Articles | Volume 10, issue 3
https://doi.org/10.5194/tc-10-1021-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/tc-10-1021-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
On the assimilation of optical reflectances and snow depth observations into a detailed snowpack model
Luc Charrois
CORRESPONDING AUTHOR
Université Grenoble Alpes-CNRS, LGGE, UMR 5183, Grenoble, France
Météo-France/CNRS, CNRM UMR 3589, CEN, Grenoble, France
Emmanuel Cosme
Université Grenoble Alpes-CNRS, LGGE, UMR 5183, Grenoble, France
Marie Dumont
Météo-France/CNRS, CNRM UMR 3589, CEN, Grenoble, France
Matthieu Lafaysse
Météo-France/CNRS, CNRM UMR 3589, CEN, Grenoble, France
Samuel Morin
Météo-France/CNRS, CNRM UMR 3589, CEN, Grenoble, France
Quentin Libois
Université Grenoble Alpes-CNRS, LGGE, UMR 5183, Grenoble, France
Ghislain Picard
Université Grenoble Alpes-CNRS, LGGE, UMR 5183, Grenoble, France
Related authors
No articles found.
Ghislain Picard and Quentin Libois
Geosci. Model Dev., 17, 8927–8953, https://doi.org/10.5194/gmd-17-8927-2024, https://doi.org/10.5194/gmd-17-8927-2024, 2024
Short summary
Short summary
The Two-streAm Radiative TransfEr in Snow (TARTES) is a radiative transfer model to compute snow albedo in the solar domain and the profiles of light and energy absorption in a multi-layered snowpack whose physical properties are user defined. It uniquely considers snow grain shape flexibly, based on recent insights showing that snow does not behave as a collection of ice spheres but instead as a random medium. TARTES is user-friendly yet performs comparably to more complex models.
Georgina J. Woolley, Nick Rutter, Leanne Wake, Vincent Vionnet, Chris Derksen, Richard Essery, Philip Marsh, Rosamond Tutton, Branden Walker, Matthieu Lafaysse, and David Pritchard
The Cryosphere, 18, 5685–5711, https://doi.org/10.5194/tc-18-5685-2024, https://doi.org/10.5194/tc-18-5685-2024, 2024
Short summary
Short summary
Parameterisations of Arctic snow processes were implemented into the multi-physics ensemble version of the snow model Crocus (embedded within the Soil, Vegetation, and Snow version 2 land surface model) and evaluated at an Arctic tundra site. Optimal combinations of parameterisations that improved the simulation of density and specific surface area featured modifications that raise wind speeds to increase compaction in surface layers, prevent snowdrift, and increase viscosity in basal layers.
Zacharie Barrou Dumont, Simon Gascoin, Jordi Inglada, Andreas Dietz, Jonas Köhler, Matthieu Lafaysse, Diego Monteiro, Carlo Carmagnola, Arthur Bayle, Jean-Pierre Dedieu, Olivier Hagolle, and Philippe Choler
EGUsphere, https://doi.org/10.5194/egusphere-2024-3505, https://doi.org/10.5194/egusphere-2024-3505, 2024
Short summary
Short summary
We generated annual maps of snow melt-out day at 20 m resolution over a period of 38 years from ten different satellites. This study fills a knowledge gap on the evolution of mountain snow in Europe by covering a much longer period and by characterizing trends at much higher resolution than previous studies. We found a trend for earlier melt-out with an average reduction of 5.51 days per decade over the French Alps and of 4.04 day per decade over the Pyrenees over the period 1986–2023.
Diego Monteiro, Cécile Caillaud, Matthieu Lafaysse, Adrien Napoly, Mathieu Fructus, Antoinette Alias, and Samuel Morin
Geosci. Model Dev., 17, 7645–7677, https://doi.org/10.5194/gmd-17-7645-2024, https://doi.org/10.5194/gmd-17-7645-2024, 2024
Short summary
Short summary
Modeling snow cover in climate and weather forecasting models is a challenge even for high-resolution models. Recent simulations with CNRM-AROME have shown difficulties when representing snow in the European Alps. Using remote sensing data and in situ observations, we evaluate modifications of the land surface configuration in order to improve it. We propose a new surface configuration, enabling a more realistic simulation of snow cover, relevant for climate and weather forecasting applications.
Cecile B. Menard, Sirpa Rasmus, Ioanna Merkouriadi, Gianpaolo Balsamo, Annett Bartsch, Chris Derksen, Florent Domine, Marie Dumont, Dorothee Ehrich, Richard Essery, Bruce C. Forbes, Gerhard Krinner, David Lawrence, Glen Liston, Heidrun Matthes, Nick Rutter, Melody Sandells, Martin Schneebeli, and Sari Stark
The Cryosphere, 18, 4671–4686, https://doi.org/10.5194/tc-18-4671-2024, https://doi.org/10.5194/tc-18-4671-2024, 2024
Short summary
Short summary
Computer models, like those used in climate change studies, are written by modellers who have to decide how best to construct the models in order to satisfy the purpose they serve. Using snow modelling as an example, we examine the process behind the decisions to understand what motivates or limits modellers in their decision-making. We find that the context in which research is undertaken is often more crucial than scientific limitations. We argue for more transparency in our research practice.
Giulia Mazzotti, Jari-Pekka Nousu, Vincent Vionnet, Tobias Jonas, Rafife Nheili, and Matthieu Lafaysse
The Cryosphere, 18, 4607–4632, https://doi.org/10.5194/tc-18-4607-2024, https://doi.org/10.5194/tc-18-4607-2024, 2024
Short summary
Short summary
As many boreal and alpine forests have seasonal snow, models are needed to predict forest snow under future environmental conditions. We have created a new forest snow model by combining existing, very detailed model components for the canopy and the snowpack. We applied it to forests in Switzerland and Finland and showed how complex forest cover leads to a snowpack layering that is very variable in space and time because different processes prevail at different locations in the forest.
Melody Sandells, Nick Rutter, Kirsty Wivell, Richard Essery, Stuart Fox, Chawn Harlow, Ghislain Picard, Alexandre Roy, Alain Royer, and Peter Toose
The Cryosphere, 18, 3971–3990, https://doi.org/10.5194/tc-18-3971-2024, https://doi.org/10.5194/tc-18-3971-2024, 2024
Short summary
Short summary
Satellite microwave observations are used for weather forecasting. In Arctic regions this is complicated by natural emission from snow. By simulating airborne observations from in situ measurements of snow, this study shows how snow properties affect the signal within the atmosphere. Fresh snowfall between flights changed airborne measurements. Good knowledge of snow layering and structure can be used to account for the effects of snow and could unlock these data to improve forecasts.
Sara Arioli, Ghislain Picard, Laurent Arnaud, Simon Gascoin, Esteban Alonso-González, Marine Poizat, and Mark Irvine
Earth Syst. Sci. Data, 16, 3913–3934, https://doi.org/10.5194/essd-16-3913-2024, https://doi.org/10.5194/essd-16-3913-2024, 2024
Short summary
Short summary
High-accuracy precision maps of the surface temperature of snow were acquired with an uncooled thermal-infrared camera during winter 2021–2022 and spring 2023. The accuracy – i.e., mean absolute error – improved from 1.28 K to 0.67 K between the seasons thanks to an improved camera setup and temperature stabilization. The dataset represents a major advance in the validation of satellite measurements and physical snow models over a complex topography.
Romilly Harris Stuart, Amaëlle Landais, Laurent Arnaud, Christo Buizert, Emilie Capron, Marie Dumont, Quentin Libois, Robert Mulvaney, Anaïs Orsi, Ghislain Picard, Frédéric Prié, Jeffrey Severinghaus, Barbara Stenni, and Patricia Martinerie
The Cryosphere, 18, 3741–3763, https://doi.org/10.5194/tc-18-3741-2024, https://doi.org/10.5194/tc-18-3741-2024, 2024
Short summary
Short summary
Ice core δO2/N2 records are useful dating tools due to their local insolation pacing. A precise understanding of the physical mechanism driving this relationship, however, remain ambiguous. By compiling data from 15 polar sites, we find a strong dependence of mean δO2/N2 on accumulation rate and temperature in addition to the well-documented insolation dependence. Snowpack modelling is used to investigate which physical properties drive the mechanistic dependence on these local parameters.
Manon Gaillard, Vincent Vionnet, Matthieu Lafaysse, Marie Dumont, and Paul Ginoux
EGUsphere, https://doi.org/10.5194/egusphere-2024-1795, https://doi.org/10.5194/egusphere-2024-1795, 2024
Short summary
Short summary
This study presents an efficient method to improve large-scale snow albedo simulations by considering the spatial variability of light-absorbing particles (LAPs) like black carbon and dust. A global climatology of LAP deposition was created and used to optimize a parameter in the Crocus snow model. Testing at ten global sites improved albedo predictions by 10 % on average and over 25 % in the Arctic. This method can also enhance other snow models' predictions without complex simulations.
Ange Haddjeri, Matthieu Baron, Matthieu Lafaysse, Louis Le Toumelin, César Deschamps-Berger, Vincent Vionnet, Simon Gascoin, Matthieu Vernay, and Marie Dumont
The Cryosphere, 18, 3081–3116, https://doi.org/10.5194/tc-18-3081-2024, https://doi.org/10.5194/tc-18-3081-2024, 2024
Short summary
Short summary
Our study addresses the complex challenge of evaluating distributed alpine snow simulations with snow transport against snow depths from Pléiades stereo imagery and snow melt-out dates from Sentinel-2 and Landsat-8 satellites. Additionally, we disentangle error contributions between blowing snow, precipitation heterogeneity, and unresolved subgrid variability. Snow transport enhances the snow simulations at high elevations, while precipitation biases are the main error source in other areas.
Florent Domine, Mireille Quémener, Ludovick Bégin, Benjamin Bouchard, Valérie Dionne, Sébastien Jerczynski, Raphaël Larouche, Félix Lévesque-Desrosiers, Simon-Olivier Philibert, Marc-André Vigneault, Ghislain Picard, and Daniel C. Côté
EGUsphere, https://doi.org/10.5194/egusphere-2024-1582, https://doi.org/10.5194/egusphere-2024-1582, 2024
Short summary
Short summary
Shrubs buried in snow absorb solar radiation and reduce irradiance in the snowpack. This decreases photochemical reactions rates and emissions to the atmosphere. By monitoring irradiance in snowpacks with and without shrubs, we conclude that shrubs absorb solar radiation as much as 140 ppb of soot and reduce irradiance by a factor of two. Shrub expansion in the Arctic may therefore affect tropospheric composition during the snow season, with climatic effects.
Julien Meloche, Melody Sandells, Henning Löwe, Nick Rutter, Richard Essery, Ghislain Picard, Randall K. Scharien, Alexandre Langlois, Matthias Jaggi, Josh King, Peter Toose, Jérôme Bouffard, Alessandro Di Bella, and Michele Scagliola
EGUsphere, https://doi.org/10.5194/egusphere-2024-1583, https://doi.org/10.5194/egusphere-2024-1583, 2024
Preprint archived
Short summary
Short summary
Sea ice thickness is essential for climate studies. Radar altimetry has provided sea ice thickness measurement, but uncertainty arises from interaction of the signal with the snow cover. Therefore, modelling the signal interaction with the snow is necessary to improve retrieval. A radar model was used to simulate the radar signal from the snow-covered sea ice. This work paved the way to improved physical algorithm to retrieve snow depth and sea ice thickness for radar altimeter missions.
Naomi E. Ochwat, Ted A. Scambos, Alison F. Banwell, Robert S. Anderson, Michelle L. Maclennan, Ghislain Picard, Julia A. Shates, Sebastian Marinsek, Liliana Margonari, Martin Truffer, and Erin C. Pettit
The Cryosphere, 18, 1709–1731, https://doi.org/10.5194/tc-18-1709-2024, https://doi.org/10.5194/tc-18-1709-2024, 2024
Short summary
Short summary
On the Antarctic Peninsula, there is a small bay that had sea ice fastened to the shoreline (
fast ice) for over a decade. The fast ice stabilized the glaciers that fed into the ocean. In January 2022, the fast ice broke away. Using satellite data we found that this was because of low sea ice concentrations and a high long-period ocean wave swell. We find that the glaciers have responded to this event by thinning, speeding up, and retreating by breaking off lots of icebergs at remarkable rates.
Matthieu Vernay, Matthieu Lafaysse, and Clotilde Augros
EGUsphere, https://doi.org/10.5194/egusphere-2024-668, https://doi.org/10.5194/egusphere-2024-668, 2024
Short summary
Short summary
This paper provides a comprehensive evaluation of the quality of radar-based precipitation estimation in mountainous areas and presents a method to mitigate the main shortcomings identified. It then compares three different ensemble analysis methods that combine radar-based precipitation estimates with forecasts from an ensemble numerical weather prediction model.
Inès Ollivier, Hans Christian Steen-Larsen, Barbara Stenni, Laurent Arnaud, Mathieu Casado, Alexandre Cauquoin, Giuliano Dreossi, Christophe Genthon, Bénédicte Minster, Ghislain Picard, Martin Werner, and Amaëlle Landais
EGUsphere, https://doi.org/10.5194/egusphere-2024-685, https://doi.org/10.5194/egusphere-2024-685, 2024
Short summary
Short summary
The role of post-depositional processes taking place at the ice sheet's surface on the water stable isotope signal measured in polar ice cores is not fully understood. Using field observations and modelling results, we show that the original precipitation isotopic signal at Dome C, East Antarctica, is modified by post-depositional processes and provide the first quantitative estimation of their mean impact on the isotopic signal observed in the snow.
Kévin Fourteau, Julien Brondex, Fanny Brun, and Marie Dumont
Geosci. Model Dev., 17, 1903–1929, https://doi.org/10.5194/gmd-17-1903-2024, https://doi.org/10.5194/gmd-17-1903-2024, 2024
Short summary
Short summary
In this paper, we provide a novel numerical implementation for solving the energy exchanges at the surface of snow and ice. By combining the strong points of previous models, our solution leads to more accurate and robust simulations of the energy exchanges, surface temperature, and melt while preserving a reasonable computation time.
Justin Murfitt, Claude Duguay, Ghislain Picard, and Juha Lemmetyinen
The Cryosphere, 18, 869–888, https://doi.org/10.5194/tc-18-869-2024, https://doi.org/10.5194/tc-18-869-2024, 2024
Short summary
Short summary
This research focuses on the interaction between microwave signals and lake ice under wet conditions. Field data collected for Lake Oulujärvi in Finland were used to model backscatter under different conditions. The results of the modelling likely indicate that a combination of increased water content and roughness of different interfaces caused backscatter to increase. These results could help to identify areas where lake ice is unsafe for winter transportation.
Mikhail Popov, Jean-Michel Brankart, Arthur Capet, Emmanuel Cosme, and Pierre Brasseur
Ocean Sci., 20, 155–180, https://doi.org/10.5194/os-20-155-2024, https://doi.org/10.5194/os-20-155-2024, 2024
Short summary
Short summary
This study contributes to the development of methods to estimate targeted ocean ecosystem indicators, including their uncertainty, in the framework of the Copernicus Marine Service. A simplified approach is introduced to perform a 4D ensemble analysis and forecast, directly targeting selected biogeochemical variables and indicators (phenology, trophic efficiency, downward flux of organic matter). Care is taken to present the methods and discuss the reliability of the solution proposed.
Matthieu Baron, Ange Haddjeri, Matthieu Lafaysse, Louis Le Toumelin, Vincent Vionnet, and Mathieu Fructus
Geosci. Model Dev., 17, 1297–1326, https://doi.org/10.5194/gmd-17-1297-2024, https://doi.org/10.5194/gmd-17-1297-2024, 2024
Short summary
Short summary
Increasing the spatial resolution of numerical systems simulating snowpack evolution in mountain areas requires representing small-scale processes such as wind-induced snow transport. We present SnowPappus, a simple scheme coupled with the Crocus snow model to compute blowing-snow fluxes and redistribute snow among grid points at 250 m resolution. In terms of numerical cost, it is suitable for large-scale applications. We present point-scale evaluations of fluxes and snow transport occurrence.
Claudio Stefanini, Giovanni Macelloni, Marion Leduc-Leballeur, Vincent Favier, Benjamin Pohl, and Ghislain Picard
The Cryosphere, 18, 593–608, https://doi.org/10.5194/tc-18-593-2024, https://doi.org/10.5194/tc-18-593-2024, 2024
Short summary
Short summary
Local and large-scale meteorological conditions have been considered in order to explain some peculiar changes of snow grains on the East Antarctic Plateau from 2000 to 2022, by using remote sensing observations and reanalysis. We identified some extreme grain size events on the highest ice divide, resulting from a combination of conditions of low wind speed and low temperature. Moreover, the beginning of seasonal grain growth has been linked to the occurrence of atmospheric rivers.
Jari-Pekka Nousu, Matthieu Lafaysse, Giulia Mazzotti, Pertti Ala-aho, Hannu Marttila, Bertrand Cluzet, Mika Aurela, Annalea Lohila, Pasi Kolari, Aaron Boone, Mathieu Fructus, and Samuli Launiainen
The Cryosphere, 18, 231–263, https://doi.org/10.5194/tc-18-231-2024, https://doi.org/10.5194/tc-18-231-2024, 2024
Short summary
Short summary
The snowpack has a major impact on the land surface energy budget. Accurate simulation of the snowpack energy budget is difficult, and studies that evaluate models against energy budget observations are rare. We compared predictions from well-known models with observations of energy budgets, snow depths and soil temperatures in Finland. Our study identified contrasting strengths and limitations for the models. These results can be used for choosing the right models depending on the use cases.
Julien Brondex, Kévin Fourteau, Marie Dumont, Pascal Hagenmuller, Neige Calonne, François Tuzet, and Henning Löwe
Geosci. Model Dev., 16, 7075–7106, https://doi.org/10.5194/gmd-16-7075-2023, https://doi.org/10.5194/gmd-16-7075-2023, 2023
Short summary
Short summary
Vapor diffusion is one of the main processes governing snowpack evolution, and it must be accounted for in models. Recent attempts to represent vapor diffusion in numerical models have faced several difficulties regarding computational cost and mass and energy conservation. Here, we develop our own finite-element software to explore numerical approaches and enable us to overcome these difficulties. We illustrate the capability of these approaches on established numerical benchmarks.
Samuel Morin, Hugues François, Marion Réveillet, Eric Sauquet, Louise Crochemore, Flora Branger, Étienne Leblois, and Marie Dumont
Hydrol. Earth Syst. Sci., 27, 4257–4277, https://doi.org/10.5194/hess-27-4257-2023, https://doi.org/10.5194/hess-27-4257-2023, 2023
Short summary
Short summary
Ski resorts are a key socio-economic asset of several mountain areas. Grooming and snowmaking are routinely used to manage the snow cover on ski pistes, but despite vivid debate, little is known about their impact on water resources downstream. This study quantifies, for the pilot ski resort La Plagne in the French Alps, the impact of grooming and snowmaking on downstream river flow. Hydrological impacts are mostly apparent at the seasonal scale and rather neutral on the annual scale.
Jean Emmanuel Sicart, Victor Ramseyer, Ghislain Picard, Laurent Arnaud, Catherine Coulaud, Guilhem Freche, Damien Soubeyrand, Yves Lejeune, Marie Dumont, Isabelle Gouttevin, Erwan Le Gac, Frédéric Berger, Jean-Matthieu Monnet, Laurent Borgniet, Éric Mermin, Nick Rutter, Clare Webster, and Richard Essery
Earth Syst. Sci. Data, 15, 5121–5133, https://doi.org/10.5194/essd-15-5121-2023, https://doi.org/10.5194/essd-15-5121-2023, 2023
Short summary
Short summary
Forests strongly modify the accumulation, metamorphism and melting of snow in midlatitude and high-latitude regions. Two field campaigns during the winters 2016–17 and 2017–18 were conducted in a coniferous forest in the French Alps to study interactions between snow and vegetation. This paper presents the field site, instrumentation and collection methods. The observations include forest characteristics, meteorology, snow cover and snow interception by the canopy during precipitation events.
Erwan Le Roux, Guillaume Evin, Raphaëlle Samacoïts, Nicolas Eckert, Juliette Blanchet, and Samuel Morin
The Cryosphere, 17, 4691–4704, https://doi.org/10.5194/tc-17-4691-2023, https://doi.org/10.5194/tc-17-4691-2023, 2023
Short summary
Short summary
We assess projected changes in snowfall extremes in the French Alps as a function of elevation and global warming level for a high-emission scenario. On average, heavy snowfall is projected to decrease below 3000 m and increase above 3600 m, while extreme snowfall is projected to decrease below 2400 m and increase above 3300 m. At elevations in between, an increase is projected until +3 °C of global warming and then a decrease. These results have implications for the management of risks.
Florian Le Guillou, Lucile Gaultier, Maxime Ballarotta, Sammy Metref, Clément Ubelmann, Emmanuel Cosme, and Marie-Helène Rio
Ocean Sci., 19, 1517–1527, https://doi.org/10.5194/os-19-1517-2023, https://doi.org/10.5194/os-19-1517-2023, 2023
Short summary
Short summary
Altimetry provides sea surface height (SSH) data along one-dimensional tracks. For many applications, the tracks are interpolated in space and time to provide gridded SSH maps. The operational SSH gridded products filter out the small-scale signals measured on the tracks. This paper evaluates the performances of a recently implemented dynamical method to retrieve the small-scale signals from real SSH data. We show a net improvement in the quality of SSH maps when compared to independent data.
Thomas Dethinne, Quentin Glaude, Ghislain Picard, Christoph Kittel, Patrick Alexander, Anne Orban, and Xavier Fettweis
The Cryosphere, 17, 4267–4288, https://doi.org/10.5194/tc-17-4267-2023, https://doi.org/10.5194/tc-17-4267-2023, 2023
Short summary
Short summary
We investigate the sensitivity of the regional climate model
Modèle Atmosphérique Régional(MAR) to the assimilation of wet-snow occurrence estimated by remote sensing datasets. The assimilation is performed by nudging the MAR snowpack temperature. The data assimilation is performed over the Antarctic Peninsula for the 2019–2021 period. The results show an increase in the melt production (+66.7 %) and a decrease in surface mass balance (−4.5 %) of the model for the 2019–2020 melt season.
Yaowen Zheng, Nicholas R. Golledge, Alexandra Gossart, Ghislain Picard, and Marion Leduc-Leballeur
The Cryosphere, 17, 3667–3694, https://doi.org/10.5194/tc-17-3667-2023, https://doi.org/10.5194/tc-17-3667-2023, 2023
Short summary
Short summary
Positive degree-day (PDD) schemes are widely used in many Antarctic numerical ice sheet models. However, the PDD approach has not been systematically explored for its application in Antarctica. We have constructed a novel grid-cell-level spatially distributed PDD (dist-PDD) model and assessed its accuracy. We suggest that an appropriately parameterized dist-PDD model can be a valuable tool for exploring Antarctic surface melt beyond the satellite era.
Diego Monteiro and Samuel Morin
The Cryosphere, 17, 3617–3660, https://doi.org/10.5194/tc-17-3617-2023, https://doi.org/10.5194/tc-17-3617-2023, 2023
Short summary
Short summary
Beyond directly using in situ observations, often sparsely available in mountain regions, climate model simulations and so-called reanalyses are increasingly used for climate change impact studies. Here we evaluate such datasets in the European Alps from 1950 to 2020, with a focus on snow cover information and its main drivers: air temperature and precipitation. In terms of variability and trends, we identify several limitations and provide recommendations for future use of these datasets.
Esteban Alonso-González, Simon Gascoin, Sara Arioli, and Ghislain Picard
The Cryosphere, 17, 3329–3342, https://doi.org/10.5194/tc-17-3329-2023, https://doi.org/10.5194/tc-17-3329-2023, 2023
Short summary
Short summary
Data assimilation techniques are a promising approach to improve snowpack simulations in remote areas that are difficult to monitor. This paper studies the ability of satellite-observed land surface temperature to improve snowpack simulations through data assimilation. We show that it is possible to improve snowpack simulations, but the temporal resolution of the observations and the algorithm used are critical to obtain satisfactory results.
Fanny Brun, Owen King, Marion Réveillet, Charles Amory, Anton Planchot, Etienne Berthier, Amaury Dehecq, Tobias Bolch, Kévin Fourteau, Julien Brondex, Marie Dumont, Christoph Mayer, Silvan Leinss, Romain Hugonnet, and Patrick Wagnon
The Cryosphere, 17, 3251–3268, https://doi.org/10.5194/tc-17-3251-2023, https://doi.org/10.5194/tc-17-3251-2023, 2023
Short summary
Short summary
The South Col Glacier is a small body of ice and snow located on the southern ridge of Mt. Everest. A recent study proposed that South Col Glacier is rapidly losing mass. In this study, we examined the glacier thickness change for the period 1984–2017 and found no thickness change. To reconcile these results, we investigate wind erosion and surface energy and mass balance and find that melt is unlikely a dominant process, contrary to previous findings.
Marie Dumont, Simon Gascoin, Marion Réveillet, Didier Voisin, François Tuzet, Laurent Arnaud, Mylène Bonnefoy, Montse Bacardit Peñarroya, Carlo Carmagnola, Alexandre Deguine, Aurélie Diacre, Lukas Dürr, Olivier Evrard, Firmin Fontaine, Amaury Frankl, Mathieu Fructus, Laure Gandois, Isabelle Gouttevin, Abdelfateh Gherab, Pascal Hagenmuller, Sophia Hansson, Hervé Herbin, Béatrice Josse, Bruno Jourdain, Irene Lefevre, Gaël Le Roux, Quentin Libois, Lucie Liger, Samuel Morin, Denis Petitprez, Alvaro Robledano, Martin Schneebeli, Pascal Salze, Delphine Six, Emmanuel Thibert, Jürg Trachsel, Matthieu Vernay, Léo Viallon-Galinier, and Céline Voiron
Earth Syst. Sci. Data, 15, 3075–3094, https://doi.org/10.5194/essd-15-3075-2023, https://doi.org/10.5194/essd-15-3075-2023, 2023
Short summary
Short summary
Saharan dust outbreaks have profound effects on ecosystems, climate, health, and the cryosphere, but the spatial deposition pattern of Saharan dust is poorly known. Following the extreme dust deposition event of February 2021 across Europe, a citizen science campaign was launched to sample dust on snow over the Pyrenees and the European Alps. This campaign triggered wide interest and over 100 samples. The samples revealed the high variability of the dust properties within a single event.
Sammy Metref, Emmanuel Cosme, Matthieu Le Lay, and Joël Gailhard
Hydrol. Earth Syst. Sci., 27, 2283–2299, https://doi.org/10.5194/hess-27-2283-2023, https://doi.org/10.5194/hess-27-2283-2023, 2023
Short summary
Short summary
Predicting the seasonal streamflow supply of water in a mountainous basin is critical to anticipating the operation of hydroelectric dams and avoiding hydrology-related hazard. This quantity partly depends on the snowpack accumulated during winter. The study addresses this prediction problem using information from streamflow data and both direct and indirect snow measurements. In this study, the prediction is improved by integrating the data information into a basin-scale hydrological model.
Sara Arioli, Ghislain Picard, Laurent Arnaud, and Vincent Favier
The Cryosphere, 17, 2323–2342, https://doi.org/10.5194/tc-17-2323-2023, https://doi.org/10.5194/tc-17-2323-2023, 2023
Short summary
Short summary
To assess the drivers of the snow grain size evolution during snow drift, we exploit a 5-year time series of the snow grain size retrieved from spectral-albedo observations made with a new, autonomous, multi-band radiometer and compare it to observations of snow drift, snowfall and snowmelt at a windy location of coastal Antarctica. Our results highlight the complexity of the grain size evolution in the presence of snow drift and show an overall tendency of snow drift to limit its variations.
Oscar Dick, Léo Viallon-Galinier, François Tuzet, Pascal Hagenmuller, Mathieu Fructus, Benjamin Reuter, Matthieu Lafaysse, and Marie Dumont
The Cryosphere, 17, 1755–1773, https://doi.org/10.5194/tc-17-1755-2023, https://doi.org/10.5194/tc-17-1755-2023, 2023
Short summary
Short summary
Saharan dust deposition can drastically change the snow color, turning mountain landscapes into sepia scenes. Dust increases the absorption of solar energy by the snow cover and thus modifies the snow evolution and potentially the avalanche risk. Here we show that dust can lead to increased or decreased snowpack stability depending on the snow and meteorological conditions after the deposition event. We also show that wet-snow avalanches happen earlier in the season due to the presence of dust.
Ghislain Picard, Marion Leduc-Leballeur, Alison F. Banwell, Ludovic Brucker, and Giovanni Macelloni
The Cryosphere, 16, 5061–5083, https://doi.org/10.5194/tc-16-5061-2022, https://doi.org/10.5194/tc-16-5061-2022, 2022
Short summary
Short summary
Using a snowpack radiative transfer model, we investigate in which conditions meltwater can be detected from passive microwave satellite observations from 1.4 to 37 GHz. In particular, we determine the minimum detectable liquid water content, the maximum depth of detection of a buried wet snow layer and the risk of false alarm due to supraglacial lakes. These results provide information for the developers of new, more advanced satellite melt products and for the users of the existing products.
Dominic Saunderson, Andrew Mackintosh, Felicity McCormack, Richard Selwyn Jones, and Ghislain Picard
The Cryosphere, 16, 4553–4569, https://doi.org/10.5194/tc-16-4553-2022, https://doi.org/10.5194/tc-16-4553-2022, 2022
Short summary
Short summary
We investigate the variability in surface melt on the Shackleton Ice Shelf in East Antarctica over the last 2 decades (2003–2021). Using daily satellite observations and the machine learning approach of a self-organising map, we identify nine distinct spatial patterns of melt. These patterns allow comparisons of melt within and across melt seasons and highlight the importance of both air temperatures and local controls such as topography, katabatic winds, and albedo in driving surface melt.
Ghislain Picard, Henning Löwe, and Christian Mätzler
The Cryosphere, 16, 3861–3866, https://doi.org/10.5194/tc-16-3861-2022, https://doi.org/10.5194/tc-16-3861-2022, 2022
Short summary
Short summary
Microwave satellite observations used to monitor the cryosphere require radiative transfer models for their interpretation. These models represent how microwaves are scattered by snow and ice. However no existing theory is suitable for all types of snow and ice found on Earth. We adapted a recently published generic scattering theory to snow and show how it may improve the representation of snows with intermediate densities (~500 kg/m3) and/or with coarse grains at high microwave frequencies.
Leung Tsang, Michael Durand, Chris Derksen, Ana P. Barros, Do-Hyuk Kang, Hans Lievens, Hans-Peter Marshall, Jiyue Zhu, Joel Johnson, Joshua King, Juha Lemmetyinen, Melody Sandells, Nick Rutter, Paul Siqueira, Anne Nolin, Batu Osmanoglu, Carrie Vuyovich, Edward Kim, Drew Taylor, Ioanna Merkouriadi, Ludovic Brucker, Mahdi Navari, Marie Dumont, Richard Kelly, Rhae Sung Kim, Tien-Hao Liao, Firoz Borah, and Xiaolan Xu
The Cryosphere, 16, 3531–3573, https://doi.org/10.5194/tc-16-3531-2022, https://doi.org/10.5194/tc-16-3531-2022, 2022
Short summary
Short summary
Snow water equivalent (SWE) is of fundamental importance to water, energy, and geochemical cycles but is poorly observed globally. Synthetic aperture radar (SAR) measurements at X- and Ku-band can address this gap. This review serves to inform the broad snow research, monitoring, and application communities about the progress made in recent decades to move towards a new satellite mission capable of addressing the needs of the geoscience researchers and users.
Gauthier Vérin, Florent Domine, Marcel Babin, Ghislain Picard, and Laurent Arnaud
The Cryosphere, 16, 3431–3449, https://doi.org/10.5194/tc-16-3431-2022, https://doi.org/10.5194/tc-16-3431-2022, 2022
Short summary
Short summary
Snow physical properties on Arctic sea ice are monitored during the melt season. As snow grains grow, and the snowpack thickness is reduced, the surface albedo decreases. The extra absorbed energy accelerates melting. Radiative transfer modeling shows that more radiation is then transmitted to the snow–sea-ice interface. A sharp increase in transmitted radiation takes place when the snowpack thins significantly, and this coincides with the initiation of the phytoplankton bloom in the seawater.
Georg Lackner, Florent Domine, Daniel F. Nadeau, Matthieu Lafaysse, and Marie Dumont
The Cryosphere, 16, 3357–3373, https://doi.org/10.5194/tc-16-3357-2022, https://doi.org/10.5194/tc-16-3357-2022, 2022
Short summary
Short summary
We compared the snowpack at two sites separated by less than 1 km, one in shrub tundra and the other one within the boreal forest. Even though the snowpack was twice as thick at the forested site, we found evidence that the vertical transport of water vapor from the bottom of the snowpack to its surface was important at both sites. The snow model Crocus simulates no water vapor fluxes and consequently failed to correctly simulate the observed density profiles.
Erwan Le Roux, Guillaume Evin, Nicolas Eckert, Juliette Blanchet, and Samuel Morin
Earth Syst. Dynam., 13, 1059–1075, https://doi.org/10.5194/esd-13-1059-2022, https://doi.org/10.5194/esd-13-1059-2022, 2022
Short summary
Short summary
Anticipating risks related to climate extremes is critical for societal adaptation to climate change. In this study, we propose a statistical method in order to estimate future climate extremes from past observations and an ensemble of climate change simulations. We apply this approach to snow load data available in the French Alps at 1500 m elevation and find that extreme snow load is projected to decrease by −2.9 kN m−2 (−50 %) between 1986–2005 and 2080–2099 for a high-emission scenario.
Matthieu Vernay, Matthieu Lafaysse, Diego Monteiro, Pascal Hagenmuller, Rafife Nheili, Raphaëlle Samacoïts, Deborah Verfaillie, and Samuel Morin
Earth Syst. Sci. Data, 14, 1707–1733, https://doi.org/10.5194/essd-14-1707-2022, https://doi.org/10.5194/essd-14-1707-2022, 2022
Short summary
Short summary
This paper introduces the latest version of the freely available S2M dataset which provides estimates of both meteorological and snow cover variables, as well as various avalanche hazard diagnostics at different elevations, slopes and aspects for the three main French high-elevation mountainous regions. A complete description of the system and the dataset is provided, as well as an overview of the possible uses of this dataset and an objective assessment of its limitations.
Bertrand Cluzet, Matthieu Lafaysse, César Deschamps-Berger, Matthieu Vernay, and Marie Dumont
The Cryosphere, 16, 1281–1298, https://doi.org/10.5194/tc-16-1281-2022, https://doi.org/10.5194/tc-16-1281-2022, 2022
Short summary
Short summary
The mountainous snow cover is highly variable at all temporal and spatial scales. Snow cover models suffer from large errors, while snowpack observations are sparse. Data assimilation combines them into a better estimate of the snow cover. A major challenge is to propagate information from observed into unobserved areas. This paper presents a spatialized version of the particle filter, in which information from in situ snow depth observations is successfully used to constrain nearby simulations.
Lucas Berard-Chenu, Hugues François, Emmanuelle George, and Samuel Morin
The Cryosphere, 16, 863–881, https://doi.org/10.5194/tc-16-863-2022, https://doi.org/10.5194/tc-16-863-2022, 2022
Short summary
Short summary
This study investigates the past snow reliability (1961–2019) of 16 ski resorts in the French Alps using state-of-the-art snowpack modelling. We used snowmaking investment figures to infer the evolution of snowmaking coverage at the individual ski resort level. Snowmaking improved snow reliability for the core of the winter season for the highest-elevation ski resorts. However it did not counterbalance the decreasing trend in snow cover reliability for lower-elevation ski resorts and in spring.
Alvaro Robledano, Ghislain Picard, Laurent Arnaud, Fanny Larue, and Inès Ollivier
The Cryosphere, 16, 559–579, https://doi.org/10.5194/tc-16-559-2022, https://doi.org/10.5194/tc-16-559-2022, 2022
Short summary
Short summary
Topography controls the surface temperature of snow-covered, mountainous areas. We developed a modelling chain that uses ray-tracing methods to quantify the impact of a few topographic effects on snow surface temperature at high spatial resolution. Its large spatial and temporal variations are correctly simulated over a 50 km2 area in the French Alps, and our results show that excluding a single topographic effect results in cooling (or warming) effects on the order of 1 °C.
Georg Lackner, Florent Domine, Daniel F. Nadeau, Annie-Claude Parent, François Anctil, Matthieu Lafaysse, and Marie Dumont
The Cryosphere, 16, 127–142, https://doi.org/10.5194/tc-16-127-2022, https://doi.org/10.5194/tc-16-127-2022, 2022
Short summary
Short summary
The surface energy budget is the sum of all incoming and outgoing energy fluxes at the Earth's surface and has a key role in the climate. We measured all these fluxes for an Arctic snowpack and found that most incoming energy from radiation is counterbalanced by thermal radiation and heat convection while sublimation was negligible. Overall, the snow model Crocus was able to simulate the observed energy fluxes well.
Florent Veillon, Marie Dumont, Charles Amory, and Mathieu Fructus
Geosci. Model Dev., 14, 7329–7343, https://doi.org/10.5194/gmd-14-7329-2021, https://doi.org/10.5194/gmd-14-7329-2021, 2021
Short summary
Short summary
In climate models, the snow albedo scheme generally calculates only a narrowband or broadband albedo. Therefore, we have developed the VALHALLA method to optimize snow spectral albedo calculations through the determination of spectrally fixed radiative variables. The development of VALHALLA v1.0 with the use of the snow albedo model TARTES and the spectral irradiance model SBDART indicates a considerable reduction in calculation time while maintaining an adequate accuracy of albedo values.
Maria Belke-Brea, Florent Domine, Ghislain Picard, Mathieu Barrere, and Laurent Arnaud
Biogeosciences, 18, 5851–5869, https://doi.org/10.5194/bg-18-5851-2021, https://doi.org/10.5194/bg-18-5851-2021, 2021
Short summary
Short summary
Expanding shrubs in the Arctic change snowpacks into a mix of snow, impurities and buried branches. Snow is a translucent medium into which light penetrates and gets partly absorbed by branches or impurities. Measurements of light attenuation in snow in Northern Quebec, Canada, showed (1) black-carbon-dominated light attenuation in snowpacks without shrubs and (2) buried branches influence radiation attenuation in snow locally, leading to melting and pockets of large crystals close to branches.
Zacharie Barrou Dumont, Simon Gascoin, Olivier Hagolle, Michaël Ablain, Rémi Jugier, Germain Salgues, Florence Marti, Aurore Dupuis, Marie Dumont, and Samuel Morin
The Cryosphere, 15, 4975–4980, https://doi.org/10.5194/tc-15-4975-2021, https://doi.org/10.5194/tc-15-4975-2021, 2021
Short summary
Short summary
Since 2020, the Copernicus High Resolution Snow & Ice Monitoring Service has distributed snow cover maps at 20 m resolution over Europe in near-real time. These products are derived from the Sentinel-2 Earth observation mission, with a revisit time of 5 d or less (cloud-permitting). Here we show the good accuracy of the snow detection over a wide range of regions in Europe, except in dense forest regions where the snow cover is hidden by the trees.
Guillaume Evin, Matthieu Lafaysse, Maxime Taillardat, and Michaël Zamo
Nonlin. Processes Geophys., 28, 467–480, https://doi.org/10.5194/npg-28-467-2021, https://doi.org/10.5194/npg-28-467-2021, 2021
Short summary
Short summary
Forecasting the height of new snow is essential for avalanche hazard surveys, road and ski resort management, tourism attractiveness, etc. Météo-France operates a probabilistic forecasting system using a numerical weather prediction system and a snowpack model. It provides better forecasts than direct diagnostics but exhibits significant biases. Post-processing methods can be applied to provide automatic forecasting products from this system.
Erwan Le Roux, Guillaume Evin, Nicolas Eckert, Juliette Blanchet, and Samuel Morin
The Cryosphere, 15, 4335–4356, https://doi.org/10.5194/tc-15-4335-2021, https://doi.org/10.5194/tc-15-4335-2021, 2021
Short summary
Short summary
Extreme snowfall can cause major natural hazards (avalanches, winter storms) that can generate casualties and economic damage. In the French Alps, we show that between 1959 and 2019 extreme snowfall mainly decreased below 2000 m of elevation and increased above 2000 m. At 2500 m, we find a contrasting pattern: extreme snowfall decreased in the north, while it increased in the south. This pattern might be related to increasing trends in extreme snowfall observed near the Mediterranean Sea.
Marie Dumont, Frederic Flin, Aleksey Malinka, Olivier Brissaud, Pascal Hagenmuller, Philippe Lapalus, Bernard Lesaffre, Anne Dufour, Neige Calonne, Sabine Rolland du Roscoat, and Edward Ando
The Cryosphere, 15, 3921–3948, https://doi.org/10.5194/tc-15-3921-2021, https://doi.org/10.5194/tc-15-3921-2021, 2021
Short summary
Short summary
The role of snow microstructure in snow optical properties is only partially understood despite the importance of snow optical properties for the Earth system. We present a dataset combining bidirectional reflectance measurements and 3D images of snow. We show that the snow reflectance is adequately simulated using the distribution of the ice chord lengths in the snow microstructure and that the impact of the morphological type of snow is especially important when ice is highly absorptive.
Pirmin Philipp Ebner, Franziska Koch, Valentina Premier, Carlo Marin, Florian Hanzer, Carlo Maria Carmagnola, Hugues François, Daniel Günther, Fabiano Monti, Olivier Hargoaa, Ulrich Strasser, Samuel Morin, and Michael Lehning
The Cryosphere, 15, 3949–3973, https://doi.org/10.5194/tc-15-3949-2021, https://doi.org/10.5194/tc-15-3949-2021, 2021
Short summary
Short summary
A service to enable real-time optimization of grooming and snow-making at ski resorts was developed and evaluated using both GNSS-measured snow depth and spaceborne snow maps derived from Copernicus Sentinel-2. The correlation to the ground observation data was high. Potential sources for the overestimation of the snow depth by the simulations are mainly the impact of snow redistribution by skiers, compensation of uneven terrain, or spontaneous local adaptions of the snow management.
Daniela Krampe, Frank Kauker, Marie Dumont, and Andreas Herber
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-100, https://doi.org/10.5194/tc-2021-100, 2021
Manuscript not accepted for further review
Short summary
Short summary
Reliable and detailed Arctic snow data are limited. Evaluation of the performance of atmospheric reanalysis compared to measurements in northeast Greenland generally show good agreement. Both data sets are applied to an Alpine snow model and the performance for Arctic conditions is investigated: Simulated snow depth evolution is reliable, but vertical snow profiles show weaknesses. These are smaller with an adapted parametrisation for the density of newly fallen snow for harsh Arctic conditions.
Bertrand Cluzet, Matthieu Lafaysse, Emmanuel Cosme, Clément Albergel, Louis-François Meunier, and Marie Dumont
Geosci. Model Dev., 14, 1595–1614, https://doi.org/10.5194/gmd-14-1595-2021, https://doi.org/10.5194/gmd-14-1595-2021, 2021
Short summary
Short summary
In the mountains, the combination of large model error and observation sparseness is a challenge for data assimilation. Here, we develop two variants of the particle filter (PF) in order to propagate the information content of observations into unobserved areas. By adjusting observation errors or exploiting background correlation patterns, we demonstrate the potential for partial observations of snow depth and surface reflectance to improve model accuracy with the PF in an idealised setting.
Michael Matiu, Alice Crespi, Giacomo Bertoldi, Carlo Maria Carmagnola, Christoph Marty, Samuel Morin, Wolfgang Schöner, Daniele Cat Berro, Gabriele Chiogna, Ludovica De Gregorio, Sven Kotlarski, Bruno Majone, Gernot Resch, Silvia Terzago, Mauro Valt, Walter Beozzo, Paola Cianfarra, Isabelle Gouttevin, Giorgia Marcolini, Claudia Notarnicola, Marcello Petitta, Simon C. Scherrer, Ulrich Strasser, Michael Winkler, Marc Zebisch, Andrea Cicogna, Roberto Cremonini, Andrea Debernardi, Mattia Faletto, Mauro Gaddo, Lorenzo Giovannini, Luca Mercalli, Jean-Michel Soubeyroux, Andrea Sušnik, Alberto Trenti, Stefano Urbani, and Viktor Weilguni
The Cryosphere, 15, 1343–1382, https://doi.org/10.5194/tc-15-1343-2021, https://doi.org/10.5194/tc-15-1343-2021, 2021
Short summary
Short summary
The first Alpine-wide assessment of station snow depth has been enabled by a collaborative effort of the research community which involves more than 30 partners, 6 countries, and more than 2000 stations. It shows how snow in the European Alps matches the climatic zones and gives a robust estimate of observed changes: stronger decreases in the snow season at low elevations and in spring at all elevations, however, with considerable regional differences.
Alison F. Banwell, Rajashree Tri Datta, Rebecca L. Dell, Mahsa Moussavi, Ludovic Brucker, Ghislain Picard, Christopher A. Shuman, and Laura A. Stevens
The Cryosphere, 15, 909–925, https://doi.org/10.5194/tc-15-909-2021, https://doi.org/10.5194/tc-15-909-2021, 2021
Short summary
Short summary
Ice shelves are thick floating layers of glacier ice extending from the glaciers on land that buttress much of the Antarctic Ice Sheet and help to protect it from losing ice to the ocean. However, the stability of ice shelves is vulnerable to meltwater lakes that form on their surfaces during the summer. This study focuses on the northern George VI Ice Shelf on the western side of the AP, which had an exceptionally long and extensive melt season in 2019/2020 compared to the previous 31 seasons.
Nora Helbig, Yves Bühler, Lucie Eberhard, César Deschamps-Berger, Simon Gascoin, Marie Dumont, Jesus Revuelto, Jeff S. Deems, and Tobias Jonas
The Cryosphere, 15, 615–632, https://doi.org/10.5194/tc-15-615-2021, https://doi.org/10.5194/tc-15-615-2021, 2021
Short summary
Short summary
The spatial variability in snow depth in mountains is driven by interactions between topography, wind, precipitation and radiation. In applications such as weather, climate and hydrological predictions, this is accounted for by the fractional snow-covered area describing the fraction of the ground surface covered by snow. We developed a new description for model grid cell sizes larger than 200 m. An evaluation suggests that the description performs similarly well in most geographical regions.
Richard Essery, Hyungjun Kim, Libo Wang, Paul Bartlett, Aaron Boone, Claire Brutel-Vuilmet, Eleanor Burke, Matthias Cuntz, Bertrand Decharme, Emanuel Dutra, Xing Fang, Yeugeniy Gusev, Stefan Hagemann, Vanessa Haverd, Anna Kontu, Gerhard Krinner, Matthieu Lafaysse, Yves Lejeune, Thomas Marke, Danny Marks, Christoph Marty, Cecile B. Menard, Olga Nasonova, Tomoko Nitta, John Pomeroy, Gerd Schädler, Vladimir Semenov, Tatiana Smirnova, Sean Swenson, Dmitry Turkov, Nander Wever, and Hua Yuan
The Cryosphere, 14, 4687–4698, https://doi.org/10.5194/tc-14-4687-2020, https://doi.org/10.5194/tc-14-4687-2020, 2020
Short summary
Short summary
Climate models are uncertain in predicting how warming changes snow cover. This paper compares 22 snow models with the same meteorological inputs. Predicted trends agree with observations at four snow research sites: winter snow cover does not start later, but snow now melts earlier in spring than in the 1980s at two of the sites. Cold regions where snow can last until late summer are predicted to be particularly sensitive to warming because the snow then melts faster at warmer times of year.
François Tuzet, Marie Dumont, Ghislain Picard, Maxim Lamare, Didier Voisin, Pierre Nabat, Mathieu Lafaysse, Fanny Larue, Jesus Revuelto, and Laurent Arnaud
The Cryosphere, 14, 4553–4579, https://doi.org/10.5194/tc-14-4553-2020, https://doi.org/10.5194/tc-14-4553-2020, 2020
Short summary
Short summary
This study presents a field dataset collected over 30 d from two snow seasons at a Col du Lautaret site (French Alps). The dataset compares different measurements or estimates of light-absorbing particle (LAP) concentrations in snow, highlighting a gap in the current understanding of the measurement of these quantities. An ensemble snowpack model is then evaluated for this dataset estimating that LAPs shorten each snow season by around 10 d despite contrasting meteorological conditions.
Martin Ménégoz, Evgenia Valla, Nicolas C. Jourdain, Juliette Blanchet, Julien Beaumet, Bruno Wilhelm, Hubert Gallée, Xavier Fettweis, Samuel Morin, and Sandrine Anquetin
Hydrol. Earth Syst. Sci., 24, 5355–5377, https://doi.org/10.5194/hess-24-5355-2020, https://doi.org/10.5194/hess-24-5355-2020, 2020
Short summary
Short summary
The study investigates precipitation changes in the Alps, using observations and a 7 km resolution climate simulation over 1900–2010. An increase in mean precipitation is found in winter over the Alps, whereas a drying occurred in summer in the surrounding plains. A general increase in the daily annual maximum of precipitation is evidenced (20 to 40 % per century), suggesting an increase in extreme events that is significant only when considering long time series, typically 50 to 80 years.
Maxim Lamare, Marie Dumont, Ghislain Picard, Fanny Larue, François Tuzet, Clément Delcourt, and Laurent Arnaud
The Cryosphere, 14, 3995–4020, https://doi.org/10.5194/tc-14-3995-2020, https://doi.org/10.5194/tc-14-3995-2020, 2020
Short summary
Short summary
Terrain features found in mountainous regions introduce large errors into the calculation of the physical properties of snow using optical satellite images. We present a new model performing rapid calculations of solar radiation over snow-covered rugged terrain that we tested over a site in the French Alps. The results of the study show that all the interactions between sunlight and the terrain should be accounted for over snow-covered surfaces to correctly estimate snow properties from space.
Erwan Le Roux, Guillaume Evin, Nicolas Eckert, Juliette Blanchet, and Samuel Morin
Nat. Hazards Earth Syst. Sci., 20, 2961–2977, https://doi.org/10.5194/nhess-20-2961-2020, https://doi.org/10.5194/nhess-20-2961-2020, 2020
Short summary
Short summary
To minimize the risk of structure collapse due to extreme snow loads, structure standards rely on 50-year return levels of ground snow load (GSL), i.e. levels exceeded once every 50 years on average, that do not account for climate change. We study GSL data in the French Alps massifs from 1959 and 2019 and find that these 50-year return levels are decreasing with time between 900 and 4800 m of altitude, but they still exceed return levels of structure standards for half of the massifs at 1800 m.
César Deschamps-Berger, Simon Gascoin, Etienne Berthier, Jeffrey Deems, Ethan Gutmann, Amaury Dehecq, David Shean, and Marie Dumont
The Cryosphere, 14, 2925–2940, https://doi.org/10.5194/tc-14-2925-2020, https://doi.org/10.5194/tc-14-2925-2020, 2020
Short summary
Short summary
We evaluate a recent method to map snow depth based on satellite photogrammetry. We compare it with accurate airborne laser-scanning measurements in the Sierra Nevada, USA. We find that satellite data capture the relationship between snow depth and elevation at the catchment scale and also small-scale features like snow drifts and avalanche deposits. We conclude that satellite photogrammetry stands out as a convenient method to estimate the spatial distribution of snow depth in high mountains.
Patrick Le Moigne, François Besson, Eric Martin, Julien Boé, Aaron Boone, Bertrand Decharme, Pierre Etchevers, Stéphanie Faroux, Florence Habets, Matthieu Lafaysse, Delphine Leroux, and Fabienne Rousset-Regimbeau
Geosci. Model Dev., 13, 3925–3946, https://doi.org/10.5194/gmd-13-3925-2020, https://doi.org/10.5194/gmd-13-3925-2020, 2020
Short summary
Short summary
The study describes how a hydrometeorological model, operational at Météo-France, has been improved. Particular emphasis is placed on the impact of climatic data, surface, and soil parametrizations on the model results. Model simulations and evaluations carried out on a variety of measurements of river flows and snow depths are presented. All improvements in climate, surface data, and model physics have a positive impact on system performance.
Fanny Larue, Ghislain Picard, Laurent Arnaud, Inès Ollivier, Clément Delcourt, Maxim Lamare, François Tuzet, Jesus Revuelto, and Marie Dumont
The Cryosphere, 14, 1651–1672, https://doi.org/10.5194/tc-14-1651-2020, https://doi.org/10.5194/tc-14-1651-2020, 2020
Short summary
Short summary
The effect of surface roughness on snow albedo is often overlooked,
although a small change in albedo may strongly affect the surface energy
budget. By carving artificial roughness in an initially smooth snowpack,
we highlight albedo reductions of 0.03–0.04 at 700 nm and 0.06–0.10 at 1000 nm. A model using photon transport is developed to compute albedo considering roughness and applied to understand the impact of roughness as a function of snow properties and illumination conditions.
Ghislain Picard, Marie Dumont, Maxim Lamare, François Tuzet, Fanny Larue, Roberta Pirazzini, and Laurent Arnaud
The Cryosphere, 14, 1497–1517, https://doi.org/10.5194/tc-14-1497-2020, https://doi.org/10.5194/tc-14-1497-2020, 2020
Short summary
Short summary
Surface albedo is an essential variable of snow-covered areas. The measurement of this variable over a tilted terrain with levelled sensors is affected by artefacts that need to be corrected. Here we develop a theory of spectral albedo measurement over slopes from which we derive four correction algorithms. The comparison to in situ measurements taken in the Alps shows the adequacy of the theory, and the application of the algorithms shows systematic improvements.
Marion Leduc-Leballeur, Ghislain Picard, Giovanni Macelloni, Arnaud Mialon, and Yann H. Kerr
The Cryosphere, 14, 539–548, https://doi.org/10.5194/tc-14-539-2020, https://doi.org/10.5194/tc-14-539-2020, 2020
Short summary
Short summary
To study the coast and ice shelves affected by melt in Antarctica during the austral summer, we exploited the 1.4 GHz radiometric satellite observations. We showed that this frequency provides additional information on melt occurrence and on the location of the water in the snowpack compared to the 19 GHz observations. This opens an avenue for improving the melting season monitoring with a combination of both frequencies and exploring the possibility of deep-water detection in the snowpack.
Philippe Massicotte, Rémi Amiraux, Marie-Pier Amyot, Philippe Archambault, Mathieu Ardyna, Laurent Arnaud, Lise Artigue, Cyril Aubry, Pierre Ayotte, Guislain Bécu, Simon Bélanger, Ronald Benner, Henry C. Bittig, Annick Bricaud, Éric Brossier, Flavienne Bruyant, Laurent Chauvaud, Debra Christiansen-Stowe, Hervé Claustre, Véronique Cornet-Barthaux, Pierre Coupel, Christine Cox, Aurelie Delaforge, Thibaud Dezutter, Céline Dimier, Florent Domine, Francis Dufour, Christiane Dufresne, Dany Dumont, Jens Ehn, Brent Else, Joannie Ferland, Marie-Hélène Forget, Louis Fortier, Martí Galí, Virginie Galindo, Morgane Gallinari, Nicole Garcia, Catherine Gérikas Ribeiro, Margaux Gourdal, Priscilla Gourvil, Clemence Goyens, Pierre-Luc Grondin, Pascal Guillot, Caroline Guilmette, Marie-Noëlle Houssais, Fabien Joux, Léo Lacour, Thomas Lacour, Augustin Lafond, José Lagunas, Catherine Lalande, Julien Laliberté, Simon Lambert-Girard, Jade Larivière, Johann Lavaud, Anita LeBaron, Karine Leblanc, Florence Le Gall, Justine Legras, Mélanie Lemire, Maurice Levasseur, Edouard Leymarie, Aude Leynaert, Adriana Lopes dos Santos, Antonio Lourenço, David Mah, Claudie Marec, Dominique Marie, Nicolas Martin, Constance Marty, Sabine Marty, Guillaume Massé, Atsushi Matsuoka, Lisa Matthes, Brivaela Moriceau, Pierre-Emmanuel Muller, Christopher-John Mundy, Griet Neukermans, Laurent Oziel, Christos Panagiotopoulos, Jean-Jacques Pangrazi, Ghislain Picard, Marc Picheral, France Pinczon du Sel, Nicole Pogorzelec, Ian Probert, Bernard Quéguiner, Patrick Raimbault, Joséphine Ras, Eric Rehm, Erin Reimer, Jean-François Rontani, Søren Rysgaard, Blanche Saint-Béat, Makoto Sampei, Julie Sansoulet, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Caroline Sévigny, Yuan Shen, Margot Tragin, Jean-Éric Tremblay, Daniel Vaulot, Gauthier Verin, Frédéric Vivier, Anda Vladoiu, Jeremy Whitehead, and Marcel Babin
Earth Syst. Sci. Data, 12, 151–176, https://doi.org/10.5194/essd-12-151-2020, https://doi.org/10.5194/essd-12-151-2020, 2020
Short summary
Short summary
The Green Edge initiative was developed to understand the processes controlling the primary productivity and the fate of organic matter produced during the Arctic spring bloom (PSB). In this article, we present an overview of an extensive and comprehensive dataset acquired during two expeditions conducted in 2015 and 2016 on landfast ice southeast of Qikiqtarjuaq Island in Baffin Bay.
Christiaan T. van Dalum, Willem Jan van de Berg, Quentin Libois, Ghislain Picard, and Michiel R. van den Broeke
Geosci. Model Dev., 12, 5157–5175, https://doi.org/10.5194/gmd-12-5157-2019, https://doi.org/10.5194/gmd-12-5157-2019, 2019
Short summary
Short summary
Climate models are often limited to relatively simple snow albedo schemes. Therefore, we have developed the SNOWBAL module to couple a climate model with a physically based wavelength dependent snow albedo model. Using SNOWBAL v1.2 to couple the snow albedo model TARTES with the regional climate model RACMO2 indicates a potential performance gain for the Greenland ice sheet.
Jari-Pekka Nousu, Matthieu Lafaysse, Matthieu Vernay, Joseph Bellier, Guillaume Evin, and Bruno Joly
Nonlin. Processes Geophys., 26, 339–357, https://doi.org/10.5194/npg-26-339-2019, https://doi.org/10.5194/npg-26-339-2019, 2019
Short summary
Short summary
Forecasting the height of new snow is crucial for avalanche hazard, road viability, ski resorts and tourism. The numerical models suffer from systematic and significant errors which are misleading for the final users. Here, we applied for the first time a state-of-the-art statistical method to correct ensemble numerical forecasts of the height of new snow from their statistical link with measurements in French Alps and Pyrenees. Thus the realism of automatic forecasts can be quickly improved.
Pascal Hagenmuller, Frederic Flin, Marie Dumont, François Tuzet, Isabel Peinke, Philippe Lapalus, Anne Dufour, Jacques Roulle, Laurent Pézard, Didier Voisin, Edward Ando, Sabine Rolland du Roscoat, and Pascal Charrier
The Cryosphere, 13, 2345–2359, https://doi.org/10.5194/tc-13-2345-2019, https://doi.org/10.5194/tc-13-2345-2019, 2019
Short summary
Short summary
Light–absorbing particles (LAPs, e.g. dust or black carbon) in snow are a potent climate forcing agent. Their presence darkens the snow surface and leads to higher solar energy absorption. Several studies have quantified this radiative impact by assuming that LAPs were motionless in dry snow, without any clear evidence of this assumption. Using time–lapse X–ray tomography, we show that temperature gradient metamorphism of snow induces downward motion of LAPs, leading to self–cleaning of snow.
Francois Tuzet, Marie Dumont, Laurent Arnaud, Didier Voisin, Maxim Lamare, Fanny Larue, Jesus Revuelto, and Ghislain Picard
The Cryosphere, 13, 2169–2187, https://doi.org/10.5194/tc-13-2169-2019, https://doi.org/10.5194/tc-13-2169-2019, 2019
Short summary
Short summary
Here we present a novel method to estimate the impurity content (e.g. black carbon or mineral dust) in Alpine snow based on measurements of light extinction profiles. This method is proposed as an alternative to chemical measurements, allowing rapid retrievals of vertical concentrations of impurities in the snowpack. In addition, the results provide a better understanding of the impact of impurities on visible light extinction in snow.
Gauthier Verin, Florent Dominé, Marcel Babin, Ghislain Picard, and Laurent Arnaud
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-113, https://doi.org/10.5194/tc-2019-113, 2019
Publication in TC not foreseen
Short summary
Short summary
The results of two sampling campaigns conducted on landfast sea ice in Baffin Bay show that the melt season can be divided into four main phases during which surface albedo and snow properties show distinct signatures. A radiative transfer model was used to successfully reconstruct the albedo from snow properties. This modeling work highlights that only little changes on the very surface of the snowpack are able to dramatically change the albedo, a key element for the energy budget of sea ice.
Ghislain Picard, Laurent Arnaud, Romain Caneill, Eric Lefebvre, and Maxim Lamare
The Cryosphere, 13, 1983–1999, https://doi.org/10.5194/tc-13-1983-2019, https://doi.org/10.5194/tc-13-1983-2019, 2019
Short summary
Short summary
To study how snow accumulates in Antarctica, we analyze daily surface elevation recorded by an automatic laser scanner. We show that new snow often accumulates in thick patches covering a small fraction of the surface. Most patches are removed by erosion within weeks, implying that only a few contribute to the snowpack. This explains the heterogeneity on the surface and in the snowpack. These findings are important for surface mass and energy balance, photochemistry, and ice core interpretation.
Cécile B. Ménard, Richard Essery, Alan Barr, Paul Bartlett, Jeff Derry, Marie Dumont, Charles Fierz, Hyungjun Kim, Anna Kontu, Yves Lejeune, Danny Marks, Masashi Niwano, Mark Raleigh, Libo Wang, and Nander Wever
Earth Syst. Sci. Data, 11, 865–880, https://doi.org/10.5194/essd-11-865-2019, https://doi.org/10.5194/essd-11-865-2019, 2019
Short summary
Short summary
This paper describes long-term meteorological and evaluation datasets from 10 reference sites for use in snow modelling. We demonstrate how data sharing is crucial to the identification of errors and how the publication of these datasets contributes to good practice, consistency, and reproducibility in geosciences. The ease of use, availability, and quality of the datasets will help model developers quantify and reduce model uncertainties and errors.
Ann-Sophie Tissier, Jean-Michel Brankart, Charles-Emmanuel Testut, Giovanni Ruggiero, Emmanuel Cosme, and Pierre Brasseur
Ocean Sci., 15, 443–457, https://doi.org/10.5194/os-15-443-2019, https://doi.org/10.5194/os-15-443-2019, 2019
Short summary
Short summary
To better exploit the observational information available for all scales in data assimilation systems, we investigate a new method to introduce scale separation in the algorithm. It consists in carrying out the analysis with spectral localisation for the large scales and spatial localisation for the residual scales. The performance is then checked explicitly and separately for all scales. Results show that accuracy can be improved for the large scales while preserving reliability at all scales.
Pierre Spandre, Hugues François, Deborah Verfaillie, Marc Pons, Matthieu Vernay, Matthieu Lafaysse, Emmanuelle George, and Samuel Morin
The Cryosphere, 13, 1325–1347, https://doi.org/10.5194/tc-13-1325-2019, https://doi.org/10.5194/tc-13-1325-2019, 2019
Short summary
Short summary
This study investigates the snow reliability of 175 ski resorts in the Pyrenees (France, Spain and Andorra) and the French Alps under past and future conditions (1950–2100) using state-of-the-art climate projections and snowpack modelling accounting for snow management, i.e. grooming and snowmaking. The snow reliability of ski resorts shows strong elevation and regional differences, and our study quantifies changes in snow reliability induced by snowmaking under various climate scenarios.
Nicolas Champollion, Ghislain Picard, Laurent Arnaud, Éric Lefebvre, Giovanni Macelloni, Frédérique Rémy, and Michel Fily
The Cryosphere, 13, 1215–1232, https://doi.org/10.5194/tc-13-1215-2019, https://doi.org/10.5194/tc-13-1215-2019, 2019
Short summary
Short summary
The snow density close to the surface has been retrieved from satellite observations at Dome C on the Antarctic Ice Sheet. It shows a marked decrease between 2002 and 2011 of about 10 kg m-3 yr-1. This trend has been confirmed by in situ measurements and other satellite observations though no long-term meteorological evolution has been found. These results have implications for surface mass balance and energy budget.
Biagio Di Mauro, Roberto Garzonio, Micol Rossini, Gianluca Filippa, Paolo Pogliotti, Marta Galvagno, Umberto Morra di Cella, Mirco Migliavacca, Giovanni Baccolo, Massimiliano Clemenza, Barbara Delmonte, Valter Maggi, Marie Dumont, François Tuzet, Matthieu Lafaysse, Samuel Morin, Edoardo Cremonese, and Roberto Colombo
The Cryosphere, 13, 1147–1165, https://doi.org/10.5194/tc-13-1147-2019, https://doi.org/10.5194/tc-13-1147-2019, 2019
Short summary
Short summary
The snow albedo reduction due to dust from arid regions alters the melting dynamics of the snowpack, resulting in earlier snowmelt. We estimate up to 38 days of anticipated snow disappearance for a season that was characterized by a strong dust deposition event. This process has a series of further impacts. For example, earlier snowmelts may alter the hydrological cycle in the Alps, induce higher sensitivity to late summer drought, and finally impact vegetation and animal phenology.
Florent Garnier, Pierre Brasseur, Jean-Michel Brankart, Yeray Santana-Falcon, and Emmanuel Cosme
Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-153, https://doi.org/10.5194/os-2018-153, 2019
Publication in OS not foreseen
Yves Lejeune, Marie Dumont, Jean-Michel Panel, Matthieu Lafaysse, Philippe Lapalus, Erwan Le Gac, Bernard Lesaffre, and Samuel Morin
Earth Syst. Sci. Data, 11, 71–88, https://doi.org/10.5194/essd-11-71-2019, https://doi.org/10.5194/essd-11-71-2019, 2019
Short summary
Short summary
This paper introduces and provides access to a daily (1960–2017) and an hourly (1993–2017) dataset of snow and meteorological data measured at the Col de Porte site, 1325 m a.s.l, Charteuse, France. The daily dataset can be used to quantify the effect of climate change at this site, with a reduction of the mean snow depth of 39 cm from 1960–1990 to 1990–2017. The daily and hourly datasets are useful and appropriate for driving and evaluating a snowpack model over such a long period.
Gerhard Krinner, Chris Derksen, Richard Essery, Mark Flanner, Stefan Hagemann, Martyn Clark, Alex Hall, Helmut Rott, Claire Brutel-Vuilmet, Hyungjun Kim, Cécile B. Ménard, Lawrence Mudryk, Chad Thackeray, Libo Wang, Gabriele Arduini, Gianpaolo Balsamo, Paul Bartlett, Julia Boike, Aaron Boone, Frédérique Chéruy, Jeanne Colin, Matthias Cuntz, Yongjiu Dai, Bertrand Decharme, Jeff Derry, Agnès Ducharne, Emanuel Dutra, Xing Fang, Charles Fierz, Josephine Ghattas, Yeugeniy Gusev, Vanessa Haverd, Anna Kontu, Matthieu Lafaysse, Rachel Law, Dave Lawrence, Weiping Li, Thomas Marke, Danny Marks, Martin Ménégoz, Olga Nasonova, Tomoko Nitta, Masashi Niwano, John Pomeroy, Mark S. Raleigh, Gerd Schaedler, Vladimir Semenov, Tanya G. Smirnova, Tobias Stacke, Ulrich Strasser, Sean Svenson, Dmitry Turkov, Tao Wang, Nander Wever, Hua Yuan, Wenyan Zhou, and Dan Zhu
Geosci. Model Dev., 11, 5027–5049, https://doi.org/10.5194/gmd-11-5027-2018, https://doi.org/10.5194/gmd-11-5027-2018, 2018
Short summary
Short summary
This paper provides an overview of a coordinated international experiment to determine the strengths and weaknesses in how climate models treat snow. The models will be assessed at point locations using high-quality reference measurements and globally using satellite-derived datasets. How well climate models simulate snow-related processes is important because changing snow cover is an important part of the global climate system and provides an important freshwater resource for human use.
Fanny Larue, Alain Royer, Danielle De Sève, Alexandre Roy, and Emmanuel Cosme
Hydrol. Earth Syst. Sci., 22, 5711–5734, https://doi.org/10.5194/hess-22-5711-2018, https://doi.org/10.5194/hess-22-5711-2018, 2018
Short summary
Short summary
A data assimilation scheme was developed to improve snow water equivalent (SWE) simulations by updating meteorological forcings and snowpack states using passive microwave satellite observations. A chain of models was first calibrated to simulate satellite observations over northeastern Canada. The assimilation was then validated over 12 stations where daily SWE measurements were acquired during 4 winters (2012–2016). The overall SWE bias is reduced by 68 % compared to original SWE simulations.
Frank Techel, Christoph Mitterer, Elisabetta Ceaglio, Cécile Coléou, Samuel Morin, Francesca Rastelli, and Ross S. Purves
Nat. Hazards Earth Syst. Sci., 18, 2697–2716, https://doi.org/10.5194/nhess-18-2697-2018, https://doi.org/10.5194/nhess-18-2697-2018, 2018
Short summary
Short summary
In 1993, the European Avalanche Warning Services agreed upon a common danger scale to describe the regional avalanche hazard: the European Avalanche Danger Scale. Using published avalanche forecasts, we explored whether forecasters use the scale consistently. We noted differences in the use of the danger levels, some of which could be linked to the size of the regions a regional danger level is issued for. We recommend further harmonizing the avalanche forecast products in the Alps.
Alexander Kokhanovsky, Maxim Lamare, Biagio Di Mauro, Ghislain Picard, Laurent Arnaud, Marie Dumont, François Tuzet, Carsten Brockmann, and Jason E. Box
The Cryosphere, 12, 2371–2382, https://doi.org/10.5194/tc-12-2371-2018, https://doi.org/10.5194/tc-12-2371-2018, 2018
Short summary
Short summary
This work presents a new technique with which to derive the snow microphysical and optical properties from snow spectral reflectance measurements. The technique is robust and easy to use, and it does not require the extraction of snow samples from a given snowpack. It can be used in processing satellite imagery over extended fresh dry, wet and polluted snowfields.
Ghislain Picard, Melody Sandells, and Henning Löwe
Geosci. Model Dev., 11, 2763–2788, https://doi.org/10.5194/gmd-11-2763-2018, https://doi.org/10.5194/gmd-11-2763-2018, 2018
Short summary
Short summary
The Snow Microwave Radiative Transfer (SMRT) is a novel model developed to calculate how microwaves are scattered and emitted by snow. The model is built from separate, interconnecting modules to make it easy to compare different aspects of the theory. SMRT is the first model to allow a choice of how to represent the microstructure of the snow, which is extremely important, and has been used to unite multiple previous studies. This model will ultimately be used to observe snow from space.
Alexandra Touzeau, Amaëlle Landais, Samuel Morin, Laurent Arnaud, and Ghislain Picard
Geosci. Model Dev., 11, 2393–2418, https://doi.org/10.5194/gmd-11-2393-2018, https://doi.org/10.5194/gmd-11-2393-2018, 2018
Short summary
Short summary
We introduced a new module of water vapor diffusion into the snowpack model Crocus. Vapor transport locally modifies the density of snow layers, possibly influencing compaction. It also affects the original isotopic signature of snow layers. We also introduced water isotopes (𝛿18O) in the model. Over 10 years, the modeled attenuation of isotopic variations due to vapor diffusion is 7–18 % lower than the observations. Thus, other processes are required to explain the total attenuation.
Thomas Condom, Marie Dumont, Lise Mourre, Jean Emmanuel Sicart, Antoine Rabatel, Alessandra Viani, and Alvaro Soruco
Geosci. Instrum. Method. Data Syst., 7, 169–178, https://doi.org/10.5194/gi-7-169-2018, https://doi.org/10.5194/gi-7-169-2018, 2018
Short summary
Short summary
This study presents a new instrument called a low-cost albedometer (LCA) composed of two illuminance sensors. The ratio between reflected vs. incident illuminances is called the albedo index and can be compared with actual albedo values. We demonstrate that our system performs well and thus provides relevant opportunities to document spatiotemporal changes in the surface albedo from direct observations at the scale of an entire catchment at a low cost.
Fifi Ibrahime Adodo, Frédérique Remy, and Ghislain Picard
The Cryosphere, 12, 1767–1778, https://doi.org/10.5194/tc-12-1767-2018, https://doi.org/10.5194/tc-12-1767-2018, 2018
Short summary
Short summary
In Antarctica, the seasonal cycle of the backscatter behaves differently at high and low frequencies, peaking in winter and in summer, respectively. At the intermediate frequency, some areas behave analogously to low frequency in terms of the seasonal cycle, but other areas behave analogously to high frequency. This calls into question the empirical relationships often used to correct elevation changes from radar penetration into the snowpack using backscatter.
Mathieu Casado, Amaelle Landais, Ghislain Picard, Thomas Münch, Thomas Laepple, Barbara Stenni, Giuliano Dreossi, Alexey Ekaykin, Laurent Arnaud, Christophe Genthon, Alexandra Touzeau, Valerie Masson-Delmotte, and Jean Jouzel
The Cryosphere, 12, 1745–1766, https://doi.org/10.5194/tc-12-1745-2018, https://doi.org/10.5194/tc-12-1745-2018, 2018
Short summary
Short summary
Ice core isotopic records rely on the knowledge of the processes involved in the archival processes of the snow. In the East Antarctic Plateau, post-deposition processes strongly affect the signal found in the surface and buried snow compared to the initial climatic signal. We evaluate the different contributions to the surface snow isotopic composition between the precipitation and the exchanges with the atmosphere and the variability of the isotopic signal found in profiles from snow pits.
Marion Réveillet, Delphine Six, Christian Vincent, Antoine Rabatel, Marie Dumont, Matthieu Lafaysse, Samuel Morin, Vincent Vionnet, and Maxime Litt
The Cryosphere, 12, 1367–1386, https://doi.org/10.5194/tc-12-1367-2018, https://doi.org/10.5194/tc-12-1367-2018, 2018
Deborah Verfaillie, Matthieu Lafaysse, Michel Déqué, Nicolas Eckert, Yves Lejeune, and Samuel Morin
The Cryosphere, 12, 1249–1271, https://doi.org/10.5194/tc-12-1249-2018, https://doi.org/10.5194/tc-12-1249-2018, 2018
Short summary
Short summary
This article addresses local changes of seasonal snow and its meteorological drivers, at 1500 m altitude in the Chartreuse mountain range in the Northern French Alps, for the period 1960–2100. We use an ensemble of adjusted RCM outputs consistent with IPCC AR5 GCM outputs (RCPs 2.6, 4.5 and 8.5) and the snowpack model Crocus. Beyond scenario-based approach, global temperature levels on the order of 1.5 °C and 2 °C above preindustrial levels correspond to 25 and 32% reduction of mean snow depth.
Martin Beniston, Daniel Farinotti, Markus Stoffel, Liss M. Andreassen, Erika Coppola, Nicolas Eckert, Adriano Fantini, Florie Giacona, Christian Hauck, Matthias Huss, Hendrik Huwald, Michael Lehning, Juan-Ignacio López-Moreno, Jan Magnusson, Christoph Marty, Enrique Morán-Tejéda, Samuel Morin, Mohamed Naaim, Antonello Provenzale, Antoine Rabatel, Delphine Six, Johann Stötter, Ulrich Strasser, Silvia Terzago, and Christian Vincent
The Cryosphere, 12, 759–794, https://doi.org/10.5194/tc-12-759-2018, https://doi.org/10.5194/tc-12-759-2018, 2018
Short summary
Short summary
This paper makes a rather exhaustive overview of current knowledge of past, current, and future aspects of cryospheric issues in continental Europe and makes a number of reflections of areas of uncertainty requiring more attention in both scientific and policy terms. The review paper is completed by a bibliography containing 350 recent references that will certainly be of value to scholars engaged in the fields of glacier, snow, and permafrost research.
Lucas Davaze, Antoine Rabatel, Yves Arnaud, Pascal Sirguey, Delphine Six, Anne Letreguilly, and Marie Dumont
The Cryosphere, 12, 271–286, https://doi.org/10.5194/tc-12-271-2018, https://doi.org/10.5194/tc-12-271-2018, 2018
Short summary
Short summary
About 150 of the 250 000 inventoried glaciers are currently monitored with surface mass balance (SMB) measurements. To increase this number, we propose a method to retrieve annual and summer SMB from optical satellite imagery, with an application over 30 glaciers in the French Alps. Computing the glacier-wide averaged albedo allows us to reconstruct annual and summer SMB of most of the studied glaciers, highlighting the potential of this method to retrieve SMB of unmonitored glaciers.
Deborah Verfaillie, Michel Déqué, Samuel Morin, and Matthieu Lafaysse
Geosci. Model Dev., 10, 4257–4283, https://doi.org/10.5194/gmd-10-4257-2017, https://doi.org/10.5194/gmd-10-4257-2017, 2017
Francois Tuzet, Marie Dumont, Matthieu Lafaysse, Ghislain Picard, Laurent Arnaud, Didier Voisin, Yves Lejeune, Luc Charrois, Pierre Nabat, and Samuel Morin
The Cryosphere, 11, 2633–2653, https://doi.org/10.5194/tc-11-2633-2017, https://doi.org/10.5194/tc-11-2633-2017, 2017
Short summary
Short summary
Light-absorbing impurities deposited on snow, such as soot or dust, strongly modify its evolution. We implemented impurity deposition and evolution in a detailed snowpack model, thereby expanding the reach of such models into addressing the subtle interplays between snow physics and impurities' optical properties. Model results were evaluated based on innovative field observations at an Alpine site. This allows future investigations in the fields of climate, hydrology and avalanche prediction.
Jesús Revuelto, Grégoire Lecourt, Matthieu Lafaysse, Isabella Zin, Luc Charrois, Vincent Vionnet, Marie Dumont, Antoine Rabatel, Delphine Six, Thomas Condom, Samuel Morin, Alessandra Viani, and Pascal Sirguey
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-184, https://doi.org/10.5194/tc-2017-184, 2017
Revised manuscript not accepted
Short summary
Short summary
We evaluated distributed and semi-distributed modeling approaches to simulating the spatial and temporal evolution of snow and ice over an extended mountain catchment, using the Crocus snowpack model. The distributed approach simulated the snowpack dynamics on a 250-m grid, enabling inclusion of terrain shadowing effects. The semi-distributed approach simulated the snowpack dynamics for discrete topographic classes characterized by elevation range, aspect, and slope.
Christopher J. L. D'Amboise, Karsten Müller, Laurent Oxarango, Samuel Morin, and Thomas V. Schuler
Geosci. Model Dev., 10, 3547–3566, https://doi.org/10.5194/gmd-10-3547-2017, https://doi.org/10.5194/gmd-10-3547-2017, 2017
Short summary
Short summary
We present a new water percolation routine added to the Crocus model. The new routine is physically based, describing motion of water through a layered snowpack considering capillary-driven and gravity flow. We tested the routine on two data sets. Wet-snow layers were able to reach higher saturations than the empirical routine. Meaningful applicability is limited until new and better parameterizations of water retention are developed, and feedbacks are adjusted to handle higher saturations.
Mathieu Barrere, Florent Domine, Bertrand Decharme, Samuel Morin, Vincent Vionnet, and Matthieu Lafaysse
Geosci. Model Dev., 10, 3461–3479, https://doi.org/10.5194/gmd-10-3461-2017, https://doi.org/10.5194/gmd-10-3461-2017, 2017
Short summary
Short summary
Global warming projections still suffer from a limited representation of the permafrost–carbon feedback. This study assesses the capacity of snow-soil coupled models to simulate the permafrost thermal regime at Bylot Island, a high Arctic site. Significant flaws are found in the description of Arctic snow properties, resulting in erroneous heat transfers between the soil and the snow in simulations. Improved snow schemes are needed to accurately predict the future of permafrost.
Matthieu Lafaysse, Bertrand Cluzet, Marie Dumont, Yves Lejeune, Vincent Vionnet, and Samuel Morin
The Cryosphere, 11, 1173–1198, https://doi.org/10.5194/tc-11-1173-2017, https://doi.org/10.5194/tc-11-1173-2017, 2017
Short summary
Short summary
Physically based multilayer snowpack models suffer from various modelling errors. To represent these errors, we built the new multiphysical ensemble system ESCROC by implementing new representations of different physical processes in a coupled multilayer ground/snowpack model. This system is a promising tool to integrate snow modelling errors in ensemble forecasting and ensemble assimilation systems in support of avalanche hazard forecasting and other snowpack modelling applications.
Marie Dumont, Laurent Arnaud, Ghislain Picard, Quentin Libois, Yves Lejeune, Pierre Nabat, Didier Voisin, and Samuel Morin
The Cryosphere, 11, 1091–1110, https://doi.org/10.5194/tc-11-1091-2017, https://doi.org/10.5194/tc-11-1091-2017, 2017
Short summary
Short summary
Snow spectral albedo in the visible/near-infrared range has been continuously measured during a winter season at Col de Porte alpine site (French Alps; 45.30° N, 5.77°E; 1325 m a.s.l.). This study highlights that the variations of spectral albedo can be successfully explained by variations of the following snow surface variables: snow-specific surface area, effective light-absorbing impurities content, presence of liquid water and slope.
Pierre Spandre, Hugues François, Emmanuel Thibert, Samuel Morin, and Emmanuelle George-Marcelpoil
The Cryosphere, 11, 891–909, https://doi.org/10.5194/tc-11-891-2017, https://doi.org/10.5194/tc-11-891-2017, 2017
Short summary
Short summary
The production of machine-made snow is generalized in ski resorts and represents the most common adaptation method to mitigate effects of climate variability and its projected changes. However, the actual snow mass that can be recovered from a given water mass used for snowmaking remains poorly known. All results were consistent with 60 % (±10 %) of the water mass found as snow within the edge of the ski slope, with most of the lost fraction of water being due to site-dependent characteristics.
Florent Domine, Mathieu Barrere, and Samuel Morin
Biogeosciences, 13, 6471–6486, https://doi.org/10.5194/bg-13-6471-2016, https://doi.org/10.5194/bg-13-6471-2016, 2016
Short summary
Short summary
Warming-induced shrub growth in the Arctic traps snow and modifies snow properties, hence the permafrost thermal regime. In the Canadian high Arctic, we measured snow physical properties in the presence and absence of willow shrubs (Salix richardsonii). Shrubs dramatically reduce snow density and thermal conductivity, seriously limiting soil winter cooling. Simulations taking into account only winter changes show that shrub growth leads to a ground winter warming of up to 13 °C.
Mathieu Casado, Amaelle Landais, Ghislain Picard, Thomas Münch, Thomas Laepple, Barbara Stenni, Giuliano Dreossi, Alexey Ekaykin, Laurent Arnaud, Christophe Genthon, Alexandra Touzeau, Valérie Masson-Delmotte, and Jean Jouzel
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-263, https://doi.org/10.5194/tc-2016-263, 2016
Revised manuscript not accepted
Short summary
Short summary
Ice core isotopic records rely on the knowledge of the processes involved in the archival of the snow. In the East Antarctic Plateau, post-deposition processes strongly affect the signal found in the surface and buried snow compared to the initial climatic signal. We evaluate the different contributions to the surface snow isotopic composition between the precipitation and the exchanges with the atmosphere and the variability of the isotopic signal found in profiles from snow pits.
Ghislain Picard, Quentin Libois, and Laurent Arnaud
The Cryosphere, 10, 2655–2672, https://doi.org/10.5194/tc-10-2655-2016, https://doi.org/10.5194/tc-10-2655-2016, 2016
Short summary
Short summary
The absorption of visible light in ice is very weak but its precise value is unknown. By measuring the profile of light intensity in snow, Warren and Brand (2006) deduced that light is attenuated by a factor 2 per kilometer in pure ice at a wavelength of 400 nm. We replicated their experiment on a large number of samples and found that ice absorption is at least 10 times stronger. The paper explores various potential physical and statistical biases that could impact the experiment.
Pascal Sirguey, Holly Still, Nicolas J. Cullen, Marie Dumont, Yves Arnaud, and Jonathan P. Conway
The Cryosphere, 10, 2465–2484, https://doi.org/10.5194/tc-10-2465-2016, https://doi.org/10.5194/tc-10-2465-2016, 2016
Short summary
Short summary
Fourteen years of satellite observations are used to monitor the albedo of Brewster Glacier, New Zealand and estimate annual and seasonal balances. This confirms the governing role of the summer balance in the annual balance and allows the reconstruction of the annual balance to 1977 using a photographic record of the snowline. The longest mass balance record for a New Zealand glacier shows negative balances after 2008, yielding a loss of 35 % of the gain accumulated over the previous 30 years.
Josué Bock, Joël Savarino, and Ghislain Picard
Atmos. Chem. Phys., 16, 12531–12550, https://doi.org/10.5194/acp-16-12531-2016, https://doi.org/10.5194/acp-16-12531-2016, 2016
Short summary
Short summary
We develop a physically based parameterisation of the co-condensation process. Our model includes solid-state diffusion within a snow grain. It reproduces with good agreement the nitrate measurement in surface snow. Winter and summer concentrations are driven respectively by thermodynamic equilibrium and co-condensation. Adsorbed nitrate likely accounts for a minor part. This work shows that co-condensation is required to explain the chemical composition of snow undergoing temperature gradient.
Deborah Verfaillie, Michel Déqué, Samuel Morin, and Matthieu Lafaysse
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2016-168, https://doi.org/10.5194/gmd-2016-168, 2016
Revised manuscript not accepted
Louis Quéno, Vincent Vionnet, Ingrid Dombrowski-Etchevers, Matthieu Lafaysse, Marie Dumont, and Fatima Karbou
The Cryosphere, 10, 1571–1589, https://doi.org/10.5194/tc-10-1571-2016, https://doi.org/10.5194/tc-10-1571-2016, 2016
Short summary
Short summary
Simulations are carried out in the Pyrenees with the snowpack model Crocus, driven by meteorological forecasts from the model AROME at kilometer resolution. The evaluation is done with ground-based measurements, satellite data and reference simulations. Studying daily snow depth variations allows to separate different physical processes affecting the snowpack. We show the benefits of AROME kilometric resolution and dynamical behavior in terms of snowpack spatial variability in a mountain range.
Ghislain Picard, Laurent Arnaud, Jean-Michel Panel, and Samuel Morin
The Cryosphere, 10, 1495–1511, https://doi.org/10.5194/tc-10-1495-2016, https://doi.org/10.5194/tc-10-1495-2016, 2016
Short summary
Short summary
A cost-effective automatic laser scan has been built to measure snow depth spatio-temporal variations. Deployed in the Alps and in Dome C (Antarctica), two devices acquired daily scans covering a surface area of 100–150 m2. The precision and long-term stability of the measurements are about 1 cm and the accuracy is better than 5 cm. These high performances are particularly suited at Dome C, where it was possible to reveal that most of the accumulation in the year 2015 stems from a single event.
Mathieu Casado, Amaelle Landais, Valérie Masson-Delmotte, Christophe Genthon, Erik Kerstel, Samir Kassi, Laurent Arnaud, Ghislain Picard, Frederic Prie, Olivier Cattani, Hans-Christian Steen-Larsen, Etienne Vignon, and Peter Cermak
Atmos. Chem. Phys., 16, 8521–8538, https://doi.org/10.5194/acp-16-8521-2016, https://doi.org/10.5194/acp-16-8521-2016, 2016
Short summary
Short summary
Climatic conditions in Concordia are very cold (−55 °C in average) and very dry, imposing difficult conditions to measure the water vapour isotopic composition. New developments in infrared spectroscopy enable now the measurement of isotopic composition in water vapour traces (down to 20 ppmv). Here we present the results results of a first campaign of measurement of isotopic composition of water vapour in Concordia, the site where the 800 000 years long ice core was drilled.
Ghislain Picard, Quentin Libois, Laurent Arnaud, Gauthier Verin, and Marie Dumont
The Cryosphere, 10, 1297–1316, https://doi.org/10.5194/tc-10-1297-2016, https://doi.org/10.5194/tc-10-1297-2016, 2016
Short summary
Short summary
Albedo of snow surfaces depends on snow grain size. By measuring albedo during 3 years at Dome C in Antarctica with an automatic spectroradiometer, we were able to monitor the snow specific surface area and show an overall growth of the grains in spring and summer followed by an accumulation of small-grained snow from mid-summer. This study focuses on the uncertainties due to the spectroradiometer and concludes that the observed variations are significant with respect to the precision.
Richard Essery, Anna Kontu, Juha Lemmetyinen, Marie Dumont, and Cécile B. Ménard
Geosci. Instrum. Method. Data Syst., 5, 219–227, https://doi.org/10.5194/gi-5-219-2016, https://doi.org/10.5194/gi-5-219-2016, 2016
Short summary
Short summary
Physically based models that predict the properties of snow on the ground are used in many applications, but meteorological input data required by these models are hard to obtain in cold regions. Monitoring at the Sodankyla research station allows construction of model input and evaluation datasets covering several years for the first time in the Arctic. The data are used to show that a sophisticated snow model developed for warmer and wetter sites can perform well in very different conditions.
Bertrand Decharme, Eric Brun, Aaron Boone, Christine Delire, Patrick Le Moigne, and Samuel Morin
The Cryosphere, 10, 853–877, https://doi.org/10.5194/tc-10-853-2016, https://doi.org/10.5194/tc-10-853-2016, 2016
Short summary
Short summary
We analyze how snowpack processes and soil properties impact the soil temperature profiles over northern Eurasian regions using a land surface model. A correct representation of snow compaction is critical in winter while snow albedo is dominant in spring. In summer, soil temperature is more affected by soil organic carbon content, which strongly influences the maximum thaw depth in permafrost regions. This work was done to improve the representation of boreal region processes in climate models.
Lucie Bazin, Amaelle Landais, Emilie Capron, Valérie Masson-Delmotte, Catherine Ritz, Ghislain Picard, Jean Jouzel, Marie Dumont, Markus Leuenberger, and Frédéric Prié
Clim. Past, 12, 729–748, https://doi.org/10.5194/cp-12-729-2016, https://doi.org/10.5194/cp-12-729-2016, 2016
Short summary
Short summary
We present new measurements of δO2⁄N2 and δ18Oatm performed on well-conserved ice from EDC covering MIS5 and between 380 and 800 ka. The combination of the observation of a 100 ka periodicity in the new δO2⁄N2 record with a MIS5 multi-site multi-proxy study has revealed a potential influence of local climatic parameters on δO2⁄N2. Moreover, we propose that the varying delay between d18Oatm and precession for the last 800 ka is affected by the occurrence of ice sheet discharge events.
Alexandre Roy, Alain Royer, Olivier St-Jean-Rondeau, Benoit Montpetit, Ghislain Picard, Alex Mavrovic, Nicolas Marchand, and Alexandre Langlois
The Cryosphere, 10, 623–638, https://doi.org/10.5194/tc-10-623-2016, https://doi.org/10.5194/tc-10-623-2016, 2016
Q. Libois, G. Picard, L. Arnaud, M. Dumont, M. Lafaysse, S. Morin, and E. Lefebvre
The Cryosphere, 9, 2383–2398, https://doi.org/10.5194/tc-9-2383-2015, https://doi.org/10.5194/tc-9-2383-2015, 2015
Short summary
Short summary
The albedo and surface energy budget of the Antarctic Plateau are largely determined by snow specific surface area. The latter experiences substantial daily-to-seasonal variations in response to meteorological conditions. In particular, it decreases by a factor three in summer, causing a drop in albedo. These variations are monitored from in situ and remote sensing observations at Dome C. For the first time, they are also simulated with a snowpack evolution model adapted to Antarctic conditions.
H. Löwe and G. Picard
The Cryosphere, 9, 2101–2117, https://doi.org/10.5194/tc-9-2101-2015, https://doi.org/10.5194/tc-9-2101-2015, 2015
Short summary
Short summary
The paper establishes a theoretical link between two widely used microwave models for snow. The scattering formulations from both models are unified by reformulating their microstructure models in a common framework. The results show that the scattering formulations can be considered equivalent, if exactly the same microstructure model is used. The paper also provides a method to measure a hitherto unknown input parameter for the microwave models from tomography images of snow.
J. Erbland, J. Savarino, S. Morin, J. L. France, M. M. Frey, and M. D. King
Atmos. Chem. Phys., 15, 12079–12113, https://doi.org/10.5194/acp-15-12079-2015, https://doi.org/10.5194/acp-15-12079-2015, 2015
Short summary
Short summary
In this paper, we describe the development of a numerical model which aims at representing nitrate recycling at the air-snow interface on the East Antarctic Plateau. Stable isotopes are used as diagnostic and evaluation tools by comparing the model's results to recent field measurements of nitrate and key atmospheric species at Dome C, Antarctica. From sensitivity tests conducted with the model, we propose a framework for the interpretation of the nitrate isotope record in deep ice cores.
F. Domine, M. Barrere, D. Sarrazin, S. Morin, and L. Arnaud
The Cryosphere, 9, 1265–1276, https://doi.org/10.5194/tc-9-1265-2015, https://doi.org/10.5194/tc-9-1265-2015, 2015
Short summary
Short summary
The thermal conductivity of Arctic snow strongly impacts ground temperature, nutrient recycling and vegetation growth. We have monitored the thermal conductivity of snow in low-Arctic shrub tundra for two consecutive winters using heated needle probes. We observe very different thermal conductivity evolutions in both winters studied, with more extensive melting in the second winter. Results illustrate the effect of vegetation on snow properties and the need to include it in snow physics models.
G. A. Ruggiero, Y. Ourmières, E. Cosme, J. Blum, D. Auroux, and J. Verron
Nonlin. Processes Geophys., 22, 233–248, https://doi.org/10.5194/npg-22-233-2015, https://doi.org/10.5194/npg-22-233-2015, 2015
F. Brun, M. Dumont, P. Wagnon, E. Berthier, M. F. Azam, J. M. Shea, P. Sirguey, A. Rabatel, and Al. Ramanathan
The Cryosphere, 9, 341–355, https://doi.org/10.5194/tc-9-341-2015, https://doi.org/10.5194/tc-9-341-2015, 2015
X. V. Phan, L. Ferro-Famil, M. Gay, Y. Durand, M. Dumont, S. Morin, S. Allain, G. D'Urso, and A. Girard
The Cryosphere, 8, 1975–1987, https://doi.org/10.5194/tc-8-1975-2014, https://doi.org/10.5194/tc-8-1975-2014, 2014
H. Castebrunet, N. Eckert, G. Giraud, Y. Durand, and S. Morin
The Cryosphere, 8, 1673–1697, https://doi.org/10.5194/tc-8-1673-2014, https://doi.org/10.5194/tc-8-1673-2014, 2014
S. Metref, E. Cosme, C. Snyder, and P. Brasseur
Nonlin. Processes Geophys., 21, 869–885, https://doi.org/10.5194/npg-21-869-2014, https://doi.org/10.5194/npg-21-869-2014, 2014
P. Ginot, M. Dumont, S. Lim, N. Patris, J.-D. Taupin, P. Wagnon, A. Gilbert, Y. Arnaud, A. Marinoni, P. Bonasoni, and P. Laj
The Cryosphere, 8, 1479–1496, https://doi.org/10.5194/tc-8-1479-2014, https://doi.org/10.5194/tc-8-1479-2014, 2014
J.-C. Gallet, F. Domine, J. Savarino, M. Dumont, and E. Brun
The Cryosphere, 8, 1205–1215, https://doi.org/10.5194/tc-8-1205-2014, https://doi.org/10.5194/tc-8-1205-2014, 2014
J.-C. Gallet, F. Domine, and M. Dumont
The Cryosphere, 8, 1139–1148, https://doi.org/10.5194/tc-8-1139-2014, https://doi.org/10.5194/tc-8-1139-2014, 2014
G. Picard, A. Royer, L. Arnaud, and M. Fily
The Cryosphere, 8, 1105–1119, https://doi.org/10.5194/tc-8-1105-2014, https://doi.org/10.5194/tc-8-1105-2014, 2014
M. Dietzel, A. Leis, R. Abdalla, J. Savarino, S. Morin, M. E. Böttcher, and S. Köhler
Biogeosciences, 11, 3149–3161, https://doi.org/10.5194/bg-11-3149-2014, https://doi.org/10.5194/bg-11-3149-2014, 2014
C. M. Carmagnola, S. Morin, M. Lafaysse, F. Domine, B. Lesaffre, Y. Lejeune, G. Picard, and L. Arnaud
The Cryosphere, 8, 417–437, https://doi.org/10.5194/tc-8-417-2014, https://doi.org/10.5194/tc-8-417-2014, 2014
H. C. Steen-Larsen, V. Masson-Delmotte, M. Hirabayashi, R. Winkler, K. Satow, F. Prié, N. Bayou, E. Brun, K. M. Cuffey, D. Dahl-Jensen, M. Dumont, M. Guillevic, S. Kipfstuhl, A. Landais, T. Popp, C. Risi, K. Steffen, B. Stenni, and A. E. Sveinbjörnsdottír
Clim. Past, 10, 377–392, https://doi.org/10.5194/cp-10-377-2014, https://doi.org/10.5194/cp-10-377-2014, 2014
F. Domine, S. Morin, E. Brun, M. Lafaysse, and C. M. Carmagnola
The Cryosphere, 7, 1915–1929, https://doi.org/10.5194/tc-7-1915-2013, https://doi.org/10.5194/tc-7-1915-2013, 2013
Q. Libois, G. Picard, J. L. France, L. Arnaud, M. Dumont, C. M. Carmagnola, and M. D. King
The Cryosphere, 7, 1803–1818, https://doi.org/10.5194/tc-7-1803-2013, https://doi.org/10.5194/tc-7-1803-2013, 2013
P. Wagnon, C. Vincent, Y. Arnaud, E. Berthier, E. Vuillermoz, S. Gruber, M. Ménégoz, A. Gilbert, M. Dumont, J. M. Shea, D. Stumm, and B. K. Pokhrel
The Cryosphere, 7, 1769–1786, https://doi.org/10.5194/tc-7-1769-2013, https://doi.org/10.5194/tc-7-1769-2013, 2013
C. M. Carmagnola, F. Domine, M. Dumont, P. Wright, B. Strellis, M. Bergin, J. Dibb, G. Picard, Q. Libois, L. Arnaud, and S. Morin
The Cryosphere, 7, 1139–1160, https://doi.org/10.5194/tc-7-1139-2013, https://doi.org/10.5194/tc-7-1139-2013, 2013
V. Masson, P. Le Moigne, E. Martin, S. Faroux, A. Alias, R. Alkama, S. Belamari, A. Barbu, A. Boone, F. Bouyssel, P. Brousseau, E. Brun, J.-C. Calvet, D. Carrer, B. Decharme, C. Delire, S. Donier, K. Essaouini, A.-L. Gibelin, H. Giordani, F. Habets, M. Jidane, G. Kerdraon, E. Kourzeneva, M. Lafaysse, S. Lafont, C. Lebeaupin Brossier, A. Lemonsu, J.-F. Mahfouf, P. Marguinaud, M. Mokhtari, S. Morin, G. Pigeon, R. Salgado, Y. Seity, F. Taillefer, G. Tanguy, P. Tulet, B. Vincendon, V. Vionnet, and A. Voldoire
Geosci. Model Dev., 6, 929–960, https://doi.org/10.5194/gmd-6-929-2013, https://doi.org/10.5194/gmd-6-929-2013, 2013
J. Erbland, W. C. Vicars, J. Savarino, S. Morin, M. M. Frey, D. Frosini, E. Vince, and J. M. F. Martins
Atmos. Chem. Phys., 13, 6403–6419, https://doi.org/10.5194/acp-13-6403-2013, https://doi.org/10.5194/acp-13-6403-2013, 2013
M. Geyer, D. Salas Y Melia, E. Brun, and M. Dumont
The Cryosphere Discuss., https://doi.org/10.5194/tcd-7-3163-2013, https://doi.org/10.5194/tcd-7-3163-2013, 2013
Revised manuscript has not been submitted
M. Dumont, J. Gardelle, P. Sirguey, A. Guillot, D. Six, A. Rabatel, and Y. Arnaud
The Cryosphere, 6, 1527–1539, https://doi.org/10.5194/tc-6-1527-2012, https://doi.org/10.5194/tc-6-1527-2012, 2012
Related subject area
Data Assimilation
Bounded and categorized: targeting data assimilation for sea ice fractional coverage and nonnegative quantities in a single-column multi-category sea ice model
Assimilation of satellite swaths versus daily means of sea ice concentration in a regional coupled ocean–sea ice model
Impact of time-dependent data assimilation on ice flow model initialization and projections: a case study of Kjer Glacier, Greenland
Local analytical optimal nudging for assimilating AMSR2 sea ice concentration in a high-resolution pan-Arctic coupled ocean (HYCOM 2.2.98) and sea ice (CICE 5.1.2) model
A framework for time-dependent ice sheet uncertainty quantification, applied to three West Antarctic ice streams
Towards improving short-term sea ice predictability using deformation observations
Assimilating CryoSat-2 freeboard to improve Arctic sea ice thickness estimates
Exploring the potential of thermal infrared remote sensing to improve a snowpack model through an observing system simulation experiment
The effects of assimilating a sub-grid-scale sea ice thickness distribution in a new Arctic sea ice data assimilation system
Arctic sea ice data assimilation combining an ensemble Kalman filter with a novel Lagrangian sea ice model for the winter 2019–2020
Large-scale snow data assimilation using a spatialized particle filter: recovering the spatial structure of the particles
Assimilation of sea ice thickness derived from CryoSat-2 along-track freeboard measurements into the Met Office's Forecast Ocean Assimilation Model (FOAM)
A Bayesian approach towards daily pan-Arctic sea ice freeboard estimates from combined CryoSat-2 and Sentinel-3 satellite observations
Estimating parameters in a sea ice model using an ensemble Kalman filter
DeepBedMap: a deep neural network for resolving the bed topography of Antarctica
Assimilation of surface observations in a transient marine ice sheet model using an ensemble Kalman filter
Two-dimensional inversion of wideband spectral data from the capacitively coupled resistivity method – first applications in periglacial environments
Brief communication: Evaluation and inter-comparisons of Qinghai–Tibet Plateau permafrost maps based on a new inventory of field evidence
Impact of assimilating sea ice concentration, sea ice thickness and snow depth in a coupled ocean–sea ice modelling system
Estimation of sea ice parameters from sea ice model with assimilated ice concentration and SST
Impact of assimilating a merged sea-ice thickness from CryoSat-2 and SMOS in the Arctic reanalysis
A particle filter scheme for multivariate data assimilation into a point-scale snowpack model in an Alpine environment
Coupled land surface–subsurface hydrogeophysical inverse modeling to estimate soil organic carbon content and explore associated hydrological and thermal dynamics in the Arctic tundra
Brief communication: The challenge and benefit of using sea ice concentration satellite data products with uncertainty estimates in summer sea ice data assimilation
Effect of soil property uncertainties on permafrost thaw projections: a calibration-constrained analysis
Committed retreat of Smith, Pope, and Kohler Glaciers over the next 30 years inferred by transient model calibration
Adjoint accuracy for the full Stokes ice flow model: limits to the transmission of basal friction variability to the surface
Changing basal conditions during the speed-up of Jakobshavn Isbræ, Greenland
Molly M. Wieringa, Christopher Riedel, Jeffrey L. Anderson, and Cecilia M. Bitz
The Cryosphere, 18, 5365–5382, https://doi.org/10.5194/tc-18-5365-2024, https://doi.org/10.5194/tc-18-5365-2024, 2024
Short summary
Short summary
Statistically combining models and observations with data assimilation (DA) can improve sea ice forecasts but must address several challenges, including irregularity in ice thickness and coverage over the ocean. Using a sea ice column model, we show that novel, bounds-aware DA methods outperform traditional methods for sea ice. Additionally, thickness observations at sub-grid scales improve modeled ice estimates of both thick and thin ice, a finding relevant for forecasting applications.
Marina Durán Moro, Ann Kristin Sperrevik, Thomas Lavergne, Laurent Bertino, Yvonne Gusdal, Silje Christine Iversen, and Jozef Rusin
The Cryosphere, 18, 1597–1619, https://doi.org/10.5194/tc-18-1597-2024, https://doi.org/10.5194/tc-18-1597-2024, 2024
Short summary
Short summary
Individual satellite passes instead of daily means of sea ice concentration are used to correct the sea ice model forecast in the Barents Sea. The use of passes provides a significantly larger improvement of the forecasts even after a 7 d period due to the more precise information on temporal and spatial variability contained in the passes. One major advantage of the use of satellite passes is that there is no need to wait for the daily mean availability in order to update the forecast.
Youngmin Choi, Helene Seroussi, Mathieu Morlighem, Nicole-Jeanne Schlegel, and Alex Gardner
The Cryosphere, 17, 5499–5517, https://doi.org/10.5194/tc-17-5499-2023, https://doi.org/10.5194/tc-17-5499-2023, 2023
Short summary
Short summary
Ice sheet models are often initialized using snapshot observations of present-day conditions, but this approach has limitations in capturing the transient evolution of the system. To more accurately represent the accelerating changes in glaciers, we employed time-dependent data assimilation. We found that models calibrated with the transient data better capture past trends and more accurately reproduce changes after the calibration period, even with limited observations.
Keguang Wang, Alfatih Ali, and Caixin Wang
The Cryosphere, 17, 4487–4510, https://doi.org/10.5194/tc-17-4487-2023, https://doi.org/10.5194/tc-17-4487-2023, 2023
Short summary
Short summary
A simple, efficient. and accurate data assimilation method, local analytical optimal nudging (LAON), is introduced to assimilate high-resolution sea ice concentration in a pan-Arctic high-resolution coupled ocean and sea ice model. The method provides a new vision by nudging the model evolution to the optimal estimate forwardly, continuously, and smoothly. This method is applicable to the general nudging theory and applications in physics, Earth science, psychology, and behavior sciences.
Beatriz Recinos, Daniel Goldberg, James R. Maddison, and Joe Todd
The Cryosphere, 17, 4241–4266, https://doi.org/10.5194/tc-17-4241-2023, https://doi.org/10.5194/tc-17-4241-2023, 2023
Short summary
Short summary
Ice sheet models generate forecasts of ice sheet mass loss, a significant contributor to sea level rise; thus, capturing the complete range of possible projections of mass loss is of critical societal importance. Here we add to data assimilation techniques commonly used in ice sheet modelling (a Bayesian inference approach) and fully characterize calibration uncertainty. We successfully propagate this type of error onto sea level rise projections of three ice streams in West Antarctica.
Anton Korosov, Pierre Rampal, Yue Ying, Einar Ólason, and Timothy Williams
The Cryosphere, 17, 4223–4240, https://doi.org/10.5194/tc-17-4223-2023, https://doi.org/10.5194/tc-17-4223-2023, 2023
Short summary
Short summary
It is possible to compute sea ice motion from satellite observations and detect areas where ice converges (moves together), forms ice ridges or diverges (moves apart) and opens leads. However, it is difficult to predict the exact motion of sea ice and position of ice ridges or leads using numerical models. We propose a new method to initialise a numerical model from satellite observations to improve the accuracy of the forecasted position of leads and ridges for safer navigation.
Imke Sievers, Till A. S. Rasmussen, and Lars Stenseng
The Cryosphere, 17, 3721–3738, https://doi.org/10.5194/tc-17-3721-2023, https://doi.org/10.5194/tc-17-3721-2023, 2023
Short summary
Short summary
The satellite CryoSat-2 measures freeboard (FB), which is used to derive sea ice thickness (SIT) under the assumption of hydrostatic balance. This SIT comes with large uncertainties due to errors in the observed FB, sea ice density, snow density and snow thickness. This study presents a new method to derive SIT by assimilating the FB into the sea ice model, evaluates the resulting SIT against in situ observations and compares the results to the CryoSat-2-derived SIT without FB assimilation.
Esteban Alonso-González, Simon Gascoin, Sara Arioli, and Ghislain Picard
The Cryosphere, 17, 3329–3342, https://doi.org/10.5194/tc-17-3329-2023, https://doi.org/10.5194/tc-17-3329-2023, 2023
Short summary
Short summary
Data assimilation techniques are a promising approach to improve snowpack simulations in remote areas that are difficult to monitor. This paper studies the ability of satellite-observed land surface temperature to improve snowpack simulations through data assimilation. We show that it is possible to improve snowpack simulations, but the temporal resolution of the observations and the algorithm used are critical to obtain satisfactory results.
Nicholas Williams, Nicholas Byrne, Daniel Feltham, Peter Jan Van Leeuwen, Ross Bannister, David Schroeder, Andrew Ridout, and Lars Nerger
The Cryosphere, 17, 2509–2532, https://doi.org/10.5194/tc-17-2509-2023, https://doi.org/10.5194/tc-17-2509-2023, 2023
Short summary
Short summary
Observations show that the Arctic sea ice cover has reduced over the last 40 years. This study uses ensemble-based data assimilation in a stand-alone sea ice model to investigate the impacts of assimilating three different kinds of sea ice observation, including the novel assimilation of sea ice thickness distribution. We show that assimilating ice thickness distribution has a positive impact on thickness and volume estimates within the ice pack, especially for very thick ice.
Sukun Cheng, Yumeng Chen, Ali Aydoğdu, Laurent Bertino, Alberto Carrassi, Pierre Rampal, and Christopher K. R. T. Jones
The Cryosphere, 17, 1735–1754, https://doi.org/10.5194/tc-17-1735-2023, https://doi.org/10.5194/tc-17-1735-2023, 2023
Short summary
Short summary
This work studies a novel application of combining a Lagrangian sea ice model, neXtSIM, and data assimilation. It uses a deterministic ensemble Kalman filter to incorporate satellite-observed ice concentration and thickness in simulations. The neXtSIM Lagrangian nature is handled using a remapping strategy on a common homogeneous mesh. The ensemble is formed by perturbing air–ocean boundary conditions and ice cohesion. Thanks to data assimilation, winter Arctic sea ice forecasting is enhanced.
Jean Odry, Marie-Amélie Boucher, Simon Lachance-Cloutier, Richard Turcotte, and Pierre-Yves St-Louis
The Cryosphere, 16, 3489–3506, https://doi.org/10.5194/tc-16-3489-2022, https://doi.org/10.5194/tc-16-3489-2022, 2022
Short summary
Short summary
The research deals with the assimilation of in-situ local snow observations in a large-scale spatialized snow modeling framework over the province of Quebec (eastern Canada). The methodology is based on proposing multiple spatialized snow scenarios using the snow model and weighting them according to the available observations. The paper especially focuses on the spatial coherence of the snow scenario proposed in the framework.
Emma K. Fiedler, Matthew J. Martin, Ed Blockley, Davi Mignac, Nicolas Fournier, Andy Ridout, Andrew Shepherd, and Rachel Tilling
The Cryosphere, 16, 61–85, https://doi.org/10.5194/tc-16-61-2022, https://doi.org/10.5194/tc-16-61-2022, 2022
Short summary
Short summary
Sea ice thickness (SIT) observations derived from CryoSat-2 satellite measurements have been successfully used to initialise an ocean and sea ice forecasting model (FOAM). Other centres have previously used gridded and averaged SIT observations for this purpose, but we demonstrate here for the first time that SIT measurements along the satellite orbit track can be used. Validation of the resulting modelled SIT demonstrates improvements in the model performance compared to a control.
William Gregory, Isobel R. Lawrence, and Michel Tsamados
The Cryosphere, 15, 2857–2871, https://doi.org/10.5194/tc-15-2857-2021, https://doi.org/10.5194/tc-15-2857-2021, 2021
Short summary
Short summary
Satellite measurements of radar freeboard allow us to compute the thickness of sea ice from space; however attaining measurements across the entire Arctic basin typically takes up to 30 d. Here we present a statistical method which allows us to combine observations from three separate satellites to generate daily estimates of radar freeboard across the Arctic Basin. This helps us understand how sea ice thickness is changing on shorter timescales and what may be causing these changes.
Yong-Fei Zhang, Cecilia M. Bitz, Jeffrey L. Anderson, Nancy S. Collins, Timothy J. Hoar, Kevin D. Raeder, and Edward Blanchard-Wrigglesworth
The Cryosphere, 15, 1277–1284, https://doi.org/10.5194/tc-15-1277-2021, https://doi.org/10.5194/tc-15-1277-2021, 2021
Short summary
Short summary
Sea ice models suffer from large uncertainties arising from multiple sources, among which parametric uncertainty is highly under-investigated. We select a key ice albedo parameter and update it by assimilating either sea ice concentration or thickness observations. We found that the sea ice albedo parameter is improved by data assimilation, especially by assimilating sea ice thickness observations. The improved parameter can further benefit the forecast of sea ice after data assimilation stops.
Wei Ji Leong and Huw Joseph Horgan
The Cryosphere, 14, 3687–3705, https://doi.org/10.5194/tc-14-3687-2020, https://doi.org/10.5194/tc-14-3687-2020, 2020
Short summary
Short summary
A machine learning technique similar to the one used to enhance everyday photographs is applied to the problem of getting a better picture of Antarctica's bed – the part which is hidden beneath the ice. By taking hints from what satellites can observe at the ice surface, the novel method learns to generate a rougher bed topography that complements existing approaches, with a result that is able to be used by scientists running fine-scale ice sheet models relevant to predicting future sea levels.
Fabien Gillet-Chaulet
The Cryosphere, 14, 811–832, https://doi.org/10.5194/tc-14-811-2020, https://doi.org/10.5194/tc-14-811-2020, 2020
Short summary
Short summary
Marine-based sectors of the Antarctic Ice Sheet are increasingly contributing to sea-level rise. The basal conditions exert an important control on the ice dynamics. For obvious reasons of inaccessibility, they are an important source of uncertainties in numerical ice flow models used for sea-level projections. Here we assess the performance of an ensemble Kalman filter for the assimilation of transient observations of surface elevation and velocities in a marine ice sheet model.
Jan Mudler, Andreas Hördt, Anita Przyklenk, Gianluca Fiandaca, Pradip Kumar Maurya, and Christian Hauck
The Cryosphere, 13, 2439–2456, https://doi.org/10.5194/tc-13-2439-2019, https://doi.org/10.5194/tc-13-2439-2019, 2019
Short summary
Short summary
The capacitively coupled resistivity (CCR) method enables the determination of frequency-dependent electrical parameters of the subsurface. CCR is well suited for application in cryospheric areas because it provides logistical advantages regarding coupling on hard surfaces and highly resistive grounds. With our new spectral two-dimensional inversion, we can identify subsurface structures based on full spectral information. We show the first results of the inversion method on the field scale.
Bin Cao, Tingjun Zhang, Qingbai Wu, Yu Sheng, Lin Zhao, and Defu Zou
The Cryosphere, 13, 511–519, https://doi.org/10.5194/tc-13-511-2019, https://doi.org/10.5194/tc-13-511-2019, 2019
Short summary
Short summary
Many maps have been produced to estimate permafrost distribution over the Qinghai–Tibet Plateau. However the evaluation and inter-comparisons of them are poorly understood due to limited in situ measurements. We provided an in situ inventory of evidence of permafrost presence or absence, with 1475 sites over the Qinghai–Tibet Plateau. Based on the in situ measurements, our evaluation results showed a wide range of map performance, and the estimated permafrost region and area are extremely large.
Sindre Fritzner, Rune Graversen, Kai H. Christensen, Philip Rostosky, and Keguang Wang
The Cryosphere, 13, 491–509, https://doi.org/10.5194/tc-13-491-2019, https://doi.org/10.5194/tc-13-491-2019, 2019
Short summary
Short summary
In this work, a coupled ocean and sea-ice ensemble-based assimilation system is used to assess the impact of different observations on the assimilation system. The focus of this study is on sea-ice observations, including the use of satellite observations of sea-ice concentration, sea-ice thickness and snow depth for assimilation. The study showed that assimilation of sea-ice thickness in addition to sea-ice concentration has a large positive impact on the coupled model.
Siva Prasad, Igor Zakharov, Peter McGuire, Desmond Power, and Martin Richard
The Cryosphere, 12, 3949–3965, https://doi.org/10.5194/tc-12-3949-2018, https://doi.org/10.5194/tc-12-3949-2018, 2018
Short summary
Short summary
A numerical sea ice model, CICE, was used along with data assimilation to derive sea ice parameters in the region of Baffin Bay, Hudson Bay and Labrador Sea. The modelled ice parameters were compared with parameters estimated from remote-sensing data. The ice concentration, thickness and freeboard estimates from the model assimilated with both ice concentration and SST were found to be within the uncertainty of the observations except during March.
Jiping Xie, François Counillon, and Laurent Bertino
The Cryosphere, 12, 3671–3691, https://doi.org/10.5194/tc-12-3671-2018, https://doi.org/10.5194/tc-12-3671-2018, 2018
Short summary
Short summary
We use the winter sea-ice thickness dataset CS2SMOS merged from two satellites SMOS and CryoSat-2 for assimilation into an ice–ocean reanalysis of the Arctic, complemented by several other ocean and sea-ice measurements, using an Ensemble Kalman Filter. The errors of sea-ice thickness are reduced by 28% and the improvements persists through the summer when observations are unavailable. Improvements of ice drift are however limited to the Central Arctic.
Gaia Piazzi, Guillaume Thirel, Lorenzo Campo, and Simone Gabellani
The Cryosphere, 12, 2287–2306, https://doi.org/10.5194/tc-12-2287-2018, https://doi.org/10.5194/tc-12-2287-2018, 2018
Short summary
Short summary
The study focuses on the development of a multivariate particle filtering data assimilation scheme into a point-scale snow model. One of the main challenging issues concerns the impoverishment of the particle sample, which is addressed by jointly perturbing meteorological data and model parameters. An additional snow density model is introduced to reduce sensitivity to the availability of snow mass-related observations. In this configuration, the system reveals a satisfying performance.
Anh Phuong Tran, Baptiste Dafflon, and Susan S. Hubbard
The Cryosphere, 11, 2089–2109, https://doi.org/10.5194/tc-11-2089-2017, https://doi.org/10.5194/tc-11-2089-2017, 2017
Short summary
Short summary
Soil organics carbon (SOC) and its influence on terrestrial ecosystem feedbacks to global warming in permafrost regions are particularly important for the prediction of future climate variation. Our study proposes a new surface–subsurface, joint deterministic–stochastic hydrological–thermal–geophysical inversion approach and documents the benefit of including multiple types of data to estimate the vertical profile of SOC content and its influence on hydrological–thermal dynamics.
Qinghua Yang, Martin Losch, Svetlana N. Losa, Thomas Jung, Lars Nerger, and Thomas Lavergne
The Cryosphere, 10, 761–774, https://doi.org/10.5194/tc-10-761-2016, https://doi.org/10.5194/tc-10-761-2016, 2016
Short summary
Short summary
We assimilate the summer SICCI sea ice concentration data with an ensemble-based Kalman Filter. Comparing with the approach using a constant data uncertainty, the sea ice concentration estimates are further improved when the SICCI-provided uncertainty are taken into account, but the sea ice thickness cannot be improved. We find the data assimilation system cannot give a reasonable ensemble spread of sea ice concentration and thickness if the provided uncertainty are directly used.
D. R. Harp, A. L. Atchley, S. L. Painter, E. T. Coon, C. J. Wilson, V. E. Romanovsky, and J. C. Rowland
The Cryosphere, 10, 341–358, https://doi.org/10.5194/tc-10-341-2016, https://doi.org/10.5194/tc-10-341-2016, 2016
Short summary
Short summary
This paper investigates the uncertainty associated with permafrost thaw projections at an intensively monitored site. Permafrost thaw projections are simulated using a thermal hydrology model forced by a worst-case carbon emission scenario. The uncertainties associated with active layer depth, saturation state, thermal regime, and thaw duration are quantified and compared with the effects of climate model uncertainty on permafrost thaw projections.
D. N. Goldberg, P. Heimbach, I. Joughin, and B. Smith
The Cryosphere, 9, 2429–2446, https://doi.org/10.5194/tc-9-2429-2015, https://doi.org/10.5194/tc-9-2429-2015, 2015
Short summary
Short summary
We calibrate a time-dependent ice model through optimal fit to transient observations of surface elevation and velocity, a novel procedure in glaciology and in particular for an ice stream with a dynamic grounding line. We show this procedure gives a level of confidence in model projections that cannot be achieved through more commonly used glaciological data assimilation methods. We show that Smith Glacier is in a state of retreat regardless of climatic forcing for the next several decades.
N. Martin and J. Monnier
The Cryosphere, 8, 721–741, https://doi.org/10.5194/tc-8-721-2014, https://doi.org/10.5194/tc-8-721-2014, 2014
M. Habermann, M. Truffer, and D. Maxwell
The Cryosphere, 7, 1679–1692, https://doi.org/10.5194/tc-7-1679-2013, https://doi.org/10.5194/tc-7-1679-2013, 2013
Cited articles
Abaza, M., Anctil, F., Fortin, V., and Turcotte, R.: Exploration of sequential streamflow assimilation in snow dominated watersheds, Adv. Water Resour., 80, 79–89, 2015.
Andreadis, K. M. and Lettenmaier, D. P.: Assimilating remotely sensed snow observations into a macroscale hydrology model, Adv. Water Resour., 29, 872–886, https://doi.org/10.1016/j.advwatres.2005.08.004, 2006.
Bartelt, P. and Lehning, M.: A physical SNOWPACK model for the Swiss avalanche warning: Part I: numerical model, Cold Reg. Sci. Technol., 35, 123–145, https://doi.org/10.1016/S0165-232X(02)00074-5, 2002.
Bavay, M., Grünewald, T., and Lehning, M.: Response of snow cover and runoff to climate change in high Alpine catchments of Eastern Switzerland, Adv. Water Resour., 55, 4–16, https://doi.org/10.1016/j.advwatres.2012.12.009, 2013.
Blayo, É., Bocquet, M., Cosme, E., and Cugliandolo, L. F.: Advanced Data Assimilation for Geosciences: Lecture Notes of the Les Houches School of Physics: Special Issue, June 2012, Oxford University Press, Oxford, UK, 2014.
Boone, A. and Etchevers, P.: An intercomparison of three snow schemes of varying complexity coupled to the same land surface model: Local-scale evaluation at an Alpine site, J. Hydrometeorol., 2, 374–394, https://doi.org/10.1175/1525-7541(2001)002<0374:AIOTSS>2.0.CO;2, 2001.
Brun, E., Martin, E., Simon, V., Gendre, C., and Coléou, C.: An energy and mass model of snow cover suitable for operational avalanche forecasting, J. Glaciol., 35, 333–342, 1989.
Brun, E., David, P., Sudul, M., and Brunot, G.: A numerical model to simulate snow-cover stratigraphy for operational avalanche forecasting, J. Glaciol., 38, 13–22, http://refhub.elsevier.com/S0165-232X(14)00138-4/rf0155, 1992.
Brun, F., Dumont, M., Wagnon, P., Berthier, E., Azam, M. F., Shea, J. M., Sirguey, P., Rabatel, A., and Ramanathan, Al.: Seasonal changes in surface albedo of Himalayan glaciers from MODIS data and links with the annual mass balance, The Cryosphere, 9, 341–355, https://doi.org/10.5194/tc-9-341-2015, 2015.
Bühler, Y., Marty, M., Egli, L., Veitinger, J., Jonas, T., Thee, P., and Ginzler, C.: Snow depth mapping in high-alpine catchments using digital photogrammetry, The Cryosphere, 9, 229–243, https://doi.org/10.5194/tc-9-229-2015, 2015.
Carmagnola, C. M., Morin, S., Lafaysse, M., Domine, F., Lesaffre, B., Lejeune, Y., Picard, G., and Arnaud, L.: Implementation and evaluation of prognostic representations of the optical diameter of snow in the SURFEX/ISBA-Crocus detailed snowpack model, The Cryosphere, 8, 417–437, https://doi.org/10.5194/tc-8-417-2014, 2014.
Carpenter, T. M. and Georgakakos, K. P.: Impacts of parametric and radar rainfall uncertainty on the ensemble streamflow simulations of a distributed hydrologic model, J. Hydrol., 298, 202–221, https://doi.org/10.1016/j.jhydrol.2004.03.036, 2004.
Castebrunet, H., Eckert, N., Giraud, G., Durand, Y., and Morin, S.: Projected changes of snow conditions and avalanche activity in a warming climate: the French Alps over the 2020–2050 and 2070–2100 periods, The Cryosphere, 8, 1673–1697, https://doi.org/10.5194/tc-8-1673-2014, 2014., 2014.
Che, T., Li, X., Jin, R., and Huang, C.: Assimilating passive microwave remote sensing data into a land surface model to improve the estimation of snow depth, Remote Sens. Environ., 143, 54–63, 2014.
Clark, M. P., Slater, A. G., Barrett, A. P., Hay, L. E., McCabe, G. J., Rajagopalan, B., and Leavesley, G. H.: Assimilation of snow covered area information into hydrologic and land-surface models, Adv. Water Res., 29, 1209–1221, 2006.
Cordisco, E., Prigent, C., and Aires, F.: Snow characterization at a global scale with passive microwave satellite observations, J. Geophys. Res.-Atmos. (1984–2012), 111, D19102, https://doi.org/10.1029/2005JD006773, 2006.
Dechant, C. and Moradkhani, H.: Radiance data assimilation for operational snow and streamflow forecasting, Adv. Water Resour., 34, 351–364, https://doi.org/10.1016/j.advwatres.2010.12.009, 2011.
De Lannoy, G. J. M., Reichle, R. H., Arsenault, K. R., Houser, P. R., Kumar, S., Verhoest, N. E. C., and Pauwels, V. R. N.: Multiscale assimilation of Advanced Microwave Scanning Radiometer–EOS snow water equivalent and Moderate Resolution Imaging Spectroradiometer snow cover fraction observations in northern Colorado, Water Resour. Res., 48, W01522, https://doi.org/10.1029/2011WR010588, 2012.
Deodatis, G. and Shinozuka, M.: Auto-regressive model for nonstationary stochastic processes, J. Eng. Mech.-ASCE, 114, 1995–2012, https://doi.org/10.1061/(ASCE)0733-9399(1988)114:11(1995), 1988.
Doherty, S. J., Grenfell, T. C., Forsström, S., Hegg, D. L., Brandt, R. E., and Warren, S. G.: Observed vertical redistribution of black carbon and other insoluble light-absorbing particles in melting snow, J. Geophys. Res.-Atmos., 118, 5553–5569, https://doi.org/10.1002/jgrd.50235, 2013.
Domine, F., Sparapani, R., Ianniello, A., and Beine, H. J.: The origin of sea salt in snow on Arctic sea ice and in coastal regions, Atmos. Chem. Phys., 4, 2259–2271, https://doi.org/10.5194/acp-4-2259-2004, 2004.
Dong, J., Walker, J. P., Houser, P. R., and Sun, C.: Scanning multichannel microwave radiometer snow water equivalent assimilation, J. Geophys. Res.-Atmos. (1984–2012), 112, D07108, https://doi.org/10.1029/2006JD007209, 2007.
Dumont, M., Durand, Y., Arnaud, Y., and Six, D.: Variational assimilation of albedo in a snowpack model and reconstruction of the spatial mass-balance distribution of an alpine glacier, J. Glaciol., 58, 151–164, https://doi.org/10.3189/2012JoG11J163, 2012.
Dumont, M., Brun, E., Picard, G., Michou, M., Libois, Q., Petit, J., Geyer, M., Morin, S., and Josse, B.: Contribution of light-absorbing impurities in snow to Greenland/'s darkening since 2009, Nat. Geosci., 7, 509–512, https://doi.org/10.1038/ngeo2180, 2014.
Durand, M., Kim, E. J., and Margulis, S. A.: Radiance assimilation shows promise for snowpack characterization, Geophys. Res. Lett., 36, L02503, https://doi.org/10.1029/2008GL035214, 2009.
Durand, Y., Brun, E., Mérindol, L., Guyomarc'h, G., Lesaffre, B., and Martin, E.: A meteorological estimation of relevant parameters for snow models, Ann. Glaciol., 18, 65–71, http://www.igsoc.org/annals/18/igs_annals_vol18_year1993_pg65-71.html, 1993.
Durand, Y., Giraud, G., Brun, E., Mérindol, L., and Martin, E.: A computer-based system simulating snowpack structures as a tool for regional avalanche forecasting, J. Glaciol., 45, 469–484, 1999.
Essery, R., Morin, S., Lejeune, Y., and Menard, C. B.: A comparison of 1701 snow models using observations from an alpine site, Adv. Water Res., 55, 131–148, https://doi.org/10.1016/j.advwatres.2012.07.013, 2013.
Etchevers, P., Golaz, C., and Habets, F.: Simulation of the water budget and the river flows of the Rhone basin from 1981 to 1994, J. Hydrol., 244, 60–85, https://doi.org/10.1016/S0022-1694(01)00332-8, 2001.
Evensen, G.: Data assimilation: the ensemble Kalman filter, Springer Science and Business Media, Berlin, Germany, 2009.
Fortin, V., Abaza, M., Anctil, F., and Turcotte, R.: Why should ensemble spread match the RMSE of the ensemble mean, J. Hydrometeorol., 15, 1708–1713, https://doi.org/10.1175/JHM-D-14-0008.1, 2014.
Foster, J. L., Sun, C., Walker, J. P., Kelly, R., Chang, A., Dong, J., and Powell, H.: Quantifying the uncertainty in passive microwave snow water equivalent observations, Remote Sens. Environ., 94, 187–203, https://doi.org/10.1016/j.rse.2004.09.012, 2005.
Gabbi, J., Huss, M., Bauder, A., Cao, F., and Schwikowski, M.: The impact of Saharan dust and black carbon on albedo and long-term mass balance of an Alpine glacier, The Cryosphere, 9, 1385–1400, https://doi.org/10.5194/tc-9-1385-2015, 2015.
Gordon, N. J., Salmond, D. J., and Smith, A. F.: Novel approach to nonlinear/non-Gaussian Bayesian state estimation, IEE Proc.-F, 140, 107–113, 1993.
Hall, D. K. and Riggs, G. A.: Accuracy assessment of the MODIS snow products, Hydrol. Process., 21, 1534–1547, https://doi.org/10.1002/hyp.6715, 2007.
Jordan, R.: A One-Dimensional Temperature Model for a Snow Cover: Technical Documentation for SNTHERM. 89., Tech. rep., Cold Regions Research and Engineering Lab, Hanover, NH, USA, 1991.
Kitagawa, G.: Monte Carlo filter and smoother for non-Gaussian nonlinear state space models, J. Comput. Graph. Stat., 5, 1–25, 1996.
Lehning, M., Völksch, I., Gustafsson, D., Nguyen, T. A., Stähli, M., and Zappa, M.: ALPINE3D: a detailed model of mountain surface processes and its application to snow hydrology, Hydrol. Process., 20, 2111–2128, https://doi.org/10.1002/hyp.6204, 2006.
Li, W., Stamnes, K., Chen, B., and Xiong, X.: Snow grain size retrieved from near-infrared radiances at multiple wavelengths, Geophys. Res. Lett., 28, 1699–1702, https://doi.org/10.1029/2000GL011641, 2001.
Libois, Q., Picard, G., France, J. L., Arnaud, L., Dumont, M., Carmagnola, C. M., and King, M. D.: Influence of grain shape on light penetration in snow, The Cryosphere, 7, 1803–1818, https://doi.org/10.5194/tc-7-1803-2013, 2013.
Libois, Q., Picard, G., Dumont, M., Arnaud, L., Sergent, C., Pougatch, E., Sudul, M., and Vial, D.: Experimental determination of the absorption enhancement parameter of snow, J. Glaciol., 60, 714–724, https://doi.org/10.1002/2014JD022361, 2014.
Liu, Y., Peters-Lidard, C. D., Kumar, S., Foster, J. L., Shaw, M., Tian, Y., and Fall, G. M.: Assimilating satellite-based snow depth and snow cover products for improving snow predictions in Alaska, Adv. Water Res., 54, 208–227, https://doi.org/10.1016/j.advwatres.2013.02.005, 2013.
López-Moreno, J. I., Fassnacht, S. R., Beguería, S., and Latron, J. B. P.: Variability of snow depth at the plot scale: implications for mean depth estimation and sampling strategies, The Cryosphere, 5, 617–629, https://doi.org/10.5194/tc-5-617-2011, 2011.
Masson, V., Le Moigne, P., Martin, E., Faroux, S., Alias, A., Alkama, R., Belamari, S., Barbu, A., Boone, A., Bouyssel, F., Brousseau, P., Brun, E., Calvet, J.-C., Carrer, D., Decharme, B., Delire, C., Donier, S., Essaouini, K., Gibelin, A.-L., Giordani, H., Habets, F., Jidane, M., Kerdraon, G., Kourzeneva, E., Lafaysse, M., Lafont, S., Lebeaupin Brossier, C., Lemonsu, A., Mahfouf, J.-F., Marguinaud, P., Mokhtari, M., Morin, S., Pigeon, G., Salgado, R., Seity, Y., Taillefer, F., Tanguy, G., Tulet, P., Vincendon, B., Vionnet, V., and Voldoire, A.: The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes, Geosci. Model Dev., 6, 929–960, https://doi.org/10.5194/gmd-6-929-2013, 2013.
Morin, S.: Observation and numerical modeling of snow on the ground: use of existing tools and contribution to ongoing developments, Habilitation à diriger des recherches, Université Joseph Fourier, Grenoble, France, available at: https://tel.archives-ouvertes.fr/tel-01098576 (last access: 12 May 2016), 2014.
Morin, S., Lejeune, Y., Lesaffre, B., Panel, J.-M., Poncet, D., David, P., and Sudul, M.: An 18-yr long (1993–2011) snow and meteorological dataset from a mid-altitude mountain site (Col de Porte, France, 1325 m alt.) for driving and evaluating snowpack models, Earth Syst. Sci. Data, 4, 13–21, https://doi.org/10.5194/essd-4-13-2012, 2012.
Navari, M., Margulis, S. A., Bateni, S. M., Tedesco, M., Alexander, P., and Fettweis, X.: Feasibility of improving a priori regional climate model estimates of Greenland ice sheet surface mass loss through assimilation of measured ice surface temperatures, The Cryosphere, 10, 103–120, https://doi.org/10.5194/tc-10-103-2016, 2016.
Noilhan, J. and Planton, S.: A simple parameterization of land surface processes for meteorological models, Mon. Weather Rev., 117, 536–549, https://doi.org/10.1175/1520-0493(1989)117<0536:ASPOLS>2.0.CO;2, 1989.
Painter, T. H., Barrett, A. P., Landry, C. C., Neff, J. C., Cassidy, M. P., Lawrence, C. R., McBride, K. E., and Farmer, G. L.: Impact of disturbed desert soils on duration of mountain snow cover, Geophys. Res. Lett., 34, L12502, https://doi.org/10.1029/2007GL030284, 2007.
Phan, X. V., Ferro-Famil, L., Gay, M., Durand, Y., Dumont, M., Morin, S., Allain, S., D'Urso, G., and Girard, A.: 1D-Var multilayer assimilation of X-band SAR data into a detailed snowpack model, The Cryosphere, 8, 1975–1987, https://doi.org/10.5194/tc-8-1975-2014, 2014.
Quintana Segui, P., Moigne, P. L., Durand, Y., Martin, E., Habets, F., Baillon, M., Canella, C., Franchisteguy, L., and Morel, S.: Analysis of near surface atmospheric variables: validation of the SAFRAN analysis over France, J. Appl. Meteorol. Clim., 47, 92–107, https://doi.org/10.1175/2007JAMC1636.1, 2008.
Raleigh, M. S., Lundquist, J. D., and Clark, M. P.: Exploring the impact of forcing error characteristics on physically based snow simulations within a global sensitivity analysis framework, Hydrol. Earth Syst. Sci., 19, 3153–3179, https://doi.org/10.5194/hess-19-3153-2015, 2015.
Reichle, R. H.: Data assimilation methods in the Earth sciences, Adv. Water Resour., 31, 1411–1418, 2008.
Sirguey, P., Mathieu, R., and Arnaud, Y.: Subpixel monitoring of the seasonal snow cover with MODIS at 250 m spatial resolution in the Southern Alps of New Zealand: methodology and accuracy assessment, Remote Sens. Environ., 113, 160–181, https://doi.org/10.1016/j.rse.2008.09.008, 2009.
Snyder, C., Bengtsson, T., Bickel, P., and Anderson, J.: Obstacles to high-dimensional particle filtering, Mon. Weather Rev., 136, 4629–4640, https://doi.org/10.1175/2008MWR2529.1, 2008.
Stankov, B., Cline, D., Weber, B., Gasiewski, A., and Wick, G.: High-resolution airborne polarimetric microwave imaging of snow cover during the NASA cold land processes experiment, IEEE T. Geosci. Remote S., 46, 3672–3693, https://doi.org/10.1109/TGRS.2008.2000625, 2008.
Sun, C., Walker, J. P., and Houser, P. R.: A methodology for snow data assimilation in a land surface model, J. Geophys. Res.-Atmos., 109, D08108, https://doi.org/10.1029/2003JD003765, 2004.
Tedesco, M., Reichle, R., Löw, A., Markus, T., and Foster, J. L.: Dynamic approaches for snow depth retrieval from spaceborne microwave brightness temperature, , IEEE T. Geosci. Remote S., 48, 1955–1967, https://doi.org/10.1109/TGRS.2009.2036910, 2010.
Van Leeuwen, P. J.: Particle filtering in geophysical systems, Mon. Weather Rev., 137, 4089–4114, https://doi.org/10.1175/2009MWR2835.1, 2009.
Van Leeuwen, P. J.: Particle filters for the geosciences, Advanced Data Assimilation for Geosciences: Lecture Notes of the Les Houches School of Physics: Special Issue, June 2012, p. 291, https://doi.org/10.1093/acprof:oso/9780198723844.003.0013, 2014.
Veitinger, J., Sovilla, B., and Purves, R. S.: Influence of snow depth distribution on surface roughness in alpine terrain: a multi-scale approach, The Cryosphere, 8, 547–569, https://doi.org/10.5194/tc-8-547-2014, 2014.
Vernay, M., Lafaysse, M., Mérindol, L., Giraud, G., and Morin, S.: Ensemble forecasting of snowpack conditions and avalanche hazard, Cold Reg. Sci. Technol., 120, 251–262, https://doi.org/10.1016/j.coldregions.2015.04.010, 2015.
Vionnet, V., Brun, E., Morin, S., Boone, A., Faroux, S., Le Moigne, P., Martin, E., and Willemet, J.-M.: The detailed snowpack scheme Crocus and its implementation in SURFEX v7.2, Geosci. Model Dev., 5, 773–791, https://doi.org/10.5194/gmd-5-773-2012, 2012.
Warren, S.: Optical properties of snow, Rev. Geophys., 20, 67–89, https://doi.org/10.1029/RG020i001p00067, 1982.
Warren, S. G. and Clarke, A. D.: Soot in the atmosphere and snow surface of Antarctica, J. Geophys. Res.-Atmos. (1984–2012), 95, 1811–1816, https://doi.org/10.1029/JD095iD02p01811, 1990.
Wright, P., Bergin, M., Dibb, J., Lefer, B., Domine, F., Carman, T., Carmagnola, C. M., Dumont, M., Courville, Z., Schaaf, C., and Wang, Z.: Comparing MODIS daily snow albedo to spectral albedo field measurements in Central Greenland, Remote Sens. Environ., 140, 118–129, https://doi.org/10.1016/j.rse.2013.08.044, 2014.
Short summary
This study investigates the assimilation of optical reflectances, snowdepth data and both combined into a multilayer snowpack model. Data assimilation is performed with an ensemble-based method, the Sequential Importance Resampling Particle filter. Experiments assimilating only synthetic data are conducted at one point in the French Alps, the Col du Lautaret, over five hydrological years. Results of the assimilation experiments show improvements of the snowpack bulk variables estimates.
This study investigates the assimilation of optical reflectances, snowdepth data and both...