Articles | Volume 18, issue 8
https://doi.org/10.5194/tc-18-3857-2024
https://doi.org/10.5194/tc-18-3857-2024
Research article
 | 
28 Aug 2024
Research article |  | 28 Aug 2024

Retrieval of snow and soil properties for forward radiative transfer modeling of airborne Ku-band SAR to estimate snow water equivalent: the Trail Valley Creek 2018/19 snow experiment

Benoit Montpetit, Joshua King, Julien Meloche, Chris Derksen, Paul Siqueira, J. Max Adam, Peter Toose, Mike Brady, Anna Wendleder, Vincent Vionnet, and Nicolas R. Leroux

Related authors

Radar Equivalent Snowpack: reducing the number of snow layers while retaining its microwave properties and bulk snow mass
Julien Meloche, Nicolas R. Leroux, Benoit Montpetit, Vincent Vionnet, and Chris Derksen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3169,https://doi.org/10.5194/egusphere-2024-3169, 2024
Short summary
Subgridding high-resolution numerical weather forecast in the Canadian Selkirk mountain range for local snow modeling in a remote sensing perspective
Paul Billecocq, Alexandre Langlois, and Benoit Montpetit
The Cryosphere, 18, 2765–2782, https://doi.org/10.5194/tc-18-2765-2024,https://doi.org/10.5194/tc-18-2765-2024, 2024
Short summary
Sea ice transport and replenishment across and within the Canadian Arctic Archipelago, 2016–2022
Stephen E. L. Howell, David G. Babb, Jack C. Landy, Isolde A. Glissenaar, Kaitlin McNeil, Benoit Montpetit, and Mike Brady
The Cryosphere, 18, 2321–2333, https://doi.org/10.5194/tc-18-2321-2024,https://doi.org/10.5194/tc-18-2321-2024, 2024
Short summary
InSAR monitoring of Arctic land fast sea ice deformation using L-band ALOS-2, C-band Radarsat-2 and Sentinel-1
Zhaohua Chen, Benoit Montpetit, Sarah Banks, Lori White, Amir Behnamian, Jason Duffe, and Jon Pasher
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-18,https://doi.org/10.5194/tc-2021-18, 2021
Manuscript not accepted for further review

Related subject area

Discipline: Snow | Subject: Remote Sensing
Improved snow property retrievals by solving for topography in the inversion of at-sensor radiance measurements
Brenton A. Wilder, Joachim Meyer, Josh Enterkine, and Nancy F. Glenn
The Cryosphere, 18, 5015–5029, https://doi.org/10.5194/tc-18-5015-2024,https://doi.org/10.5194/tc-18-5015-2024, 2024
Short summary
Simulation of Arctic snow microwave emission in surface-sensitive atmosphere channels
Melody Sandells, Nick Rutter, Kirsty Wivell, Richard Essery, Stuart Fox, Chawn Harlow, Ghislain Picard, Alexandre Roy, Alain Royer, and Peter Toose
The Cryosphere, 18, 3971–3990, https://doi.org/10.5194/tc-18-3971-2024,https://doi.org/10.5194/tc-18-3971-2024, 2024
Short summary
Evaluating L-band InSAR snow water equivalent retrievals with repeat ground-penetrating radar and terrestrial lidar surveys in northern Colorado
Randall Bonnell, Daniel McGrath, Jack Tarricone, Hans-Peter Marshall, Ella Bump, Caroline Duncan, Stephanie Kampf, Yunling Lou, Alex Olsen-Mikitowicz, Megan Sears, Keith Williams, Lucas Zeller, and Yang Zheng
The Cryosphere, 18, 3765–3785, https://doi.org/10.5194/tc-18-3765-2024,https://doi.org/10.5194/tc-18-3765-2024, 2024
Short summary
Reanalyzing the spatial representativeness of snow depth at automated monitoring stations using airborne lidar data
Jordan N. Herbert, Mark S. Raleigh, and Eric E. Small
The Cryosphere, 18, 3495–3512, https://doi.org/10.5194/tc-18-3495-2024,https://doi.org/10.5194/tc-18-3495-2024, 2024
Short summary
Tower-based C-band radar measurements of an alpine snowpack
Isis Brangers, Hans-Peter Marshall, Gabrielle De Lannoy, Devon Dunmire, Christian Mätzler, and Hans Lievens
The Cryosphere, 18, 3177–3193, https://doi.org/10.5194/tc-18-3177-2024,https://doi.org/10.5194/tc-18-3177-2024, 2024
Short summary

Cited articles

Calonne, N., Richter, B., Löwe, H., Cetti, C., ter Schure, J., Van Herwijnen, A., Fierz, C., Jaggi, M., and Schneebeli, M.: The RHOSSA campaign: multi-resolution monitoring of the seasonal evolution of the structure and mechanical stability of an alpine snowpack, The Cryosphere, 14, 1829–1848, https://doi.org/10.5194/tc-14-1829-2020, 2020. a, b, c, d, e
Cho, E., Vuyovich, C. M., Kumar, S. V., Wrzesien, M. L., and Kim, R. S.: Evaluating the utility of active microwave observations as a snow mission concept using observing system simulation experiments, The Cryosphere, 17, 3915–3931, https://doi.org/10.5194/tc-17-3915-2023, 2023. a
Conn, A. R., Scheinberg, K., and Vicente, L. N.: Introduction to Derivative-Free Optimization, SIAM, Chap. 11, 173–205, 2009. a
Derksen, C., Sturm, M., Liston, G., Holmgren, J., Huntington, H., Silis, A., and Solie, D.: Northwest Territories and Nunavut Snow Characteristics from a Subarctic Traverse: Implications for Passive Microwave Remote Sensing, J. Hydrometeorol., 10, 448–463, https://doi.org/10.1175/2008JHM1074.1, 2009. a, b, c
Derksen, C., Smith, S., Sharp, M., Brown, L., Howell, S., Copland, L., Mueller, D., Gauthier, Y., Fletcher, C., Tivy, A., Bernier, M., Bourgeois, J., Brown, R., Burn, C., Duguay, C., Kushner, P., Langlois, A., Lewkowicz, A., Royer, A., and Walker, A.: Variability and Change in the Canadian Cryosphere, Clim. Change, 115, 59–88, https://doi.org/10.1007/s10584-012-0470-0, 2012. a, b
Download
Short summary
This paper validates the use of free open-source models to link distributed snow measurements to radar measurements in the Canadian Arctic. Using multiple radar sensors, we can decouple the soil from the snow contribution. We then retrieve the "microwave snow grain size" to characterize the interaction between the snow mass and the radar signal. This work supports future satellite mission development to retrieve snow mass information such as the future Canadian Terrestrial Snow Mass Mission.