, Atsuhiro Muto, Bruce Wallin, Marin Klinger, Tyler Sutterley, Sarah F. Child, Cyrus Hulen, Jan T. M. Lenaerts, Michelle Maclennan, Eric Keenan, and Devon Dunmire
The Cryosphere, 15, 5187–5203, https://doi.org/10.5194/tc-15-5187-2021, https://doi.org/10.5194/tc-15-5187-2021, 2021
Short summary
Short summary
We present a 20-year, satellite-based record of velocity and thickness change on the Thwaites Eastern Ice Shelf (TEIS), the largest remaining floating extension of Thwaites Glacier (TG). TG holds the single greatest control on sea-level rise over the next few centuries, so it is important to understand changes on the TEIS, which controls much of TG's flow into the ocean. Our results suggest that the TEIS is progressively destabilizing and is likely to disintegrate over the next few decades.
Rachel K. Smedley, David Small, Richard S. Jones, Stephen Brough, Jennifer Bradley, and Geraint T. H. Jenkins
Geochronology, 3, 525–543, https://doi.org/10.5194/gchron-3-525-2021, https://doi.org/10.5194/gchron-3-525-2021, 2021
Short summary
Short summary
We apply new rock luminescence techniques to a well-constrained scenario of the Beinn Alligin rock avalanche, NW Scotland. We measure accurate erosion rates consistent with independently derived rates and reveal a transient state of erosion over the last ~4000 years in the wet, temperate climate of NW Scotland. This study shows that the new luminescence erosion-meter has huge potential for inferring erosion rates on sub-millennial scales, which is currently impossible with existing techniques.
Emily A. Hill, Sebastian H. R. Rosier, G. Hilmar Gudmundsson, and Matthew Collins
The Cryosphere, 15, 4675–4702, https://doi.org/10.5194/tc-15-4675-2021, https://doi.org/10.5194/tc-15-4675-2021, 2021
Short summary
Short summary
Using an ice flow model and uncertainty quantification methods, we provide probabilistic projections of future sea level rise from the Filchner–Ronne region of Antarctica. We find that it is most likely that this region will contribute negatively to sea level rise over the next 300 years, largely as a result of increased surface mass balance. We identify parameters controlling ice shelf melt and snowfall contribute most to uncertainties in projections.
Robert S. Fausto, Dirk van As, Kenneth D. Mankoff, Baptiste Vandecrux, Michele Citterio, Andreas P. Ahlstrøm, Signe B. Andersen, William Colgan, Nanna B. Karlsson, Kristian K. Kjeldsen, Niels J. Korsgaard, Signe H. Larsen, Søren Nielsen, Allan Ø. Pedersen, Christopher L. Shields, Anne M. Solgaard, and Jason E. Box
Earth Syst. Sci. Data, 13, 3819–3845, https://doi.org/10.5194/essd-13-3819-2021, https://doi.org/10.5194/essd-13-3819-2021, 2021
Short summary
Short summary
The Programme for Monitoring of the Greenland Ice Sheet (PROMICE) has been measuring climate and ice sheet properties since 2007. Here, we present our data product from weather and ice sheet measurements from a network of automatic weather stations mainly located in the melt area of the ice sheet. Currently the PROMICE automatic weather station network includes 25 instrumented sites in Greenland.
Anne Solgaard, Anders Kusk, John Peter Merryman Boncori, Jørgen Dall, Kenneth D. Mankoff, Andreas P. Ahlstrøm, Signe B. Andersen, Michele Citterio, Nanna B. Karlsson, Kristian K. Kjeldsen, Niels J. Korsgaard, Signe H. Larsen, and Robert S. Fausto
Earth Syst. Sci. Data, 13, 3491–3512, https://doi.org/10.5194/essd-13-3491-2021, https://doi.org/10.5194/essd-13-3491-2021, 2021
Short summary
Short summary
The PROMICE Ice Velocity product is a time series of Greenland Ice Sheet ice velocity mosaics spanning September 2016 to present. It is derived from Sentinel-1 SAR data and has a spatial resolution of 500 m. Each mosaic spans 24 d (two Sentinel-1 cycles), and a new one is posted every 12 d (every Sentinel-1A cycle). The spatial comprehensiveness and temporal consistency make the product ideal for monitoring and studying ice-sheet-wide ice discharge and dynamics of glaciers.
Suzanne L. Bevan, Adrian J. Luckman, Douglas I. Benn, Susheel Adusumilli, and Anna Crawford
The Cryosphere, 15, 3317–3328, https://doi.org/10.5194/tc-15-3317-2021, https://doi.org/10.5194/tc-15-3317-2021, 2021
Short summary
Short summary
The stability of the West Antarctic ice sheet depends on the behaviour of the fast-flowing glaciers, such as Thwaites, that connect it to the ocean. Here we show that a large ocean-melted cavity beneath Thwaites Glacier has remained stable since it first formed, implying that, in line with current theory, basal melt is now concentrated close to where the ice first goes afloat. We also show that Thwaites Glacier continues to thin and to speed up and that continued retreat is therefore likely.
Daniel Cheng, Wayne Hayes, Eric Larour, Yara Mohajerani, Michael Wood, Isabella Velicogna, and Eric Rignot
The Cryosphere, 15, 1663–1675, https://doi.org/10.5194/tc-15-1663-2021, https://doi.org/10.5194/tc-15-1663-2021, 2021
Short summary
Short summary
Tracking changes in Greenland's glaciers is important for understanding Earth's climate, but it is time consuming to do so by hand. We train a program, called CALFIN, to automatically track these changes with human levels of accuracy. CALFIN is a special type of program called a neural network. This method can be applied to other glaciers and eventually other tracking tasks. This will enhance our understanding of the Greenland Ice Sheet and permit better models of Earth's climate.
Svend Funder, Anita H. L. Sørensen, Nicolaj K. Larsen, Anders A. Bjørk, Jason P. Briner, Jesper Olsen, Anders Schomacker, Laura B. Levy, and Kurt H. Kjær
Clim. Past, 17, 587–601, https://doi.org/10.5194/cp-17-587-2021, https://doi.org/10.5194/cp-17-587-2021, 2021
Short summary
Short summary
Cosmogenic 10Be exposure dates from outlying islets along 300 km of the SW Greenland coast indicate that, although affected by inherited 10Be, the ice margin here was retreating during the Younger Dryas. These results seem to be corroborated by recent studies elsewhere in Greenland. The apparent mismatch between temperatures and ice margin behaviour may be explained by the advection of warm water to the ice margin on the shelf and by increased seasonality, both caused by a weakened AMOC.
Andrew O. Hoffman, Knut Christianson, Daniel Shapero, Benjamin E. Smith, and Ian Joughin
The Cryosphere, 14, 4603–4609, https://doi.org/10.5194/tc-14-4603-2020, https://doi.org/10.5194/tc-14-4603-2020, 2020
Short summary
Short summary
The West Antarctic Ice Sheet has long been considered geometrically prone to collapse, and Thwaites Glacier, the largest glacier in the Amundsen Sea, is likely in the early stages of disintegration. Using observations of Thwaites Glacier velocity and elevation change, we show that the transport of ~2 km3 of water beneath Thwaites Glacier has only a small and transient effect on glacier speed relative to ongoing thinning driven by ocean melt.
William D. Smith, Stuart A. Dunning, Stephen Brough, Neil Ross, and Jon Telling
Earth Surf. Dynam., 8, 1053–1065, https://doi.org/10.5194/esurf-8-1053-2020, https://doi.org/10.5194/esurf-8-1053-2020, 2020
Short summary
Short summary
Glacial landslides are difficult to detect and likely underestimated due to rapid covering or dispersal. Without improved detection rates we cannot constrain their impact on glacial dynamics or their potential climatically driven increases in occurrence. Here we present a new open-access tool (GERALDINE) that helps a user detect 92 % of these events over the past 38 years on a global scale. We demonstrate its ability by identifying two new, large glacial landslides in the Hayes Range, Alaska.
Kate Winter, Emily A. Hill, G. Hilmar Gudmundsson, and John Woodward
Earth Syst. Sci. Data, 12, 3453–3467, https://doi.org/10.5194/essd-12-3453-2020, https://doi.org/10.5194/essd-12-3453-2020, 2020
Short summary
Short summary
Satellite measurements of the English Coast in the Antarctic Peninsula reveal that glaciers are thinning and losing mass, but ice thickness data are required to assess these changes, in terms of ice flux and sea level contribution. Our ice-penetrating radar measurements reveal that low-elevation subglacial channels control fast-flowing ice streams, which release over 39 Gt of ice per year to floating ice shelves. This topography could make ice flows susceptible to future instability.
Chad A. Greene, Alex S. Gardner, and Lauren C. Andrews
The Cryosphere, 14, 4365–4378, https://doi.org/10.5194/tc-14-4365-2020, https://doi.org/10.5194/tc-14-4365-2020, 2020
Short summary
Short summary
Seasonal variability is a fundamental characteristic of any Earth surface system, but we do not fully understand which of the world's glaciers speed up and slow down on an annual cycle. Such short-timescale accelerations may offer clues about how individual glaciers will respond to longer-term changes in climate, but understanding any behavior requires an ability to observe it. We describe how to use satellite image feature tracking to determine the magnitude and timing of seasonal ice dynamics.
Zachary Fair, Mark Flanner, Kelly M. Brunt, Helen Amanda Fricker, and Alex Gardner
The Cryosphere, 14, 4253–4263, https://doi.org/10.5194/tc-14-4253-2020, https://doi.org/10.5194/tc-14-4253-2020, 2020
Short summary
Short summary
Ice on glaciers and ice sheets may melt and pond on ice surfaces in summer months. Detection and observation of these meltwater ponds is important for understanding glaciers and ice sheets, and satellite imagery has been used in previous work. However, image-based methods struggle with deep water, so we used data from the Ice, Clouds, and land Elevation Satellite-2 (ICESat-2) and the Airborne Topographic Mapper (ATM) to demonstrate the potential for lidar depth monitoring.
Jennifer F. Arthur, Chris R. Stokes, Stewart S. R. Jamieson, J. Rachel Carr, and Amber A. Leeson
The Cryosphere, 14, 4103–4120, https://doi.org/10.5194/tc-14-4103-2020, https://doi.org/10.5194/tc-14-4103-2020, 2020
Short summary
Short summary
Surface meltwater lakes can flex and fracture ice shelves, potentially leading to ice shelf break-up. A long-term record of lake evolution on Shackleton Ice Shelf is produced using optical satellite imagery and compared to surface air temperature and modelled surface melt. The results reveal that lake clustering on the ice shelf is linked to melt-enhancing feedbacks. Peaks in total lake area and volume closely correspond with intense snowmelt events rather than with warmer seasonal temperatures.
Suzanne Bevan, Adrian Luckman, Harry Hendon, and Guomin Wang
The Cryosphere, 14, 3551–3564, https://doi.org/10.5194/tc-14-3551-2020, https://doi.org/10.5194/tc-14-3551-2020, 2020
Short summary
Short summary
In February 2020, along with record-breaking high temperatures in the region, satellite images showed that the surface of the largest remaining ice shelf on the Antarctic Peninsula was experiencing a lot of melt. Using archived satellite data we show that this melt was greater than any in the past 40 years. The extreme melt followed unusual weather patterns further north, highlighting the importance of long-range links between the tropics and high latitudes and the impact on ice-shelf stability.
Emma L. M. Lewington, Stephen J. Livingstone, Chris D. Clark, Andrew J. Sole, and Robert D. Storrar
The Cryosphere, 14, 2949–2976, https://doi.org/10.5194/tc-14-2949-2020, https://doi.org/10.5194/tc-14-2949-2020, 2020
Short summary
Short summary
We map visible traces of subglacial meltwater flow across Keewatin, Canada. Eskers are commonly observed to form within meltwater corridors up to a few kilometres wide, and we interpret different traces to have formed as part of the same integrated drainage system. In our proposed model, we suggest that eskers record the imprint of a central conduit while meltwater corridors represent the interaction with the surrounding distributed drainage system.
Stephen J. Livingstone, Emma L. M. Lewington, Chris D. Clark, Robert D. Storrar, Andrew J. Sole, Isabelle McMartin, Nico Dewald, and Felix Ng
The Cryosphere, 14, 1989–2004, https://doi.org/10.5194/tc-14-1989-2020, https://doi.org/10.5194/tc-14-1989-2020, 2020
Short summary
Short summary
We map series of aligned mounds (esker beads) across central Nunavut, Canada. Mounds are interpreted to have formed roughly annually as sediment carried by subglacial rivers is deposited at the ice margin. Chains of mounds are formed as the ice retreats. This high-resolution (annual) record allows us to constrain the pace of ice retreat, sediment fluxes, and the style of drainage through time. In particular, we suggest that eskers in general record a composite signature of ice-marginal drainage.
Alex Brisbourne, Bernd Kulessa, Thomas Hudson, Lianne Harrison, Paul Holland, Adrian Luckman, Suzanne Bevan, David Ashmore, Bryn Hubbard, Emma Pearce, James White, Adam Booth, Keith Nicholls, and Andrew Smith
Earth Syst. Sci. Data, 12, 887–896, https://doi.org/10.5194/essd-12-887-2020, https://doi.org/10.5194/essd-12-887-2020, 2020
Short summary
Short summary
Melting of the Larsen C Ice Shelf in Antarctica may lead to its collapse. To help estimate its lifespan we need to understand how the ocean can circulate beneath. This requires knowledge of the geometry of the sub-shelf cavity. New and existing measurements of seabed depth are integrated to produce a map of the ocean cavity beneath the ice shelf. The observed deep seabed may provide a pathway for circulation of warm ocean water but at the same time reduce rapid tidal melt at a critical location.
David A. Lilien, Ian Joughin, Benjamin Smith, and Noel Gourmelen
The Cryosphere, 13, 2817–2834, https://doi.org/10.5194/tc-13-2817-2019, https://doi.org/10.5194/tc-13-2817-2019, 2019
Short summary
Short summary
We used a number of computer simulations to understand the recent retreat of a rapidly changing group of glaciers in West Antarctica. We found that significant melt underneath the floating extensions of the glaciers, driven by relatively warm ocean water at depth, was likely needed to cause the large retreat that has been observed. If melt continues around current rates, retreat is likely to continue through the coming century and extend beyond the present-day drainage area of these glaciers.
Stephen J. Livingstone, Andrew J. Sole, Robert D. Storrar, Devin Harrison, Neil Ross, and Jade Bowling
The Cryosphere, 13, 2789–2796, https://doi.org/10.5194/tc-13-2789-2019, https://doi.org/10.5194/tc-13-2789-2019, 2019
Short summary
Short summary
We report three new subglacial lakes close to the ice sheet margin of West Greenland. The lakes drained and refilled once each between 2009 and 2017, with two lakes draining in < 1 month during August 2014 and August 2015. The 2015 drainage caused a ~ 1-month down-glacier slowdown in ice flow and flooded the foreland, significantly modifying the braided river and depositing up to 8 m of sediment. These subglacial lakes offer accessible targets for future investigations and exploration.
Suzanne L. Bevan, Adrian J. Luckman, Douglas I. Benn, Tom Cowton, and Joe Todd
The Cryosphere, 13, 2303–2315, https://doi.org/10.5194/tc-13-2303-2019, https://doi.org/10.5194/tc-13-2303-2019, 2019
Short summary
Short summary
Kangerlussuaq Glacier in Greenland retreated significantly in the early 2000s and typified the response of calving glaciers to climate change. Satellite images show that it has recently retreated even further. The current retreat follows the appearance of extremely warm surface waters on the continental shelf during the summer of 2016, which likely entered the fjord and caused the rigid mass of sea ice and icebergs, which normally inhibits calving, to melt and break up.
Matt Trevers, Antony J. Payne, Stephen L. Cornford, and Twila Moon
The Cryosphere, 13, 1877–1887, https://doi.org/10.5194/tc-13-1877-2019, https://doi.org/10.5194/tc-13-1877-2019, 2019
Short summary
Short summary
Iceberg calving is a major factor in the retreat of outlet glaciers of the Greenland Ice Sheet. Massive block overturning calving events occur at major outlet glaciers. A major calving event in 2009 was triggered by the release of a smaller block of ice from above the waterline. Using a numerical model, we investigate the feasibility of this mechanism to drive large calving events. We find that relatively small perturbations induce forces large enough to open cracks in ice at the glacier bed.
Enze Zhang, Lin Liu, and Lingcao Huang
The Cryosphere, 13, 1729–1741, https://doi.org/10.5194/tc-13-1729-2019, https://doi.org/10.5194/tc-13-1729-2019, 2019
Short summary
Short summary
Conventionally, calving front positions have been manually delineated from remote sensing images. We design a novel method to automatically delineate the calving front positions of Jakobshavn Isbræ based on deep learning, the first of this kind for Greenland outlet glaciers. We generate high-temporal-resolution (about two measurements every month) calving fronts, demonstrating our methodology can be applied to many other tidewater glaciers through this successful case study on Jakobshavn Isbræ.
Caroline J. Taylor and J. Rachel Carr
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-12, https://doi.org/10.5194/tc-2019-12, 2019
Preprint withdrawn
Short summary
Short summary
Supraglacial ponds can greatly enhance local melt rates, growing rapidly to form proglacial lakes, which represent a major hazard. Here, a remote sensing study using 10m resolution satellite imagery (Sentinel-2A) was deployed to quantify the changes of 6,425 supraglacial ponds on 10 glaciers in the Everest region of Nepal, 2015 to 2018. Overall, our results demonstrate rapid pond expansion, subject to spatial and temporal variation, highlighting the need for continued monitoring.
Mathieu Morlighem, Michael Wood, Hélène Seroussi, Youngmin Choi, and Eric Rignot
The Cryosphere, 13, 723–734, https://doi.org/10.5194/tc-13-723-2019, https://doi.org/10.5194/tc-13-723-2019, 2019
Short summary
Short summary
Many glaciers along the coast of Greenland have been retreating. It has been suggested that this retreat is triggered by the presence of warm water in the fjords, and surface melt at the top of the ice sheet is exacerbating this problem. Here, we quantify the vulnerability of northwestern Greenland to further warming using a numerical model. We find that in current conditions, this sector alone will contribute more than 1 cm to sea rise level by 2100, and up to 3 cm in the most extreme scenario.
Emily A. Hill, G. Hilmar Gudmundsson, J. Rachel Carr, and Chris R. Stokes
The Cryosphere, 12, 3907–3921, https://doi.org/10.5194/tc-12-3907-2018, https://doi.org/10.5194/tc-12-3907-2018, 2018
Short summary
Short summary
Floating ice tongues in Greenland buttress inland ice, and their removal could accelerate ice flow. Petermann Glacier recently lost large sections of its ice tongue, but there was little glacier acceleration. Here, we assess the impact of future calving events on ice speeds. We find that removing the lower portions of the ice tongue does not accelerate flow. However, future iceberg calving closer to the grounding line could accelerate ice flow and increase ice discharge and sea level rise.
Youngmin Choi, Mathieu Morlighem, Michael Wood, and Johannes H. Bondzio
The Cryosphere, 12, 3735–3746, https://doi.org/10.5194/tc-12-3735-2018, https://doi.org/10.5194/tc-12-3735-2018, 2018
Short summary
Short summary
Calving is an important mechanism that controls the dynamics of Greenland outlet glaciers. We test and compare four calving laws and assess which calving law has better predictive abilities. Overall, the calving law based on von Mises stress is more satisfactory than other laws, but new parameterizations should be derived to better capture the detailed processes involved in calving.
Emily A. Hill, J. Rachel Carr, Chris R. Stokes, and G. Hilmar Gudmundsson
The Cryosphere, 12, 3243–3263, https://doi.org/10.5194/tc-12-3243-2018, https://doi.org/10.5194/tc-12-3243-2018, 2018
Short summary
Short summary
The dynamic behaviour (i.e. acceleration and retreat) of outlet glaciers in northern Greenland remains understudied. Here, we provide a new long-term (68-year) record of terminus change. Overall, recent retreat rates (1995–2015) are higher than the last 47 years. Despite region-wide retreat, we found disparities in dynamic behaviour depending on terminus type; grounded glaciers accelerated and thinned following retreat, while glaciers with floating ice tongues were insensitive to recent retreat.
Jiangjun Ran, Miren Vizcaino, Pavel Ditmar, Michiel R. van den Broeke, Twila Moon, Christian R. Steger, Ellyn M. Enderlin, Bert Wouters, Brice Noël, Catharina H. Reijmer, Roland Klees, Min Zhong, Lin Liu, and Xavier Fettweis
The Cryosphere, 12, 2981–2999, https://doi.org/10.5194/tc-12-2981-2018, https://doi.org/10.5194/tc-12-2981-2018, 2018
Short summary
Short summary
To accurately predict future sea level rise, the mechanisms driving the observed mass loss must be better understood. Here, we combine data from the satellite gravimetry, surface mass balance, and ice discharge to analyze the mass budget of Greenland at various temporal scales. This study, for the first time, suggests the existence of a substantial meltwater storage during summer, with a peak value of 80–120 Gt in July. We highlight its importance for understanding ice sheet mass variability
James M. Lea
Earth Surf. Dynam., 6, 551–561, https://doi.org/10.5194/esurf-6-551-2018, https://doi.org/10.5194/esurf-6-551-2018, 2018
Short summary
Short summary
The new, free and easy-to-use tools in this paper (GEEDiT, GEEDiT-Reviewer and MaQiT) allow users to visualise, map and review margins from full satellite records of Landsat 4–8 and Sentinel 1–2 in addition to quantifying these margin changes with unprecedented speed. This allows previously prohibitive volumes of remote-sensing data to be analysed easily, flexibly and rapidly. These tools have potential applications across the geosciences for the exploration and analysis of satellite imagery.
Dorothée Vallot, Jan Åström, Thomas Zwinger, Rickard Pettersson, Alistair Everett, Douglas I. Benn, Adrian Luckman, Ward J. J. van Pelt, Faezeh Nick, and Jack Kohler
The Cryosphere, 12, 609–625, https://doi.org/10.5194/tc-12-609-2018, https://doi.org/10.5194/tc-12-609-2018, 2018
Short summary
Short summary
This paper presents a new perspective on the role of ice dynamics and ocean interaction in glacier calving processes applied to Kronebreen, a tidewater glacier in Svalbard. A global modelling approach includes ice flow modelling, undercutting estimation by a combination of glacier energy balance and plume modelling as well as calving by a discrete particle model. We show that modelling undercutting is necessary and calving is influenced by basal friction velocity and geometry.
Ellyn M. Enderlin, Caroline J. Carrigan, William H. Kochtitzky, Alexandra Cuadros, Twila Moon, and Gordon S. Hamilton
The Cryosphere, 12, 565–575, https://doi.org/10.5194/tc-12-565-2018, https://doi.org/10.5194/tc-12-565-2018, 2018
Short summary
Short summary
This paper aims to improve the understanding of variations in ocean conditions around the Greenland Ice Sheet, which have been called upon to explain recent glacier change. Changes in iceberg elevation over time, measured using satellite data, are used to estimate average melt rates. We find that iceberg melt rates generally decrease with latitude and increase with keel depth and can be used to characterize ocean conditions at Greenland's inaccessible marine margins.
Alex S. Gardner, Geir Moholdt, Ted Scambos, Mark Fahnstock, Stefan Ligtenberg, Michiel van den Broeke, and Johan Nilsson
The Cryosphere, 12, 521–547, https://doi.org/10.5194/tc-12-521-2018, https://doi.org/10.5194/tc-12-521-2018, 2018
Short summary
Short summary
We map present-day Antarctic surface velocities from Landsat imagery and compare to earlier estimates from radar. Flow accelerations across the grounding lines of West Antarctica's Amundsen Sea Embayment, Getz Ice Shelf and the western Antarctic Peninsula, account for 89 % of the observed increase in ice discharge. In contrast, glaciers draining the East Antarctic have been remarkably stable. Our work suggests that patterns of mass loss are part of a longer-term phase of enhanced flow.
Suzanne L. Bevan, Adrian Luckman, Bryn Hubbard, Bernd Kulessa, David Ashmore, Peter Kuipers Munneke, Martin O'Leary, Adam Booth, Heidi Sevestre, and Daniel McGrath
The Cryosphere, 11, 2743–2753, https://doi.org/10.5194/tc-11-2743-2017, https://doi.org/10.5194/tc-11-2743-2017, 2017
Short summary
Short summary
Five 90 m boreholes drilled into an Antarctic Peninsula ice shelf show units of ice that are denser than expected and must have formed from refrozen surface melt which has been buried and transported downstream. We used surface flow speeds and snow accumulation rates to work out where and when these units formed. Results show that, as well as recent surface melt, a period of strong melt occurred during the 18th century. Surface melt is thought to be a factor in causing recent ice-shelf break-up.
Eric Larour, Daniel Cheng, Gilberto Perez, Justin Quinn, Mathieu Morlighem, Bao Duong, Lan Nguyen, Kit Petrie, Silva Harounian, Daria Halkides, and Wayne Hayes
Geosci. Model Dev., 10, 4393–4403, https://doi.org/10.5194/gmd-10-4393-2017, https://doi.org/10.5194/gmd-10-4393-2017, 2017
Short summary
Short summary
This work presents a new way of carrying out simulations using the C++ based Ice Sheet System Model (ISSM) within a web page. This allows for a new generation of websites that can rely on the entire code of a climate model, without compromising or simplifying the physics implemented in such a model. We believe this approach will enable better education/outreach websites as well as improve access to complex climate models without compromising their integrity.
Penelope How, Douglas I. Benn, Nicholas R. J. Hulton, Bryn Hubbard, Adrian Luckman, Heïdi Sevestre, Ward J. J. van Pelt, Katrin Lindbäck, Jack Kohler, and Wim Boot
The Cryosphere, 11, 2691–2710, https://doi.org/10.5194/tc-11-2691-2017, https://doi.org/10.5194/tc-11-2691-2017, 2017
Short summary
Short summary
This study provides valuable insight into subglacial hydrology and dynamics at tidewater glaciers, which remains a poorly understood area of glaciology. It is a unique study because of the wealth of information provided by simultaneous observations of glacier hydrology at Kronebreen, a tidewater glacier in Svalbard. All these elements build a strong conceptual picture of the glacier's hydrological regime over the 2014 melt season.
Joseph M. Cook, Andrew J. Hodson, Alex S. Gardner, Mark Flanner, Andrew J. Tedstone, Christopher Williamson, Tristram D. L. Irvine-Fynn, Johan Nilsson, Robert Bryant, and Martyn Tranter
The Cryosphere, 11, 2611–2632, https://doi.org/10.5194/tc-11-2611-2017, https://doi.org/10.5194/tc-11-2611-2017, 2017
Short summary
Short summary
Biological growth darkens snow and ice, causing it to melt faster. This is often referred to as
bioalbedo. Quantifying bioalbedo has not been achieved because of difficulties in isolating the biological contribution from the optical properties of ice and snow, and from inorganic impurities in field studies. In this paper, we provide a physical model that enables bioalbedo to be quantified from first principles and we use it to guide future field studies.
Peter Kuipers Munneke, Daniel McGrath, Brooke Medley, Adrian Luckman, Suzanne Bevan, Bernd Kulessa, Daniela Jansen, Adam Booth, Paul Smeets, Bryn Hubbard, David Ashmore, Michiel Van den Broeke, Heidi Sevestre, Konrad Steffen, Andrew Shepherd, and Noel Gourmelen
The Cryosphere, 11, 2411–2426, https://doi.org/10.5194/tc-11-2411-2017, https://doi.org/10.5194/tc-11-2411-2017, 2017
Short summary
Short summary
How much snow falls on the Larsen C ice shelf? This is a relevant question, because this ice shelf might collapse sometime this century. To know if and when this could happen, we found out how much snow falls on its surface. This was difficult, because there are only very few measurements. Here, we used data from automatic weather stations, sled-pulled radars, and a climate model to find that melting the annual snowfall produces about 20 cm of water in the NE and over 70 cm in the SW.
Douglas I. Benn, Sarah Thompson, Jason Gulley, Jordan Mertes, Adrian Luckman, and Lindsey Nicholson
The Cryosphere, 11, 2247–2264, https://doi.org/10.5194/tc-11-2247-2017, https://doi.org/10.5194/tc-11-2247-2017, 2017
Short summary
Short summary
This paper provides the first complete view of the drainage system of a large Himalayan glacier, based on ice-cave exploration and satellite image analysis. Drainage tunnels inside glaciers have a major impact on melting rates, by providing lines of weakness inside the ice and potential pathways for melt-water, and play a key role in the response of debris-covered glaciers to sustained periods of negative mass balance.
J. Rachel Carr, Heather Bell, Rebecca Killick, and Tom Holt
The Cryosphere, 11, 2149–2174, https://doi.org/10.5194/tc-11-2149-2017, https://doi.org/10.5194/tc-11-2149-2017, 2017
Short summary
Short summary
Glaciers on Novaya Zemlya (NVZ) retreated rapidly between 2000 and 2013. This was far faster than the previous 25 years, but retreat then slowed from 2013 onward. This may result from changes in broadscale climatic patterns. Glaciers ending in lakes retreated at a similar rate to those ending in the ocean, and retreat rates were very consistent between glaciers, which contrasts with previous studies.
Kristian Kjellerup Kjeldsen, Reimer Wilhelm Weinrebe, Jørgen Bendtsen, Anders Anker Bjørk, and Kurt Henrik Kjær
Earth Syst. Sci. Data, 9, 589–600, https://doi.org/10.5194/essd-9-589-2017, https://doi.org/10.5194/essd-9-589-2017, 2017
Short summary
Short summary
Here we present bathymetric and hydrographic measurements from two fjords in southeastern Greenland surveyed in 2014, leading to improved knowledge of the fjord morphology and an assessment of the variability in water masses in the fjords systems. Data were collected as part of a larger field campaign in which we targeted marine and terrestrial observations to assess the long-term behavior of the Greenland ice sheet and provide linkages to modern observations.
Christopher N. Williams, Stephen L. Cornford, Thomas M. Jordan, Julian A. Dowdeswell, Martin J. Siegert, Christopher D. Clark, Darrel A. Swift, Andrew Sole, Ian Fenty, and Jonathan L. Bamber
The Cryosphere, 11, 363–380, https://doi.org/10.5194/tc-11-363-2017, https://doi.org/10.5194/tc-11-363-2017, 2017
Short summary
Short summary
Knowledge of ice sheet bed topography and surrounding sea floor bathymetry is integral to the understanding of ice sheet processes. Existing elevation data products for Greenland underestimate fjord bathymetry due to sparse data availability. We present a new method to create physically based synthetic fjord bathymetry to fill these gaps, greatly improving on previously available datasets. This will assist in future elevation product development until further observations become available.
Johan Nilsson, Alex Gardner, Louise Sandberg Sørensen, and Rene Forsberg
The Cryosphere, 10, 2953–2969, https://doi.org/10.5194/tc-10-2953-2016, https://doi.org/10.5194/tc-10-2953-2016, 2016
Short summary
Short summary
In this study we present a new processing methodology for retrieving surface elevations and elevation changes over glaciated terrain from CryoSat-2 data. The new methodology has been shown to be less sensitive to changes in near-surface dielectric properties and provides improved elevation and elevation change retrievals. This methodology has been applied to the Greenland Ice Sheet to provide an updated volume change estimate for the period of 2011 to 2015.
A. A. Bjørk, L. M. Kruse, and P. B. Michaelsen
The Cryosphere, 9, 2215–2218, https://doi.org/10.5194/tc-9-2215-2015, https://doi.org/10.5194/tc-9-2215-2015, 2015
Short summary
Short summary
During the last centuries hundreds of glaciers in Greenland have been mapped and named. Here we present the official database of all Greenlandic glacier names - consisting of 733 glacier names that have been approved by the Greenlandic authorities. This data set will help researchers working with Greenlandic glaciers in naming the glaciers properly in order to avoid future misunderstandings and will help the researcher who is looking for older glacier names found in the historic literature.
D. Jansen, A. J. Luckman, A. Cook, S. Bevan, B. Kulessa, B. Hubbard, and P. R. Holland
The Cryosphere, 9, 1223–1227, https://doi.org/10.5194/tc-9-1223-2015, https://doi.org/10.5194/tc-9-1223-2015, 2015
Short summary
Short summary
Within the last year, a large rift in the southern part of the Larsen C Ice Shelf, Antarctic Peninsula, propagated towards the inner part of the ice shelf. In this study we present the development of the rift as derived from remote sensing data and assess the impact of possible calving scenarios on the future stability of the Larsen C Ice Shelf, using a numerical model. We find that the calving front is likely to become unstable after the anticipated calving events.
S. de la Peña, I. M. Howat, P. W. Nienow, M. R. van den Broeke, E. Mosley-Thompson, S. F. Price, D. Mair, B. Noël, and A. J. Sole
The Cryosphere, 9, 1203–1211, https://doi.org/10.5194/tc-9-1203-2015, https://doi.org/10.5194/tc-9-1203-2015, 2015
Short summary
Short summary
This paper presents an assessment of changes in the near-surface structure of the accumulation zone of the Greenland Ice Sheet caused by an increase of melt at higher elevations in the last decade, especially during the unusually warm years of 2010 and 2012. The increase in melt and firn densification complicate the interpretation of changes in the ice volume, and the observed increase in firn ice content may reduce the important meltwater buffering capacity of the Greenland Ice Sheet.
C. C. Clason, D. W. F. Mair, P. W. Nienow, I. D. Bartholomew, A. Sole, S. Palmer, and W. Schwanghart
The Cryosphere, 9, 123–138, https://doi.org/10.5194/tc-9-123-2015, https://doi.org/10.5194/tc-9-123-2015, 2015
J. C. Ryan, A. L. Hubbard, J. E. Box, J. Todd, P. Christoffersen, J. R. Carr, T. O. Holt, and N. Snooke
The Cryosphere, 9, 1–11, https://doi.org/10.5194/tc-9-1-2015, https://doi.org/10.5194/tc-9-1-2015, 2015
Short summary
Short summary
An unmanned aerial vehicle (UAV) equipped with a commercial digital camera enabled us to obtain high-resolution digital images of the calving front of Store glacier, Greenland. The three sorties flown enabled key glaciological parameters to be quantified in sufficient detail to reveal that the terminus of Store glacier is a complex system with large variations in crevasse patterns surface velocities, calving processes, surface elevations and front positions at a daily and seasonal timescale.
B. Hubbard, C. Souness, and S. Brough
The Cryosphere, 8, 2047–2061, https://doi.org/10.5194/tc-8-2047-2014, https://doi.org/10.5194/tc-8-2047-2014, 2014
Short summary
Short summary
We address the dynamic glaciology of glacier-like forms (GLFs) on Mars, over 1300 of which are located in the planet's midlatitude regions. We present case studies to gain insight into (i) the former extent of GLFs, (ii) GLF motion and surface crevassing, (iii) GLF debris transfer (suggesting a best-estimate surface velocity of 7.5 mm/a over the past 2 Ma), and (iv) putative GLF surface hydrology. Finally, we present several possible research directions for the future study of Martian GLFs.
S. A. Khan, K. K. Kjeldsen, K. H. Kjær, S. Bevan, A. Luckman, A. Aschwanden, A. A. Bjørk, N. J. Korsgaard, J. E. Box, M. van den Broeke, T. M. van Dam, and A. Fitzner
The Cryosphere, 8, 1497–1507, https://doi.org/10.5194/tc-8-1497-2014, https://doi.org/10.5194/tc-8-1497-2014, 2014
N. Chauché, A. Hubbard, J.-C. Gascard, J. E. Box, R. Bates, M. Koppes, A. Sole, P. Christoffersen, and H. Patton
The Cryosphere, 8, 1457–1468, https://doi.org/10.5194/tc-8-1457-2014, https://doi.org/10.5194/tc-8-1457-2014, 2014
S. L. Bevan, S. O. Los, and P. R. J. North
Biogeosciences, 11, 2897–2908, https://doi.org/10.5194/bg-11-2897-2014, https://doi.org/10.5194/bg-11-2897-2014, 2014
S. Cook, I. C. Rutt, T. Murray, A. Luckman, T. Zwinger, N. Selmes, A. Goldsack, and T. D. James
The Cryosphere, 8, 827–841, https://doi.org/10.5194/tc-8-827-2014, https://doi.org/10.5194/tc-8-827-2014, 2014
D. J. Quincey and A. Luckman
The Cryosphere, 8, 571–574, https://doi.org/10.5194/tc-8-571-2014, https://doi.org/10.5194/tc-8-571-2014, 2014
J. McGovern, I. Rutt, J. Utke, and T. Murray
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmdd-6-5251-2013, https://doi.org/10.5194/gmdd-6-5251-2013, 2013
Revised manuscript has not been submitted
N. Selmes, T. Murray, and T. D. James
The Cryosphere Discuss., https://doi.org/10.5194/tcd-7-475-2013, https://doi.org/10.5194/tcd-7-475-2013, 2013
Revised manuscript has not been submitted
Related subject area
Discipline: Glaciers | Subject: Remote Sensing
The Pléiades Glacier Observatory: high-resolution digital elevation models and ortho-imagery to monitor glacier change
Monthly velocity and seasonal variations of the Mont Blanc glaciers derived from Sentinel-2 between 2016 and 2024
Improved records of glacier flow instabilities using customized NASA autoRIFT (CautoRIFT) applied to PlanetScope imagery
Five decades of Abramov glacier dynamics reconstructed with multi-sensor optical remote sensing
Observing glacier elevation changes from spaceborne optical and radar sensors – an inter-comparison experiment using ASTER and TanDEM-X data
Lake ice break-up in Greenland: timing and spatiotemporal variability
A low-cost and open-source approach for supraglacial debris thickness mapping using UAV-based infrared thermography
Refined glacial lake extraction in a high-Asia region by deep neural network and superpixel-based conditional random field methods
Annual to seasonal glacier mass balance in High Mountain Asia derived from Pléiades stereo images: examples from the Pamir and the Tibetan Plateau
Out-of-the-box calving-front detection method using deep learning
GLAcier Feature Tracking testkit (GLAFT): a statistically and physically based framework for evaluating glacier velocity products derived from optical satellite image feature tracking
Cast shadows reveal changes in glacier surface elevation
Characterizing the surge behaviour and associated ice-dammed lake evolution of the Kyagar Glacier in the Karakoram
Constraining regional glacier reconstructions using past ice thickness of deglaciating areas – a case study in the European Alps
Climatic control on seasonal variations in mountain glacier surface velocity
High-resolution debris-cover mapping using UAV-derived thermal imagery: limits and opportunities
Automated ArcticDEM iceberg detection tool: insights into area and volume distributions, and their potential application to satellite imagery and modelling of glacier–iceberg–ocean systems
Glacier extraction based on high-spatial-resolution remote-sensing images using a deep-learning approach with attention mechanism
Surge dynamics of Shisper Glacier revealed by time-series correlation of optical satellite images and their utility to substantiate a generalized sliding law
Offset of MODIS land surface temperatures from in situ air temperatures in the upper Kaskawulsh Glacier region (St. Elias Mountains) indicates near-surface temperature inversions
Three different glacier surges at a spot: what satellites observe and what not
Correlation dispersion as a measure to better estimate uncertainty in remotely sensed glacier displacements
Glacier and rock glacier changes since the 1950s in the La Laguna catchment, Chile
Brief communication: Increased glacier mass loss in the Russian High Arctic (2010–2017)
Contrasting surface velocities between lake- and land-terminating glaciers in the Himalayan region
Aerodynamic roughness length of crevassed tidewater glaciers from UAV mapping
Image classification of marine-terminating outlet glaciers in Greenland using deep learning methods
Brief communication: Detection of glacier surge activity using cloud computing of Sentinel-1 radar data
InSAR-based characterization of rock glacier movement in the Uinta Mountains, Utah, USA
Surface composition of debris-covered glaciers across the Himalaya using linear spectral unmixing of Landsat 8 OLI imagery
Mapping seasonal glacier melt across the Hindu Kush Himalaya with time series synthetic aperture radar (SAR)
Estimating surface mass balance patterns from unoccupied aerial vehicle measurements in the ablation area of the Morteratsch–Pers glacier complex (Switzerland)
High-resolution topography of the Antarctic Peninsula combining the TanDEM-X DEM and Reference Elevation Model of Antarctica (REMA) mosaic
Measuring the state and temporal evolution of glaciers in Alaska and Yukon using synthetic-aperture-radar-derived (SAR-derived) 3D time series of glacier surface flow
Tracking changes in the area, thickness, and volume of the Thwaites tabular iceberg “B30” using satellite altimetry and imagery
Analyzing glacier retreat and mass balances using aerial and UAV photogrammetry in the Ötztal Alps, Austria
Surges of Harald Moltke Bræ, north-western Greenland: seasonal modulation and initiation at the terminus
Brief communication: An empirical relation between center frequency and measured thickness for radar sounding of temperate glaciers
Glacier Image Velocimetry: an open-source toolbox for easy and rapid calculation of high-resolution glacier velocity fields
Calving Front Machine (CALFIN): glacial termini dataset and automated deep learning extraction method for Greenland, 1972–2019
Annual and inter-annual variability and trends of albedo of Icelandic glaciers
Observing traveling waves in glaciers with remote sensing: new flexible time series methods and application to Sermeq Kujalleq (Jakobshavn Isbræ), Greenland
Detecting seasonal ice dynamics in satellite images
Sharp contrasts in observed and modeled crevasse patterns at Greenland's marine terminating glaciers
Variability in glacier albedo and links to annual mass balance for the gardens of Eden and Allah, Southern Alps, New Zealand
The seasonal evolution of albedo across glaciers and the surrounding landscape of Taylor Valley, Antarctica
Recent glacier and lake changes in High Mountain Asia and their relation to precipitation changes
Multisensor validation of tidewater glacier flow fields derived from synthetic aperture radar (SAR) intensity tracking
Detecting dynamics of cave floor ice with selective cloud-to-cloud approach
Changes of the tropical glaciers throughout Peru between 2000 and 2016 – mass balance and area fluctuations
Etienne Berthier, Jérôme Lebreton, Delphine Fontannaz, Steven Hosford, Joaquín Muñoz-Cobo Belart, Fanny Brun, Liss M. Andreassen, Brian Menounos, and Charlotte Blondel
The Cryosphere, 18, 5551–5571, https://doi.org/10.5194/tc-18-5551-2024, https://doi.org/10.5194/tc-18-5551-2024, 2024
Short summary
Short summary
Repeat elevation measurements are crucial for monitoring glacier health and to understand how glaciers affect river flows and sea level. Until recently, high-resolution elevation data were mostly available for polar regions and High Mountain Asia. Our project, the Pléiades Glacier Observatory, now provides high-resolution topographies of 140 glacier sites worldwide. This is a novel and open dataset to monitor the impact of climate change on glaciers at high resolution and accuracy.
Fabrizio Troilo, Niccolò Dematteis, Francesco Zucca, Martin Funk, and Daniele Giordan
The Cryosphere, 18, 3891–3909, https://doi.org/10.5194/tc-18-3891-2024, https://doi.org/10.5194/tc-18-3891-2024, 2024
Short summary
Short summary
The study of glacier sliding along slopes is relevant in many aspects of glaciology. We processed Sentinel-2 satellite optical images of Mont Blanc, obtaining surface velocities of 30 glaciers between 2016 and 2024. The study revealed different behaviours and velocity variations that have relationships with glacier morphology. A velocity anomaly was observed in some glaciers of the southern side in 2020–2022, but its origin needs to be investigated further.
Jukes Liu, Madeline Gendreau, Ellyn Mary Enderlin, and Rainey Aberle
The Cryosphere, 18, 3571–3590, https://doi.org/10.5194/tc-18-3571-2024, https://doi.org/10.5194/tc-18-3571-2024, 2024
Short summary
Short summary
There are sometimes gaps in global glacier velocity records produced using satellite image feature-tracking algorithms during times of rapid glacier acceleration, which hinders the study of glacier flow processes. We present an open-source pipeline for customizing the feature-tracking parameters and for including images from an additional source. We applied it to five glaciers and found that it produced accurate velocity data that supplemented their velocity records during rapid acceleration.
Enrico Mattea, Etienne Berthier, Amaury Dehecq, Tobias Bolch, Atanu Bhattacharya, Sajid Ghuffar, Martina Barandun, and Martin Hoelzle
EGUsphere, https://doi.org/10.5194/egusphere-2024-2169, https://doi.org/10.5194/egusphere-2024-2169, 2024
Short summary
Short summary
We reconstruct the evolution of terminus position, ice thickness and surface flow velocity of the reference Abramov glacier (Kyrgyzstan) from 1968 to present. We describe a front pulsation in the early 2000s and the multi-annual present-day buildup of a new pulsation. Such dynamic instabilities can challenge the representativity of Abramov as reference glacier. For our work we used satellite‑based optical remote sensing from multiple platforms, including recently declassified archives.
Livia Piermattei, Michael Zemp, Christian Sommer, Fanny Brun, Matthias H. Braun, Liss M. Andreassen, Joaquín M. C. Belart, Etienne Berthier, Atanu Bhattacharya, Laura Boehm Vock, Tobias Bolch, Amaury Dehecq, Inés Dussaillant, Daniel Falaschi, Caitlyn Florentine, Dana Floricioiu, Christian Ginzler, Gregoire Guillet, Romain Hugonnet, Matthias Huss, Andreas Kääb, Owen King, Christoph Klug, Friedrich Knuth, Lukas Krieger, Jeff La Frenierre, Robert McNabb, Christopher McNeil, Rainer Prinz, Louis Sass, Thorsten Seehaus, David Shean, Désirée Treichler, Anja Wendt, and Ruitang Yang
The Cryosphere, 18, 3195–3230, https://doi.org/10.5194/tc-18-3195-2024, https://doi.org/10.5194/tc-18-3195-2024, 2024
Short summary
Short summary
Satellites have made it possible to observe glacier elevation changes from all around the world. In the present study, we compared the results produced from two different types of satellite data between different research groups and against validation measurements from aeroplanes. We found a large spread between individual results but showed that the group ensemble can be used to reliably estimate glacier elevation changes and related errors from satellite data.
Christoph Posch, Jakob Abermann, and Tiago Silva
The Cryosphere, 18, 2035–2059, https://doi.org/10.5194/tc-18-2035-2024, https://doi.org/10.5194/tc-18-2035-2024, 2024
Short summary
Short summary
Radar beams from satellites exhibit reflection differences between water and ice. This condition, as well as the comprehensive coverage and high temporal resolution of the Sentinel-1 satellites, allows automatically detecting the timing of when ice cover of lakes in Greenland disappear. We found that lake ice breaks up 3 d later per 100 m elevation gain and that the average break-up timing varies by ±8 d in 2017–2021, which has major implications for the energy budget of the lakes.
Jérôme Messmer and Alexander Raphael Groos
The Cryosphere, 18, 719–746, https://doi.org/10.5194/tc-18-719-2024, https://doi.org/10.5194/tc-18-719-2024, 2024
Short summary
Short summary
The lower part of mountain glaciers is often covered with debris. Knowing the thickness of the debris is important as it influences the melting and future evolution of the affected glaciers. We have developed an open-source approach to map variations in debris thickness on glaciers using a low-cost drone equipped with a thermal infrared camera. The resulting high-resolution maps of debris surface temperature and thickness enable more accurate monitoring and modelling of debris-covered glaciers.
Yungang Cao, Rumeng Pan, Meng Pan, Ruodan Lei, Puying Du, and Xueqin Bai
The Cryosphere, 18, 153–168, https://doi.org/10.5194/tc-18-153-2024, https://doi.org/10.5194/tc-18-153-2024, 2024
Short summary
Short summary
This study built a glacial lake dataset with 15376 samples in seven types and proposed an automatic method by two-stage (the semantic segmentation network and post-processing) optimizations to detect glacial lakes. The proposed method for glacial lake extraction has achieved the best results so far, in which the F1 score and IoU reached 0.945 and 0.907, respectively. The area of the minimum glacial lake that can be entirely and correctly extracted has been raised to the 100 m2 level.
Daniel Falaschi, Atanu Bhattacharya, Gregoire Guillet, Lei Huang, Owen King, Kriti Mukherjee, Philipp Rastner, Tandong Yao, and Tobias Bolch
The Cryosphere, 17, 5435–5458, https://doi.org/10.5194/tc-17-5435-2023, https://doi.org/10.5194/tc-17-5435-2023, 2023
Short summary
Short summary
Because glaciers are crucial freshwater sources in the lowlands surrounding High Mountain Asia, constraining short-term glacier mass changes is essential. We investigate the potential of state-of-the-art satellite elevation data to measure glacier mass changes in two selected regions. The results demonstrate the ability of our dataset to characterize glacier changes of different magnitudes, allowing for an increase in the number of inaccessible glaciers that can be readily monitored.
Oskar Herrmann, Nora Gourmelon, Thorsten Seehaus, Andreas Maier, Johannes J. Fürst, Matthias H. Braun, and Vincent Christlein
The Cryosphere, 17, 4957–4977, https://doi.org/10.5194/tc-17-4957-2023, https://doi.org/10.5194/tc-17-4957-2023, 2023
Short summary
Short summary
Delineating calving fronts of marine-terminating glaciers in satellite images is a labour-intensive task. We propose a method based on deep learning that automates this task. We choose a deep learning framework that adapts to any given dataset without needing deep learning expertise. The method is evaluated on a benchmark dataset for calving-front detection and glacier zone segmentation. The framework can beat the benchmark baseline without major modifications.
Whyjay Zheng, Shashank Bhushan, Maximillian Van Wyk De Vries, William Kochtitzky, David Shean, Luke Copland, Christine Dow, Renette Jones-Ivey, and Fernando Pérez
The Cryosphere, 17, 4063–4078, https://doi.org/10.5194/tc-17-4063-2023, https://doi.org/10.5194/tc-17-4063-2023, 2023
Short summary
Short summary
We design and propose a method that can evaluate the quality of glacier velocity maps. The method includes two numbers that we can calculate for each velocity map. Based on statistics and ice flow physics, velocity maps with numbers close to the recommended values are considered to have good quality. We test the method using the data from Kaskawulsh Glacier, Canada, and release an open-sourced software tool called GLAcier Feature Tracking testkit (GLAFT) to help users assess their velocity maps.
Monika Pfau, Georg Veh, and Wolfgang Schwanghart
The Cryosphere, 17, 3535–3551, https://doi.org/10.5194/tc-17-3535-2023, https://doi.org/10.5194/tc-17-3535-2023, 2023
Short summary
Short summary
Cast shadows have been a recurring problem in remote sensing of glaciers. We show that the length of shadows from surrounding mountains can be used to detect gains or losses in glacier elevation.
Guanyu Li, Mingyang Lv, Duncan J. Quincey, Liam S. Taylor, Xinwu Li, Shiyong Yan, Yidan Sun, and Huadong Guo
The Cryosphere, 17, 2891–2907, https://doi.org/10.5194/tc-17-2891-2023, https://doi.org/10.5194/tc-17-2891-2023, 2023
Short summary
Short summary
Kyagar Glacier in the Karakoram is well known for its surge history and its frequent blocking of the downstream valley, leading to a series of high-magnitude glacial lake outburst floods. Using it as a test bed, we develop a new approach for quantifying surge behaviour using successive digital elevation models. This method could be applied to other surge studies. Combined with the results from optical satellite images, we also reconstruct the surge process in unprecedented detail.
Christian Sommer, Johannes J. Fürst, Matthias Huss, and Matthias H. Braun
The Cryosphere, 17, 2285–2303, https://doi.org/10.5194/tc-17-2285-2023, https://doi.org/10.5194/tc-17-2285-2023, 2023
Short summary
Short summary
Knowledge on the volume of glaciers is important to project future runoff. Here, we present a novel approach to reconstruct the regional ice thickness distribution from easily available remote-sensing data. We show that past ice thickness, derived from spaceborne glacier area and elevation datasets, can constrain the estimated ice thickness. Based on the unique glaciological database of the European Alps, the approach will be most beneficial in regions without direct thickness measurements.
Ugo Nanni, Dirk Scherler, Francois Ayoub, Romain Millan, Frederic Herman, and Jean-Philippe Avouac
The Cryosphere, 17, 1567–1583, https://doi.org/10.5194/tc-17-1567-2023, https://doi.org/10.5194/tc-17-1567-2023, 2023
Short summary
Short summary
Surface melt is a major factor driving glacier movement. Using satellite images, we have tracked the movements of 38 glaciers in the Pamirs over 7 years, capturing their responses to rapid meteorological changes with unprecedented resolution. We show that in spring, glacier accelerations propagate upglacier, while in autumn, they propagate downglacier – all resulting from changes in meltwater input. This provides critical insights into the interplay between surface melt and glacier movement.
Deniz Tobias Gök, Dirk Scherler, and Leif Stefan Anderson
The Cryosphere, 17, 1165–1184, https://doi.org/10.5194/tc-17-1165-2023, https://doi.org/10.5194/tc-17-1165-2023, 2023
Short summary
Short summary
We performed high-resolution debris-thickness mapping using land surface temperature (LST) measured from an unpiloted aerial vehicle (UAV) at various times of the day. LSTs from UAVs require calibration that varies in time. We test two approaches to quantify supraglacial debris cover, and we find that the non-linearity of the relationship between LST and debris thickness increases with LST. Choosing the best model to predict debris thickness depends on the time of the day and the terrain aspect.
Connor J. Shiggins, James M. Lea, and Stephen Brough
The Cryosphere, 17, 15–32, https://doi.org/10.5194/tc-17-15-2023, https://doi.org/10.5194/tc-17-15-2023, 2023
Short summary
Short summary
Iceberg detection is spatially and temporally limited around the Greenland Ice Sheet. This study presents a new, accessible workflow to automatically detect icebergs from timestamped ArcticDEM strip data. The workflow successfully produces comparable output to manual digitisation, with results revealing new iceberg area-to-volume conversion equations that can be widely applied to datasets where only iceberg outlines can be extracted (e.g. optical and SAR imagery).
Xinde Chu, Xiaojun Yao, Hongyu Duan, Cong Chen, Jing Li, and Wenlong Pang
The Cryosphere, 16, 4273–4289, https://doi.org/10.5194/tc-16-4273-2022, https://doi.org/10.5194/tc-16-4273-2022, 2022
Short summary
Short summary
The available remote-sensing data are increasingly abundant, and the efficient and rapid acquisition of glacier boundaries based on these data is currently a frontier issue in glacier research. In this study, we designed a complete solution to automatically extract glacier outlines from the high-resolution images. Compared with other methods, our method achieves the best performance for glacier boundary extraction in parts of the Tanggula Mountains, Kunlun Mountains and Qilian Mountains.
Flavien Beaud, Saif Aati, Ian Delaney, Surendra Adhikari, and Jean-Philippe Avouac
The Cryosphere, 16, 3123–3148, https://doi.org/10.5194/tc-16-3123-2022, https://doi.org/10.5194/tc-16-3123-2022, 2022
Short summary
Short summary
Understanding sliding at the bed of glaciers is essential to understand the future of sea-level rise and glacier-related hazards. Yet there is currently no universal law to describe this mechanism. We propose a universal glacier sliding law and a method to qualitatively constrain it. We use satellite remote sensing to create velocity maps over 6 years at Shisper Glacier, Pakistan, including its recent surge, and show that the observations corroborate the generalized theory.
Ingalise Kindstedt, Kristin M. Schild, Dominic Winski, Karl Kreutz, Luke Copland, Seth Campbell, and Erin McConnell
The Cryosphere, 16, 3051–3070, https://doi.org/10.5194/tc-16-3051-2022, https://doi.org/10.5194/tc-16-3051-2022, 2022
Short summary
Short summary
We show that neither the large spatial footprint of the MODIS sensor nor poorly constrained snow emissivity values explain the observed cold offset in MODIS land surface temperatures (LSTs) in the St. Elias. Instead, the offset is most prominent under conditions associated with near-surface temperature inversions. This work represents an advance in the application of MODIS LSTs to glaciated alpine regions, where we often depend solely on remote sensing products for temperature information.
Frank Paul, Livia Piermattei, Désirée Treichler, Lin Gilbert, Luc Girod, Andreas Kääb, Ludivine Libert, Thomas Nagler, Tazio Strozzi, and Jan Wuite
The Cryosphere, 16, 2505–2526, https://doi.org/10.5194/tc-16-2505-2022, https://doi.org/10.5194/tc-16-2505-2022, 2022
Short summary
Short summary
Glacier surges are widespread in the Karakoram and have been intensely studied using satellite data and DEMs. We use time series of such datasets to study three glacier surges in the same region of the Karakoram. We found strongly contrasting advance rates and flow velocities, maximum velocities of 30 m d−1, and a change in the surge mechanism during a surge. A sensor comparison revealed good agreement, but steep terrain and the two smaller glaciers caused limitations for some of them.
Bas Altena, Andreas Kääb, and Bert Wouters
The Cryosphere, 16, 2285–2300, https://doi.org/10.5194/tc-16-2285-2022, https://doi.org/10.5194/tc-16-2285-2022, 2022
Short summary
Short summary
Repeat overflights of satellites are used to estimate surface displacements. However, such products lack a simple error description for individual measurements, but variation in precision occurs, since the calculation is based on the similarity of texture. Fortunately, variation in precision manifests itself in the correlation peak, which is used for the displacement calculation. This spread is used to make a connection to measurement precision, which can be of great use for model inversion.
Benjamin Aubrey Robson, Shelley MacDonell, Álvaro Ayala, Tobias Bolch, Pål Ringkjøb Nielsen, and Sebastián Vivero
The Cryosphere, 16, 647–665, https://doi.org/10.5194/tc-16-647-2022, https://doi.org/10.5194/tc-16-647-2022, 2022
Short summary
Short summary
This work uses satellite and aerial data to study glaciers and rock glacier changes in La Laguna catchment within the semi-arid Andes of Chile, where ice melt is an important factor in river flow. The results show the rate of ice loss of Tapado Glacier has been increasing since the 1950s, which possibly relates to a dryer, warmer climate over the previous decades. Several rock glaciers show high surface velocities and elevation changes between 2012 and 2020, indicating they may be ice-rich.
Christian Sommer, Thorsten Seehaus, Andrey Glazovsky, and Matthias H. Braun
The Cryosphere, 16, 35–42, https://doi.org/10.5194/tc-16-35-2022, https://doi.org/10.5194/tc-16-35-2022, 2022
Short summary
Short summary
Arctic glaciers have been subject to extensive warming due to global climate change, yet their contribution to sea level rise has been relatively small in the past. In this study we provide mass changes of most glaciers of the Russian High Arctic (Franz Josef Land, Severnaya Zemlya, Novaya Zemlya). We use TanDEM-X satellite measurements to derive glacier surface elevation changes. Our results show an increase in glacier mass loss and a sea level rise contribution of 0.06 mm/a (2010–2017).
Jan Bouke Pronk, Tobias Bolch, Owen King, Bert Wouters, and Douglas I. Benn
The Cryosphere, 15, 5577–5599, https://doi.org/10.5194/tc-15-5577-2021, https://doi.org/10.5194/tc-15-5577-2021, 2021
Short summary
Short summary
About 10 % of Himalayan glaciers flow directly into lakes. This study finds, using satellite imagery, that such glaciers show higher flow velocities than glaciers without ice–lake contact. In particular near the glacier tongue the impact of a lake on the glacier flow can be dramatic. The development of current and new meltwater bodies will influence the flow of an increasing number of Himalayan glaciers in the future, a scenario not currently considered in regional ice loss projections.
Armin Dachauer, Richard Hann, and Andrew J. Hodson
The Cryosphere, 15, 5513–5528, https://doi.org/10.5194/tc-15-5513-2021, https://doi.org/10.5194/tc-15-5513-2021, 2021
Short summary
Short summary
This study investigated the aerodynamic roughness length (z0) – an important parameter to determine the surface roughness – of crevassed tidewater glaciers on Svalbard using drone data. The results point out that the range of z0 values across a crevassed glacier is large but in general significantly higher compared to non-crevassed glacier surfaces. The UAV approach proved to be an ideal tool to provide distributed z0 estimates of crevassed glaciers which can be used to model turbulent fluxes.
Melanie Marochov, Chris R. Stokes, and Patrice E. Carbonneau
The Cryosphere, 15, 5041–5059, https://doi.org/10.5194/tc-15-5041-2021, https://doi.org/10.5194/tc-15-5041-2021, 2021
Short summary
Short summary
Research into the use of deep learning for pixel-level classification of landscapes containing marine-terminating glaciers is lacking. We adapt a novel and transferable deep learning workflow to classify satellite imagery containing marine-terminating outlet glaciers in Greenland. Our workflow achieves high accuracy and mimics human visual performance, potentially providing a useful tool to monitor glacier change and further understand the impacts of climate change in complex glacial settings.
Paul Willem Leclercq, Andreas Kääb, and Bas Altena
The Cryosphere, 15, 4901–4907, https://doi.org/10.5194/tc-15-4901-2021, https://doi.org/10.5194/tc-15-4901-2021, 2021
Short summary
Short summary
In this study we present a novel method to detect glacier surge activity. Surges are relevant as they disturb the link between glacier change and climate, and studying surges can also increase understanding of glacier flow. We use variations in Sentinel-1 radar backscatter strength, calculated with the use of Google Earth Engine, to detect surge activity. In our case study for the year 2018–2019 we find 69 cases of surging glaciers globally. Many of these were not previously known to be surging.
George Brencher, Alexander L. Handwerger, and Jeffrey S. Munroe
The Cryosphere, 15, 4823–4844, https://doi.org/10.5194/tc-15-4823-2021, https://doi.org/10.5194/tc-15-4823-2021, 2021
Short summary
Short summary
We use satellite InSAR to inventory and monitor rock glaciers, frozen bodies of ice and rock debris that are an important water resource in the Uinta Mountains, Utah, USA. Our inventory contains 205 rock glaciers, which occur within a narrow elevation band and deform at 1.94 cm yr-1 on average. Uinta rock glacier movement changes seasonally and appears to be driven by spring snowmelt. The role of rock glaciers as a perennial water resource is threatened by ice loss due to climate change.
Adina E. Racoviteanu, Lindsey Nicholson, and Neil F. Glasser
The Cryosphere, 15, 4557–4588, https://doi.org/10.5194/tc-15-4557-2021, https://doi.org/10.5194/tc-15-4557-2021, 2021
Short summary
Short summary
Supraglacial debris cover comprises ponds, exposed ice cliffs, debris material and vegetation. Understanding these features is important for glacier hydrology and related hazards. We use linear spectral unmixing of satellite data to assess the composition of map supraglacial debris across the Himalaya range in 2015. One of the highlights of this study is the automated mapping of supraglacial ponds, which complements and expands the existing supraglacial debris and lake databases.
Corey Scher, Nicholas C. Steiner, and Kyle C. McDonald
The Cryosphere, 15, 4465–4482, https://doi.org/10.5194/tc-15-4465-2021, https://doi.org/10.5194/tc-15-4465-2021, 2021
Short summary
Short summary
Time series synthetic aperture radar enables detection of seasonal reach-scale glacier surface melting across continents, a key component of surface energy balance for mountain glaciers. We observe melting across all areas of the Hindu Kush Himalaya (HKH) cryosphere. Surface melting for the HKH lasts for close to 5 months per year on average and for just below 2 months at elevations exceeding 7000 m a.s.l. Further, there are indications that melting is more than superficial at high elevations.
Lander Van Tricht, Philippe Huybrechts, Jonas Van Breedam, Alexander Vanhulle, Kristof Van Oost, and Harry Zekollari
The Cryosphere, 15, 4445–4464, https://doi.org/10.5194/tc-15-4445-2021, https://doi.org/10.5194/tc-15-4445-2021, 2021
Short summary
Short summary
We conducted innovative research on the use of drones to determine the surface mass balance (SMB) of two glaciers. Considering appropriate spatial scales, we succeeded in determining the SMB in the ablation area with large accuracy. Consequently, we are convinced that our method and the use of drones to monitor the mass balance of a glacier’s ablation area can be an add-on to stake measurements in order to obtain a broader picture of the heterogeneity of the SMB of glaciers.
Yuting Dong, Ji Zhao, Dana Floricioiu, Lukas Krieger, Thomas Fritz, and Michael Eineder
The Cryosphere, 15, 4421–4443, https://doi.org/10.5194/tc-15-4421-2021, https://doi.org/10.5194/tc-15-4421-2021, 2021
Short summary
Short summary
We generated a consistent, gapless and high-resolution (12 m) topography product of the Antarctic Peninsula by combining the complementary advantages of the two most recent high-resolution digital elevation model (DEM) products: the TanDEM-X DEM and the Reference Elevation Model of Antarctica. The generated DEM maintains the characteristics of the TanDEM-X DEM, has a better quality due to the correction of the residual height errors in the non-edited TanDEM-X DEM and will be freely available.
Sergey Samsonov, Kristy Tiampo, and Ryan Cassotto
The Cryosphere, 15, 4221–4239, https://doi.org/10.5194/tc-15-4221-2021, https://doi.org/10.5194/tc-15-4221-2021, 2021
Short summary
Short summary
The direction and intensity of glacier surface flow adjust in response to a warming climate, causing sea level rise, seasonal flooding and droughts, and changing landscapes and habitats. We developed a technique that measures the evolution of surface flow for a glaciated region in three dimensions with high temporal and spatial resolution and used it to map the temporal evolution of glaciers in southeastern Alaska (Agassiz, Seward, Malaspina, Klutlan, Walsh, and Kluane) during 2016–2021.
Anne Braakmann-Folgmann, Andrew Shepherd, and Andy Ridout
The Cryosphere, 15, 3861–3876, https://doi.org/10.5194/tc-15-3861-2021, https://doi.org/10.5194/tc-15-3861-2021, 2021
Short summary
Short summary
We investigate the disintegration of the B30 iceberg using satellite remote sensing and find that the iceberg lost 378 km3 of ice in 6.5 years, corresponding to 80 % of its initial volume. About two thirds are due to fragmentation at the sides, and one third is due to melting at the iceberg’s base. The release of fresh water and nutrients impacts ocean circulation, sea ice formation, and biological production. We show that adding a snow layer is important when deriving iceberg thickness.
Joschka Geissler, Christoph Mayer, Juilson Jubanski, Ulrich Münzer, and Florian Siegert
The Cryosphere, 15, 3699–3717, https://doi.org/10.5194/tc-15-3699-2021, https://doi.org/10.5194/tc-15-3699-2021, 2021
Short summary
Short summary
The study demonstrates the potential of photogrammetry for analyzing glacier retreat with high spatial resolution. Twenty-three glaciers within the Ötztal Alps are analyzed. We compare photogrammetric and glaciologic mass balances of the Vernagtferner by using the ELA for our density assumption and an UAV survey for a temporal correction of the geodetic mass balances. The results reveal regions of anomalous mass balance and allow estimates of the imbalance between mass balances and ice dynamics.
Lukas Müller, Martin Horwath, Mirko Scheinert, Christoph Mayer, Benjamin Ebermann, Dana Floricioiu, Lukas Krieger, Ralf Rosenau, and Saurabh Vijay
The Cryosphere, 15, 3355–3375, https://doi.org/10.5194/tc-15-3355-2021, https://doi.org/10.5194/tc-15-3355-2021, 2021
Short summary
Short summary
Harald Moltke Bræ, a marine-terminating glacier in north-western Greenland, undergoes remarkable surges of episodic character. Our data show that a recent surge from 2013 to 2019 was initiated at the glacier front and exhibits a pronounced seasonality with flow velocities varying by 1 order of magnitude, which has not been observed at Harald Moltke Bræ in this way before. These findings are crucial for understanding surge mechanisms at Harald Moltke Bræ and other marine-terminating glaciers.
Joseph A. MacGregor, Michael Studinger, Emily Arnold, Carlton J. Leuschen, Fernando Rodríguez-Morales, and John D. Paden
The Cryosphere, 15, 2569–2574, https://doi.org/10.5194/tc-15-2569-2021, https://doi.org/10.5194/tc-15-2569-2021, 2021
Short summary
Short summary
We combine multiple recent global glacier datasets and extend one of them (GlaThiDa) to evaluate past performance of radar-sounding surveys of the thickness of Earth's temperate glaciers. An empirical envelope for radar performance as a function of center frequency is determined, its limitations are discussed and its relevance to future radar-sounder survey and system designs is considered.
Maximillian Van Wyk de Vries and Andrew D. Wickert
The Cryosphere, 15, 2115–2132, https://doi.org/10.5194/tc-15-2115-2021, https://doi.org/10.5194/tc-15-2115-2021, 2021
Short summary
Short summary
We can measure glacier flow and sliding velocity by tracking patterns on the ice surface in satellite images. The surface velocity of glaciers provides important information to support assessments of glacier response to climate change, to improve regional assessments of ice thickness, and to assist with glacier fieldwork. Our paper describes Glacier Image Velocimetry (GIV), a new, easy-to-use, and open-source toolbox for calculating high-resolution velocity time series for any glacier on earth.
Daniel Cheng, Wayne Hayes, Eric Larour, Yara Mohajerani, Michael Wood, Isabella Velicogna, and Eric Rignot
The Cryosphere, 15, 1663–1675, https://doi.org/10.5194/tc-15-1663-2021, https://doi.org/10.5194/tc-15-1663-2021, 2021
Short summary
Short summary
Tracking changes in Greenland's glaciers is important for understanding Earth's climate, but it is time consuming to do so by hand. We train a program, called CALFIN, to automatically track these changes with human levels of accuracy. CALFIN is a special type of program called a neural network. This method can be applied to other glaciers and eventually other tracking tasks. This will enhance our understanding of the Greenland Ice Sheet and permit better models of Earth's climate.
Andri Gunnarsson, Sigurdur M. Gardarsson, Finnur Pálsson, Tómas Jóhannesson, and Óli G. B. Sveinsson
The Cryosphere, 15, 547–570, https://doi.org/10.5194/tc-15-547-2021, https://doi.org/10.5194/tc-15-547-2021, 2021
Short summary
Short summary
Surface albedo quantifies the fraction of the sunlight reflected by the surface of the Earth. During the melt season in the Northern Hemisphere solar energy absorbed by snow- and ice-covered surfaces is mainly controlled by surface albedo. For Icelandic glaciers, air temperature and surface albedo are the dominating factors governing annual variability of glacier surface melt. Satellite data from the MODIS sensor are used to create a data set spanning the glacier melt season.
Bryan Riel, Brent Minchew, and Ian Joughin
The Cryosphere, 15, 407–429, https://doi.org/10.5194/tc-15-407-2021, https://doi.org/10.5194/tc-15-407-2021, 2021
Short summary
Short summary
The availability of large volumes of publicly available remote sensing data over terrestrial glaciers provides new opportunities for studying the response of glaciers to a changing climate. We present an efficient method for tracking changes in glacier speeds at high spatial and temporal resolutions from surface observations, demonstrating the recovery of traveling waves over Jakobshavn Isbræ, Greenland. Quantification of wave properties may ultimately enhance understanding of glacier dynamics.
Chad A. Greene, Alex S. Gardner, and Lauren C. Andrews
The Cryosphere, 14, 4365–4378, https://doi.org/10.5194/tc-14-4365-2020, https://doi.org/10.5194/tc-14-4365-2020, 2020
Short summary
Short summary
Seasonal variability is a fundamental characteristic of any Earth surface system, but we do not fully understand which of the world's glaciers speed up and slow down on an annual cycle. Such short-timescale accelerations may offer clues about how individual glaciers will respond to longer-term changes in climate, but understanding any behavior requires an ability to observe it. We describe how to use satellite image feature tracking to determine the magnitude and timing of seasonal ice dynamics.
Ellyn M. Enderlin and Timothy C. Bartholomaus
The Cryosphere, 14, 4121–4133, https://doi.org/10.5194/tc-14-4121-2020, https://doi.org/10.5194/tc-14-4121-2020, 2020
Short summary
Short summary
Accurate predictions of future changes in glacier flow require the realistic simulation of glacier terminus position change in numerical models. We use crevasse observations for 19 Greenland glaciers to explore whether the two commonly used crevasse depth models match observations. The models cannot reproduce spatial patterns, and we largely attribute discrepancies between modeled and observed depths to the models' inability to account for advection.
Angus J. Dowson, Pascal Sirguey, and Nicolas J. Cullen
The Cryosphere, 14, 3425–3448, https://doi.org/10.5194/tc-14-3425-2020, https://doi.org/10.5194/tc-14-3425-2020, 2020
Short summary
Short summary
Satellite observations over 19 years are used to characterise the spatial and temporal variability of surface albedo across the gardens of Eden and Allah, two of New Zealand’s largest ice fields. The variability in response of individual glaciers reveals the role of topographic setting and suggests that glaciers in the Southern Alps do not behave as a single climatic unit. There is evidence that the timing of the minimum surface albedo has shifted to later in the summer on 10 of the 12 glaciers.
Anna Bergstrom, Michael N. Gooseff, Madeline Myers, Peter T. Doran, and Julian M. Cross
The Cryosphere, 14, 769–788, https://doi.org/10.5194/tc-14-769-2020, https://doi.org/10.5194/tc-14-769-2020, 2020
Short summary
Short summary
This study sought to understand patterns of reflectance of visible light across the landscape of the McMurdo Dry Valleys, Antarctica. We used a helicopter-based platform to measure reflectance along an entire valley with a particular focus on the glaciers, as reflectance strongly controls glacier melt and available water to the downstream ecosystem. We found that patterns are controlled by gradients in snowfall, wind redistribution, and landscape structure, which can trap snow and sediment.
Désirée Treichler, Andreas Kääb, Nadine Salzmann, and Chong-Yu Xu
The Cryosphere, 13, 2977–3005, https://doi.org/10.5194/tc-13-2977-2019, https://doi.org/10.5194/tc-13-2977-2019, 2019
Short summary
Short summary
Glacier growth such as that found on the Tibetan Plateau (TP) is counterintuitive in a warming world. Climate models and meteorological data are conflicting about the reasons for this glacier anomaly. We quantify the glacier changes in High Mountain Asia using satellite laser altimetry as well as the growth of over 1300 inland lakes on the TP. Our study suggests that increased summer precipitation is likely the largest contributor to the recently observed increases in glacier and lake masses.
Christoph Rohner, David Small, Jan Beutel, Daniel Henke, Martin P. Lüthi, and Andreas Vieli
The Cryosphere, 13, 2953–2975, https://doi.org/10.5194/tc-13-2953-2019, https://doi.org/10.5194/tc-13-2953-2019, 2019
Short summary
Short summary
The recent increase in ice flow and calving rates of ocean–terminating glaciers contributes substantially to the mass loss of the Greenland Ice Sheet. Using in situ reference observations, we validate the satellite–based method of iterative offset tracking of Sentinel–1A data for deriving flow speeds. Our investigations highlight the importance of spatial resolution near the fast–flowing calving front, resulting in significantly higher ice velocities compared to large–scale operational products.
Jozef Šupinský, Ján Kaňuk, Zdenko Hochmuth, and Michal Gallay
The Cryosphere, 13, 2835–2851, https://doi.org/10.5194/tc-13-2835-2019, https://doi.org/10.5194/tc-13-2835-2019, 2019
Short summary
Short summary
Cave ice formations can be considered an indicator of long-term changes in the landscape. Using terrestrial laser scanning we generated a time series database of a 3-D cave model. We present a novel approach toward registration of scan missions into a unified coordinate system and methodology for detection of cave floor ice changes. We demonstrate the results of the ice dynamics monitoring correlated with meteorological observations in the Silická ľadnica cave situated in the Slovak Karst.
Thorsten Seehaus, Philipp Malz, Christian Sommer, Stefan Lippl, Alejo Cochachin, and Matthias Braun
The Cryosphere, 13, 2537–2556, https://doi.org/10.5194/tc-13-2537-2019, https://doi.org/10.5194/tc-13-2537-2019, 2019
Short summary
Short summary
The glaciers in Peru are strongly affected by climate change and have shown significant ice loss in the last century. We present the first multi-temporal, countrywide quantification of glacier area and ice mass changes. A glacier area loss of −548.5 ± 65.7 km2 (−29 %) and ice mass loss of −7.62 ± 1.05 Gt is obtained for the period 2000–2016. The ice loss rate increased towards the end of the observation period. The glacier changes revealed can be attributed to regional climatic changes and ENSO.
Cited articles
Andersen, J. K., Fausto, R. S., Hansen, K., Box, J. E., Andersen, S. B.,
Ahlstrom, A., As, D. v., Citterio, M., Colgan, W., Karlsson, N. B.,
Kjellerup, K. K., Korsgaard, N. J., Larsen, S. H., Mankoff, K. D., Pedersen,
A., Shields, C. L., Solgaard, A. M., and Vandecrux, B.: Update of annual
calving front lines for 47 marine terminating outlet glaciers in Greenland
(1999–2018), Geol. Surv. Denmark Greenland Bull., 43, 1–6, https://doi.org/10.34194/geusb-201943-02-02, 2019. a
Aschwanden, A., Fahnestock, M. A., Truffer, M., Brinkerhoff, D. J., Hock, R.,
Khroulev, C., Mottram, R. H., and Khan, S. A.: Contribution of the Greenland
Ice Sheet to sea level over the next millennium, Sci. Adv., 5, 6,
https://doi.org/10.1126/sciadv.aav9396, 2019. a, b
Baumhoer, C. A., Dietz, A. J., Kneisel, C., and Kuenzer, C.: Automated
Extraction of Antarctic Glacier and Ice Shelf Fronts from Sentinel-1 Imagery
Using Deep Learning, Remote Sens., 11, 2529–22,
https://doi.org/10.3390/rs11212529, 2019. a
Bevan, S. L., Luckman, A. J., and Murray, T.: Glacier dynamics over the last quarter of a century at Helheim, Kangerdlugssuaq and 14 other major Greenland outlet glaciers, The Cryosphere, 6, 923–937, https://doi.org/10.5194/tc-6-923-2012, 2012. a
Bevan, S. L., Luckman, A. J., Benn, D. I., Cowton, T., and Todd, J.: Impact of warming shelf waters on ice mélange and terminus retreat at a large SE Greenland glacier, The Cryosphere, 13, 2303–2315, https://doi.org/10.5194/tc-13-2303-2019, 2019. a, b
Bjørk, A. A., Kjær, K. H., Korsgaard, N. J., Khan, S. A., Kjellerup, K. K.,
Andresen, C. S., Box, J. E., Larsen, N. K., and Funder, S.: An aerial view
of 80 years of climate-related glacier fluctuations in southeast Greenland,
Nat. Geosci., 5, 427–432, https://doi.org/10.1038/ngeo1481, 2012. a
Bjørk, A. A., Kruse, L. M., and Michaelsen, P. B.: Brief communication: Getting Greenland's glaciers right – a new data set of all official Greenlandic glacier names, The Cryosphere, 9, 2215–2218, https://doi.org/10.5194/tc-9-2215-2015, 2015. a
Black, T. E. and Joughin, I.: Multi-decadal retreat of marine-terminating outlet glaciers in northwest and central-west Greenland, The Cryosphere, 16, 807–824, https://doi.org/10.5194/tc-16-807-2022, 2022. a, b
Brough, S., Carr, J. R., Ross, N., and Lea, J. M.: Exceptional Retreat of
Kangerlussuaq Glacier, East Greenland, Between 2016 and 2018, Front.
Earth Sci., 7, 123, https://doi.org/10.3389/feart.2019.00123, 2019. a, b
Bunce, C., Carr, J. R., Nienow, P. W., Ross, N., and Killick, R.: Ice front
change of marine-terminating outlet glaciers in northwest and southeast
Greenland during the 21st century, J. Glaciol., 64, 523–535,
https://doi.org/10.1017/jog.2018.44, 2018. a, b, c
Carr, J. R., Vieli, A., and Stokes, C. R.: Influence of sea ice decline,
atmospheric warming, and glacier width on marine-terminating outlet glacier
behavior in northwest Greenland at seasonal to interannual timescales,
J. Geophys. Res.-Earth, 118, 1210–1226,
https://doi.org/10.1002/jgrf.20088, 2013. a
Carr, J. R., Stokes, C. R., and Vieli, A.: Recent retreat of major outlet
glaciers on Novaya Zemlya, Russian Arctic, influenced by fjord geometry and
sea-ice conditions, J. Glaciol., 60, 155–170,
https://doi.org/10.3189/2014jog13j122, 2014. a
Carr, J. R., Vieli, A., Stokes, C. R., Jamieson, S. S. R., Palmer, S. J.,
Christoffersen, P., Dowdeswell, J. A., Nick, F. M., Blankenship, D. D., and
Young, D. A.: Basal topographic controls on rapid retreat of Humboldt
Glacier, northern Greenland, J. Glaciol., 61, 137–150,
https://doi.org/10.3189/2015jog14j128, 2015. a
Carr, J. R., Stokes, C. R., and Vieli, A.: Threefold increase in
marine-terminating outlet glacier retreat rates across the Atlantic Arctic:
1992–2010, Ann. Glaciol., 58, 72–91, https://doi.org/10.1017/aog.2017.3,
2017. a, b, c, d
Cassotto, R., Fahnestock, M. A., Amundson, J. M., Truffer, M., and Joughin,
I. R.: Seasonal and interannual variations in ice melange and its impact on
terminus stability, Jakobshavn Isbræ, Greenland, J. Glaciol., 61,
76–88, https://doi.org/10.3189/2015jog13j235, 2015. a
Catania, G. A., Stearns, L. A., Sutherland, D. A., Fried, M. J., Bartholomaus,
T. C., Morlighem, M., Shroyer, E. L., and Nash, J. D.: Geometric Controls on
Tidewater Glacier Retreat in Central Western Greenland, J.
Geophys. Res.-Earth, 123, 2024–2038,
https://doi.org/10.1029/2017jf004499, 2018. a, b, c, d, e, f, g, h, i
Chauché, N., Hubbard, A., Gascard, J.-C., Box, J. E., Bates, R., Koppes, M., Sole, A., Christoffersen, P., and Patton, H.: Ice–ocean interaction and calving front morphology at two west Greenland tidewater outlet glaciers, The Cryosphere, 8, 1457–1468, https://doi.org/10.5194/tc-8-1457-2014, 2014. a, b, c, d
Cheng, D., Hayes, W., Larour, E., Mohajerani, Y., Wood, M., Velicogna, I., and Rignot, E.: Calving Front Machine (CALFIN): glacial termini dataset and automated deep learning extraction method for Greenland, 1972–2019, The Cryosphere, 15, 1663–1675, https://doi.org/10.5194/tc-15-1663-2021, 2021. a, b, c, d, e, f, g, h, i
Cook, A. J., Fox, A. J., Vaughan, D. G., and Ferrigno, J. G.: Retreating
Glacier Fronts on the Antarctic Peninsula over the Past Half-Century,
Science, 308, 541–544, 2005. a
Cowton, T. R., Sole, A. J., Nienow, P. W., Slater, D. A., and Christoffersen,
P.: Linear response of east Greenland’s tidewater glaciers to
ocean/atmosphere warming, P. Natl. Acad. Sci. USA,
115, 7907–7912, https://doi.org/10.1073/pnas.1801769115, 2018. a, b
Enderlin, E. M., Howat, I. M., Jeong, S., Noh, M.-J., van Angelen, J. H.., and
van de Broeke, M. R.: An improved mass budget for the Greenland ice sheet,
Geophys. Res. Lett., 41, 866–872, https://doi.org/10.1002/2013gl059010,
2014. a, b
Felikson, D., Bartholomaus, T. C., Catania, G. A., Korsgaard, N. J., Kjær,
K. H., Morlighem, M., Noël, B. P. Y., van de Broeke, M. R., Stearns, L. A.,
Shroyer, E. L., Sutherland, D. A., and Nash, J. D.: Inland thinning on the
Greenland ice sheet controlled by outlet glacier geometry, Nat.
Geosci., 10, 366–369, https://doi.org/10.1038/ngeo2934, 2017. a
Fried, M. J., Catania, G. A., Stearns, L. A., Sutherland, D. A., Bartholomaus,
T. C., Shroyer, E., and Nash, J.: Reconciling Drivers of Seasonal Terminus
Advance and Retreat at 13 Central West Greenland Tidewater Glaciers, J. Geophys. Res.-Earth, 123,
1590–1607, https://doi.org/10.1029/2018JF004628, 2018. a
Fried, M. J., Catania, G. A., Bartholomaus, T. C., Duncan, D., Davis, M.,
Stearns, L. A., Nash, J. D., Shroyer, E. L., and Sutherland, D. A.:
Distributed subglacial discharge drives significant submarine melt at a
Greenland tidewater glacier, Geophys. Res. Lett., 42, 9328–9336,
https://doi.org/10.1002/2015gl065806, 2015. a
Fried, M. J., Catania, G. A., Stearns, L. A., Sutherland, D. A., Bartholomaus,
T. C., Shroyer, E. L., and Nash, J. D.: Reconciling Drivers of Seasonal
Terminus Advance and Retreat at 13 Central West Greenland Tidewater
Glaciers, J. Geophys. Res.-Earth, 115, 1590–1607,
https://doi.org/10.1029/2018jf004628, 2018. a, b, c, d, e, f, g
Goelzer, H., Nowicki, S., Payne, A., Larour, E., Seroussi, H., Lipscomb, W. H., Gregory, J., Abe-Ouchi, A., Shepherd, A., Simon, E., Agosta, C., Alexander, P., Aschwanden, A., Barthel, A., Calov, R., Chambers, C., Choi, Y., Cuzzone, J., Dumas, C., Edwards, T., Felikson, D., Fettweis, X., Golledge, N. R., Greve, R., Humbert, A., Huybrechts, P., Le clec'h, S., Lee, V., Leguy, G., Little, C., Lowry, D. P., Morlighem, M., Nias, I., Quiquet, A., Rückamp, M., Schlegel, N.-J., Slater, D. A., Smith, R. S., Straneo, F., Tarasov, L., van de Wal, R., and van den Broeke, M.: The future sea-level contribution of the Greenland ice sheet: a multi-model ensemble study of ISMIP6, The Cryosphere, 14, 3071–3096, https://doi.org/10.5194/tc-14-3071-2020, 2020. a
Goliber, S.: sgoliber/TermPicks: (v1.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.6954113, 2022. a
Goliber, S. and Black, T.: TermPicks: A century of Greenland glacier terminus data for use inmachine learning applications (Version 1), Zenodo [data set], https://doi.org/10.5281/zenodo.6557981, 2021. a
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore,
R.: Google Earth Engine: Planetary-scale geospatial analysis for everyone,
Remote Sens. Environ., 202, 18–27,
https://doi.org/10.1016/j.rse.2017.06.031, 2017. a
Higgins, A.: North Greenland Glacier Velocities and Calf Ice Production,
Polarforschung, 1, 1–23, 1990. a
Hill, E., Carr, J. R., and Stokes, C. R.: A Review of Recent Changes in Major
Marine-Terminating Outlet Glaciers in Northern Greenland, Front. Earth
Scie., 4, 111, https://doi.org/10.3389/feart.2016.00111, 2017. a
Hill, E. A., Carr, J. R., Stokes, C. R., and Gudmundsson, G. H.: Dynamic changes in outlet glaciers in northern Greenland from 1948 to 2015, The Cryosphere, 12, 3243–3263, https://doi.org/10.5194/tc-12-3243-2018, 2018. a, b
Howat, I. M.: MEaSUREs Greenland Ice Mapping
Project (GIMP) 2000 Image Mosaic, Version 1, NASA National Snow and Ice
Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/4RNTRRE4JCYD,
2018. a, b
Howat, I. M., Joughin, I. R., Fahnestock, M. A., Smith, B. E., and Scambos,
T. A.: Synchronous retreat and acceleration of southeast Greenland outlet
glaciers 2000–06: Ice dynamics and coupling to climate, J.
Glaciol., 54, 646–660, 2008. a
Howat, I. M., Box, J. E., Ahn, Y., Herrington, A., and McFadden, E. M.:
Seasonal variability in the dynamics of marine-terminating outlet glaciers
in Greenland, J. Glaciol., 56, 601–613, 2010. a
Howat, I. M., Negrete, A., and Smith, B. E.: The Greenland Ice Mapping Project (GIMP) land classification and surface elevation data sets, The Cryosphere, 8, 1509–1518, https://doi.org/10.5194/tc-8-1509-2014, 2014. a, b, c
Huttenlocher, D., Klanderman, G., and Rucklidge, W.: Comparing images using
the Hausdorff Distance, IEEE T. Pattern Anal., 15, 850–863, 1993. a
Jackson, R. H., Shroyer, E. L., Nash, J. D., Sutherland, D. A., Carroll, D.,
Fried, M. J., Catania, G. A., Bartholomaus, T. C., and Stearns, L. A.:
Near‐glacier surveying of a subglacial discharge plume: Implications for
plume parameterizations, Geophys. Res. Lett., 44, 6886–6894,
https://doi.org/10.1002/2017gl073602, 2017. a
James, T. D., Murray, T., Selmes, N., Scharrer, K., and O’Leary, M.: Buoyant
flexure and basal crevassing in dynamic mass loss at Helheim Glacier, Nat. Geosci., 7,
593–596, https://doi.org/10.1038/ngeo2204, 2014. a
Kehrl, L. M., Joughin, I. R., Shean, D. E., Floricioiu, D., and Krieger, L.:
Seasonal and interannual variabilities in terminus position, glacier
velocity, and surface elevation at Helheim and Kangerlussuaq Glaciers from
2008 to 2016, J. Geophys. Res.-Earth, 322, 134418, https://doi.org/10.1002/2016jf004133, 2017. a
King, M. D., Howat, I. M., Candela, S. G., Noh, M. J., Jeong, S., Noël, B.
P. Y., Broeke, M. R. v. d., Wouters, B., and Negrete, A.: Dynamic ice loss
from the Greenland Ice Sheet driven by sustained glacier retreat, Nat.
Commun. Earth Environ., 1, 1, https://doi.org/10.1038/s43247-020-0001-2,
2020. a, b, c, d, e, f
Korsgaard, N.: Greenland Ice Sheet outlet glacier terminus positions 1978–1987
from aero-photogrammetric map data, Tech. rep.,
https://doi.org/10.22008/FK2/B2JYVC, 2021. a
Lea, J. M.: The Google Earth Engine Digitisation Tool (GEEDiT) and the Margin change Quantification Tool (MaQiT) – simple tools for the rapid mapping and quantification of changing Earth surface margins, Earth Surf. Dynam., 6, 551–561, https://doi.org/10.5194/esurf-6-551-2018, 2018. a
Lea, J.: jmlea16/GEEDiT-TermPicks: GEEDiT-TermPicks (v1.01), Zenodo [code], https://doi.org/10.5281/zenodo.6962120, 2022. a
Lea, J. M., Mair, D. W. F., and Rea, B. R.: Evaluation of existing and new
methods of tracking glacier terminus change, J. Glaciol., 60, 323–332, https://doi.org/10.3189/2014jog13j061, 2014. a, b, c
Mankoff, K. D., Colgan, W., Solgaard, A., Karlsson, N. B., Ahlstrøm, A. P., van As, D., Box, J. E., Khan, S. A., Kjeldsen, K. K., Mouginot, J., and Fausto, R. S.: Greenland Ice Sheet solid ice discharge from 1986 through 2017, Earth Syst. Sci. Data, 11, 769–786, https://doi.org/10.5194/essd-11-769-2019, 2019. a
McNabb, R. W. and Hock, R.: Alaska tidewater glacier terminus positions,
1948–2012, J. Geophys. Res.-Earth, 119, 153–167,
https://doi.org/10.1002/2013jf002915, 2014. a
Mohajerani, Y., Wood, M. H., Velicogna, I., and Rignot, E. J.: Detection of
Glacier Calving Margins with Convolutional Neural Networks: A Case Study,
Remote Sens., 11, 7413, https://doi.org/10.3390/rs11010074, 2019. a
Montgomery, D. and Bierman, P.: Key Concepts in Geomorphology, W. H.
Freeman, United States, ISBN 9781319312527, 2019. a
Moon, T., Joughin, I. R., Smith, B. E., van de Broeke, M. R., Berg, W. J. V. D.,
Noël, B. P. Y., and Usher, M.: Distinct patterns of seasonal Greenland
glacier velocity, Geophys. Res. Lett., 41, 7209–7216,
https://doi.org/10.1002/2014gl061836, 2014. a
Moon, T., Joughin, I. R., and Smith, B. E.: Seasonal to multiyear variability
of glacier surface velocity, terminus position, and sea ice/ice mélange in
northwest Greenland, J. Geophys. Res.-Earth, 120,
818–833, https://doi.org/10.1002/2015jf003494, 2015. a, b
Morlighem, M., Williams, C. N., Rignot, E. J., An, L., Arndt, J. E., Bamber,
J. L., Catania, G. A., Chauché, N., Dowdeswell, J. A., Dorschel, B., Fenty,
I. G., Hogan, K. A., Howat, I. M., Hubbard, A. L., Jakobsson, M., Jordan,
T. M., Kjellerup, K. K., Millan, R., Mayer, L. A., Mouginot, J., Noël, B.
P. Y., O'Cofaigh, C., Palmer, S. J., Rysgaard, S., Seroussi, H., Siegert,
M. J., Slabon, P., Straneo, F., Broeke, M. R. v. d., Weinrebe, W., Wood,
M. H., and Zinglersen, K. B.: BedMachine v3: Complete Bed Topography and
Ocean Bathymetry Mapping of Greenland From Multibeam Echo Sounding Combined
With Mass Conservation, Geophys. Res. Lett., 44, 11051–11061,
https://doi.org/10.1002/2017gl074954, 2017a. a
Morlighem, M., Williams, C., Rignot, E., An, L., Arndt, J. E., Bamber, J., Catania, G., Chauché, N., Dowdeswell, J. A., Dorschel, B., Fenty, I., Hogan, K., Howat, I., Hubbard, A., Jakobsson, M., Jordan, T. M., Kjeldsen, K. K., Millan, R., Mayer, L., Mouginot, J., Noël, B., O'Cofaigh, C., Palmer, S. J., Rysgaard, S., Seroussi, H., Siegert, M. J., Slabon, P., Straneo, F., van den Broeke, M. R., Weinrebe, W., Wood, M., and Zinglersen, K.: IceBridge BedMachine Greenland, Version 3, Boulder, Colorado USA, NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/2CIX82HUV88Y, 2017b. a
Mouginot, J., Rignot, E. J., Bjørk, A. A., van de Broeke, M. R., Millan, R.,
Morlighem, M., Noël, B. P. Y., Scheuchl, B., and Wood, M. H.: Forty-six
years of Greenland Ice Sheet mass balance from 1972 to 2018, P.
Natl. Acad. Sci. USA, 116, 9239–9244, https://doi.org/10.7280/d1mm37,
2019. a, b, c
Murray, T., Scharrer, K., Selmes, N., Booth, A. D., James, T. D., Bevan, S. L.,
Bradley, J. A., Cook, S., Llana, L. C., Drocourt, Y., Dyke, L. M., Goldsack,
A., Hughes, A. L. C., Luckman, A. J., and McGovern, J.: Extensive Retreat of
Greenland Tidewater Glaciers, 2000–2010, Arct. Antarct. Alp.
Res., 47, 427–447, https://doi.org/10.1657/aaar0014-049, 2015a. a, b, c, d, e
Murray, T., Selmes, N., James, T. D., Edwards, S., Martin, I., O'Farrell, T.,
Aspey, R., Rutt, I. C., Nettles, M., and Bauge, T.: Dynamics of glacier
calving at the ungrounded margin of Helheim Glacier, southeast Greenland,
J. Geophys. Res.-Earth, 120, 964–982,
https://doi.org/10.1002/2015jf003531, 2015b. a
Porter, D. F., Tinto, K., Boghosian, A., Csatho, B. M., Bell, R. E., and
Cochran, J. R.: Identifying Spatial Variability in Greenland's Outlet
Glacier Response to Ocean Heat, Front. Earth Sci., 6, 6,
https://doi.org/10.3389/feart.2018.00090, 2018. a
Raup, B., Racoviteanu, A., Khalsa, S. J. S., Helm, C., Armstrong, R., and
Arnaud, Y.: The GLIMS geospatial glacier database: A new tool for studying
glacier change, Global Planet.Change, 56, 101–110,
https://doi.org/10.1016/j.gloplacha.2006.07.018, 2007. a
Rignot, E. J. and Mouginot, J.: Ice flow in Greenland for the International
Polar Year 2008–2009, Geophys. Res. Lett., 39, L11501,
https://doi.org/10.1029/2012gl051634, 2012. a
Rignot, E. J., Velicogna, I., van de Broeke, M. R., Monaghan, A., and Lenaerts,
J. T. M.: Acceleration of the contribution of the Greenland and Antarctic
ice sheets to sea level rise, Geophy. Res. Lett., 38, L05503,
https://doi.org/10.1029/2011gl046583, 2011. a
Ritchie, J. B., Lingle, C. S., Motyka, R. J., and Truffer, M.: Seasonal
fluctuations in the advance of a tidewater glacier and potential causes:
Hubbard Glacier, Alaska, USA, J. Glaciol., 54, 401 – 411, 2008. a
Schild, K. M. and Hamilton, G. S.: Seasonal variations of outlet glacier
terminus position in Greenland, J. Glaciol., 59, 759–770,
https://doi.org/10.3189/2013jog12j238, 2013. a
Schumm, S. A.: Patterns of Alluvial Rivers, Annu. Rev. Earth
Pl. Sc., 13, 5–27, https://doi.org/10.1146/annurev.ea.13.050185.000253,
1985.
a, b
Shepherd, A., Ivins, E. R., A, G., Barletta, V. R., Bentley, M. J., Bettadpur,
S., Briggs, K. H., Bromwich, D. H., Forsberg, R., Galin, N., Horwath, M.,
Jacobs, S., Joughin, I., King, M. A., Lenaerts, J. T. M., Li, J., Ligtenberg,
S. R. M., Luckman, A., Luthcke, S. B., McMillan, M., Meister, R., Milne,
G., Mouginot, J., Muir, A., Nicolas, J. P., Paden, J., Payne, A. J.,
Pritchard, H., Rignot, E., Rott, H., Sørensen, L. S., Scambos, T. A.,
Scheuchl, B., Schrama, E. J. O., Smith, B., Sundal, A. V., Angelen, J. H. v.,
Berg, W. J. v. d., Broeke, M. R. v. d., Vaughan, D. G., Velicogna, I., Wahr,
J., Whitehouse, P. L., Wingham, D. J., Yi, D., Young, D., and Zwally, H. J.:
A Reconciled Estimate of Ice-Sheet Mass Balance, 338, 1183–1189,
https://doi.org/10.1126/science.1228102, 2012. a, b
Slater, D. A., Straneo, F., Felikson, D., Little, C. M., Goelzer, H., Fettweis, X., and Holte, J.: Estimating Greenland tidewater glacier retreat driven by submarine melting, The Cryosphere, 13, 2489–2509, https://doi.org/10.5194/tc-13-2489-2019, 2019. a
Warren, C. R.: Terminal environment, topographic control and fluctuations of
West Greenland glaciers, Boreas, 20, 1–15,
https://doi.org/10.1111/j.1502-3885.1991.tb00453.x, 1991. a
Weidick, A.: Frontal Variations at Upernaviks Isstrom in the Last 100 Years,
Medd. fra Dansk Geol. Forening, 14, 52–60, 1958. a
Wood, M., Rignot, E., Fenty, I., An, L., Bjørk, A., Broeke, M. v. d., Cai, C.,
Kane, E., Menemenlis, D., Millan, R., Morlighem, M., Mouginot, J., Noël, B.,
Scheuchl, B., Velicogna, I., Willis, J. K., and Zhang, H.: Ocean forcing
drives glacier retreat in Greenland, Sci. Adv., 7, eaba7282,
https://doi.org/10.1126/sciadv.aba7282, 2021. a, b, c, d, e
Wulder, M. A., White, J. C., Loveland, T. R., Woodcock, C. E., Belward, A. S.,
Cohen, W. B., Fosnight, E. A., Shaw, J., Masek, J. G., and Roy, D. P.: The
global Landsat archive: Status, consolidation, and direction, Remote Sens. Environ., 185, 271–283, https://doi.org/10.1016/j.rse.2015.11.032, 2016. a
Zhang, E., Liu, L., and Huang, L.: Automatically delineating the calving front of Jakobshavn Isbræ from multitemporal TerraSAR-X images: a deep learning approach, The Cryosphere, 13, 1729–1741, https://doi.org/10.5194/tc-13-1729-2019, 2019. a
Zhang, E., Liu, L., Huang, L., and Ng, K. S.: An automated, generalized,
deep-learning-based method for delineating the calving fronts of Greenland
glaciers from multi-sensor remote sensing imagery, Remote Sens.
Environ., 254, 112265, https://doi.org/10.1016/j.rse.2020.112265, 2021. a
Co-editor-in-chief
Goliber et al. present a rich new dataset for the lengths of 278 glaciers around Greenland. This dataset, "TermPicks", contains 39,060 detailed traces of the edges of these glaciers, where ice meets ocean. TermPicks spans the entire satellite record (1970s-present), with air photo coverage for some glaciers going back >100 years to 1916. TermPicks is designed for use as training data in machine learning applications, which are the future of the tedious "terminus picking" work that has largely been performed by students to date. Thus, TermPicks will facilitate a significant leap forward in Greenland glacier research by facilitating machine-learning-enabled analysis of the continual high-flux, big-data output of high-resolution imagery by our international constellation of earth-observing satellites.
Goliber et al. present a rich new dataset for the lengths of 278 glaciers around Greenland. This...
Short summary
Terminus traces have been used to understand how Greenland's glaciers have changed over time; however, manual digitization is time-intensive, and a lack of coordination leads to duplication of efforts. We have compiled a dataset of over 39 000 terminus traces for 278 glaciers for scientific and machine learning applications. We also provide an overview of an updated version of the Google Earth Engine Digitization Tool (GEEDiT), which has been developed specifically for the Greenland Ice Sheet.
Terminus traces have been used to understand how Greenland's glaciers have changed over time;...