Articles | Volume 15, issue 3
https://doi.org/10.5194/tc-15-1501-2021
https://doi.org/10.5194/tc-15-1501-2021
Research article
 | 
25 Mar 2021
Research article |  | 25 Mar 2021

The tipping points and early warning indicators for Pine Island Glacier, West Antarctica

Sebastian H. R. Rosier, Ronja Reese, Jonathan F. Donges, Jan De Rydt, G. Hilmar Gudmundsson, and Ricarda Winkelmann

Related authors

Calibrated sea level contribution from the Amundsen Sea sector, West Antarctica, under RCP8.5 and Paris 2C scenarios
Sebastian H. R. Rosier, G. Hilmar Gudmundsson, Adrian Jenkins, and Kaitlin A. Naughten
EGUsphere, https://doi.org/10.5194/egusphere-2024-1838,https://doi.org/10.5194/egusphere-2024-1838, 2024
Short summary
Weak relationship between remotely detected crevasses and inferred ice rheological parameters on Antarctic ice shelves
Cristina Gerli, Sebastian Rosier, G. Hilmar Gudmundsson, and Sainan Sun
The Cryosphere, 18, 2677–2689, https://doi.org/10.5194/tc-18-2677-2024,https://doi.org/10.5194/tc-18-2677-2024, 2024
Short summary
Predicting ocean-induced ice-shelf melt rates using deep learning
Sebastian H. R. Rosier, Christopher Y. S. Bull, Wai L. Woo, and G. Hilmar Gudmundsson
The Cryosphere, 17, 499–518, https://doi.org/10.5194/tc-17-499-2023,https://doi.org/10.5194/tc-17-499-2023, 2023
Short summary
Quantifying the potential future contribution to global mean sea level from the Filchner–Ronne basin, Antarctica
Emily A. Hill, Sebastian H. R. Rosier, G. Hilmar Gudmundsson, and Matthew Collins
The Cryosphere, 15, 4675–4702, https://doi.org/10.5194/tc-15-4675-2021,https://doi.org/10.5194/tc-15-4675-2021, 2021
Short summary
Exploring mechanisms responsible for tidal modulation in flow of the Filchner–Ronne Ice Shelf
Sebastian H. R. Rosier and G. Hilmar Gudmundsson
The Cryosphere, 14, 17–37, https://doi.org/10.5194/tc-14-17-2020,https://doi.org/10.5194/tc-14-17-2020, 2020
Short summary

Related subject area

Discipline: Ice sheets | Subject: Numerical Modelling
Antarctic sensitivity to oceanic melting parameterizations
Antonio Juarez-Martinez, Javier Blasco, Alexander Robinson, Marisa Montoya, and Jorge Alvarez-Solas
The Cryosphere, 18, 4257–4283, https://doi.org/10.5194/tc-18-4257-2024,https://doi.org/10.5194/tc-18-4257-2024, 2024
Short summary
Analytical solutions for the advective–diffusive ice column in the presence of strain heating
Daniel Moreno-Parada, Alexander Robinson, Marisa Montoya, and Jorge Alvarez-Solas
The Cryosphere, 18, 4215–4232, https://doi.org/10.5194/tc-18-4215-2024,https://doi.org/10.5194/tc-18-4215-2024, 2024
Short summary
Ice viscosity governs hydraulic fracture that causes rapid drainage of supraglacial lakes
Tim Hageman, Jessica Mejía, Ravindra Duddu, and Emilio Martínez-Pañeda
The Cryosphere, 18, 3991–4009, https://doi.org/10.5194/tc-18-3991-2024,https://doi.org/10.5194/tc-18-3991-2024, 2024
Short summary
Biases in ice sheet models from missing noise-induced drift
Alexander A. Robel, Vincent Verjans, and Aminat A. Ambelorun
The Cryosphere, 18, 2613–2623, https://doi.org/10.5194/tc-18-2613-2024,https://doi.org/10.5194/tc-18-2613-2024, 2024
Short summary
Sensitivity of Future Projections of the Wilkes Subglacial Basin Ice Sheet to Grounding Line Melt Parameterizations
Yu Wang, Chen Zhao, Rupert Gladstone, Thomas Zwinger, Ben Galton-Fenzi, and Poul Christoffersen
EGUsphere, https://doi.org/10.5194/egusphere-2024-1005,https://doi.org/10.5194/egusphere-2024-1005, 2024
Short summary

Cited articles

Anandakrishnan, S. and Alley, R.: Tidal forcing of basal seismicity of ice stream C, West Antarctica, observed far inland, J. Geophys. Res., 102, 15813–15196, 1997. 
Bamber, J. L., Oppenheimer, M.,  Kopp, R. E., Aspinall, W. P., and Cooke, R. M.: Ice sheet contributions to future sea-level rise from structured expert judgment, P. Natl. Acad. Sci. USA, 116, 11195–11200 https://doi.org/10.1073/pnas.1817205116, 2019. 
Brock, W. A. and Carpenter, S. R.: Interacting regime shifts in ecosystems: implication for early warnings, Ecol. Monogr., 80, 353–367, 2010. 
Chisholm, R. A. and Filotas, E.: Critical slowing down as an indicator of transitions in two-species models, J. Theor. Biol., 257, 142–149, 2009. 
Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S., Levermann, A., Merrifield, M. A., Milne, G. A., Nerem, R. S., Nunn, P. D., Payne, A. J., Pfeffer, W. T., Stammer, D., and Unnikrishnan, A. S.: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., and Plattner, G.-K., Cambridge University Press, Cambridge, UK, 1137–1216, 2013. 
Download
Short summary
Pine Island Glacier has contributed more to sea-level rise over the past decades than any other glacier in Antarctica. Ice-flow modelling studies have shown that it can undergo periods of rapid mass loss, but no study has shown that these future changes could cross a tipping point and therefore be effectively irreversible. Here, we assess the stability of Pine Island Glacier, quantifying the changes in ocean temperatures required to cross future tipping points using statistical methods.