Articles | Volume 15, issue 3
The Cryosphere, 15, 1501–1516, 2021
The Cryosphere, 15, 1501–1516, 2021

Research article 25 Mar 2021

Research article | 25 Mar 2021

The tipping points and early warning indicators for Pine Island Glacier, West Antarctica

Sebastian H. R. Rosier et al.

Related authors

Quantifying the potential future contribution to global mean sea level from the Filchner-Ronne basin, Antarctica
Emily A. Hill, Sebastian H. R. Rosier, G. Hilmar Gudmundsson, and Matthew Collins
The Cryosphere Discuss.,,, 2021
Revised manuscript accepted for TC
Short summary
Exploring mechanisms responsible for tidal modulation in flow of the Filchner–Ronne Ice Shelf
Sebastian H. R. Rosier and G. Hilmar Gudmundsson
The Cryosphere, 14, 17–37,,, 2020
Short summary
Tidal bending of ice shelves as a mechanism for large-scale temporal variations in ice flow
Sebastian H. R. Rosier and G. Hilmar Gudmundsson
The Cryosphere, 12, 1699–1713,,, 2018
Short summary
Strong tidal variations in ice flow observed across the entire Ronne Ice Shelf and adjoining ice streams
Sebastian H. R. Rosier, G. Hilmar Gudmundsson, Matt A. King, Keith W. Nicholls, Keith Makinson, and Hugh F. J. Corr
Earth Syst. Sci. Data, 9, 849–860,,, 2017
Short summary
Temporal variations in the flow of a large Antarctic ice stream controlled by tidally induced changes in the subglacial water system
S. H. R. Rosier, G. H. Gudmundsson, and J. A. M. Green
The Cryosphere, 9, 1649–1661,,, 2015
Short summary

Related subject area

Discipline: Ice sheets | Subject: Numerical Modelling
Marine ice sheet experiments with the Community Ice Sheet Model
Gunter R. Leguy, William H. Lipscomb, and Xylar S. Asay-Davis
The Cryosphere, 15, 3229–3253,,, 2021
Short summary
The transferability of adjoint inversion products between different ice flow models
Jowan M. Barnes, Thiago Dias dos Santos, Daniel Goldberg, G. Hilmar Gudmundsson, Mathieu Morlighem, and Jan De Rydt
The Cryosphere, 15, 1975–2000,,, 2021
Short summary
Inferring the basal sliding coefficient field for the Stokes ice sheet model under rheological uncertainty
Olalekan Babaniyi, Ruanui Nicholson, Umberto Villa, and Noémi Petra
The Cryosphere, 15, 1731–1750,,, 2021
Short summary
Sensitivity of ice sheet surface velocity and elevation to variations in basal friction and topography in the full Stokes and shallow-shelf approximation frameworks using adjoint equations
Gong Cheng, Nina Kirchner, and Per Lötstedt
The Cryosphere, 15, 715–742,,, 2021
Short summary
Quantifying the effect of ocean bed properties on ice sheet geometry over 40 000 years with a full-Stokes model
Clemens Schannwell, Reinhard Drews, Todd A. Ehlers, Olaf Eisen, Christoph Mayer, Mika Malinen, Emma C. Smith, and Hannes Eisermann
The Cryosphere, 14, 3917–3934,,, 2020
Short summary

Cited articles

Anandakrishnan, S. and Alley, R.: Tidal forcing of basal seismicity of ice stream C, West Antarctica, observed far inland, J. Geophys. Res., 102, 15813–15196, 1997. 
Bamber, J. L., Oppenheimer, M.,  Kopp, R. E., Aspinall, W. P., and Cooke, R. M.: Ice sheet contributions to future sea-level rise from structured expert judgment, P. Natl. Acad. Sci. USA, 116, 11195–11200, 2019. 
Brock, W. A. and Carpenter, S. R.: Interacting regime shifts in ecosystems: implication for early warnings, Ecol. Monogr., 80, 353–367, 2010. 
Chisholm, R. A. and Filotas, E.: Critical slowing down as an indicator of transitions in two-species models, J. Theor. Biol., 257, 142–149, 2009. 
Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S., Levermann, A., Merrifield, M. A., Milne, G. A., Nerem, R. S., Nunn, P. D., Payne, A. J., Pfeffer, W. T., Stammer, D., and Unnikrishnan, A. S.: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., and Plattner, G.-K., Cambridge University Press, Cambridge, UK, 1137–1216, 2013. 
Short summary
Pine Island Glacier has contributed more to sea-level rise over the past decades than any other glacier in Antarctica. Ice-flow modelling studies have shown that it can undergo periods of rapid mass loss, but no study has shown that these future changes could cross a tipping point and therefore be effectively irreversible. Here, we assess the stability of Pine Island Glacier, quantifying the changes in ocean temperatures required to cross future tipping points using statistical methods.