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Abstract. Accurate snow information at high spatial and
temporal resolution is needed to support climate services,
water resource management, and environmental prediction
services. However, snow remains the only element of the wa-
ter cycle without a dedicated Earth observation mission. The
snow scientific community has shown that Ku-band radar
measurements provide quality snow information with its sen-
sitivity to snow water equivalent and the wet/dry state of
snow. With recent developments of tools like the snow mi-
cropenetrometer (SMP) to retrieve snow microstructure data
in the field and radiative transfer models like the Snow Mi-
crowave Radiative Transfer (SMRT) model, it becomes pos-
sible to properly characterize the snow and how it trans-
lates into radar backscatter measurements. An experiment
at Trail Valley Creek (TVC), Northwest Territories, Canada,
was conducted during the winter of 2018/19 in order to
characterize the impacts of varying snow geophysical prop-
erties on Ku-band radar backscatter at a 100 m scale. Air-
borne Ku-band data were acquired using the University of
Massachusetts radar instrument. This study shows that it is
possible to calibrate SMP data to retrieve statistical infor-
mation on snow geophysical properties and properly char-
acterize a representative snowpack at the experiment scale.
The tundra snowpack measured during the campaign can
be characterize by two layers corresponding to a rounded
snow grain layer and a depth hoar layer. Using RADARSAT-

2 and TerraSAR-X data, soil background roughness prop-
erties were retrieved (msssoil = 0.010± 0.002), and it was
shown that a single value could be used for the entire domain.
Microwave snow grain size polydispersity values of 0.74
and 1.11 for rounded and depth hoar snow grains, respec-
tively, were retrieved. Using the geometrical optics surface
backscatter model, the retrieved effective soil permittivity in-
creased from C-band (εsoil = 2.47) to X-band (εsoil = 2.61)
and to Ku-band (εsoil = 2.77) for the TVC domain. Using
the SMRT and the retrieved soil and snow parameterizations,
an RMSE of 2.6 dB was obtained between the measured and
simulated Ku-band backscatter values when using a global
set of parameters for all measured sites. When using a dis-
tributed set of soil and snow parameters, the RMSE drops to
0.9 dB. This study thus shows that it is possible to link Ku-
band radar backscatter measurements to snow conditions on
the ground using a priori knowledge of the snow conditions
to retrieve snow water equivalent (SWE) at the 100 m scale.

1 Introduction

Snow is an important freshwater resource and remains the
only element in the water cycle without a dedicated space-
borne mission (Derksen et al., 2019). While surface snow
depth observation networks support the generation and val-
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idation at coarse resolution (> 25 km), snow water equiva-
lent (SWE) products from passive microwave remote sens-
ing (e.g. Luojus et al., 2021) and higher-spatial-resolution
(< 500 m) sources of spatially continuous snow information
are needed to meet the needs of climate services, water re-
source management, and environmental prediction (Garnaud
et al., 2019, 2021; Kim et al., 2021; Cho et al., 2023).

Tower and airborne measurements (Lemmetyinen et al.,
2018; Zhu et al., 2021) supported by theoretical modeling
(e.g. Xu et al., 2012; Tsang et al., 2007) show that Ku-band
radar measurements (13.5 and 17.25 GHz) provide a viable
pathway for a future satellite mission capable of monitoring
snow water storage because of (1) sensitivity to SWE through
the volume scattering properties of dry snow and (2) the abil-
ity to discriminate wet from dry snow cover (Tsang et al.,
2022). While Ku-band radar measurements are available
from altimetry and precipitation missions (CryoSAT-2 and
Sentinel-3, CloudSat), there are no current SAR missions
at this frequency available for science applications. Despite
limited availability of measurements, significant progress has
been made over the past decade in the understanding of Ku-
band radar response to SWE, snow microstructure, and snow
wet/dry state in support of past and current mission concepts
(e.g. Tsang et al., 2022; Derksen et al., 2019; Rott et al.,
2010).

The advancement of a Ku-band radar-based SWE retrieval
is highly dependent on decomposing the strong seasonal in-
fluences of snow microstructure from background permittiv-
ity (Picard et al., 2022; Meloche et al., 2021). Unconstrained,
known variations in these properties can modify Ku-band
backscatter in ways comparable to SWE in terrestrial envi-
ronments, making retrievals impossible. In this paper, exten-
sive measurements of snow microstructure and soil proper-
ties collected in a tundra environment are used to constrain
known uncertainties and evaluate the capability of a forward
electromagnetic model (Snow Microwave Radiative Transfer
(SMRT) model; Picard et al., 2018) to reproduce observed
backscatter from a new set of Ku-band (13.5 GHz) airborne
measurements. We present a multi-frequency approach, in
which we decouple the background soil contribution using
C-band satellite data from the snow volume scattering con-
tribution at the Ku-band. By illustrating the successful for-
ward simulation of measured Ku-band backscatter using an
open source electromagnetic model, we successfully demon-
strate a crucial component of the cost function SWE retrieval
concepts described in the literature (Rott et al., 2012).

While Ku-band radar measurements have clear potential
for measuring SWE, experimental airborne and tower mea-
surements are limited. Tower-based measurements at 10.2,
13.3, and 16.7 GHz were collected over four winter seasons
in Sodankylä, Finland (2009/10 through 2012/13), comple-
mented with multi-frequency passive microwave measure-
ments of an overlapping footprint. The synergistic radiome-
ter measurements were effective in providing first-guess in-
formation on effective snow grain size, which was used

within the SWE retrieval approach developed and evaluated
by Lemmetyinen et al. (2018). These tower measurements
have also been used to support other algorithm development
experiments (Merkouriadi et al., 2021; Zhu et al., 2021; Du-
rand et al., 2024; Pan et al., 2024), with the daily temporal
resolution proving to be particularly insightful. However, a
major limitation was the lack of spatial sampling, so efforts
in the community shifted to the acquisition of airborne Ku-
band radar data.

The European Space Agency (ESA) SnowSAR instrument
was developed to support science development activities for
the proposed Cold Regions Hydrology High-Resolution Ob-
servatory (CoReH2O) satellite mission (Rott et al., 2010).
SnowSAR is a side-looking, dual-polarized (VV/VH), X-
and Ku-band synthetic aperture radar (SAR), operable from
various aircraft. Between 2010 and 2013, the instrument was
deployed at several sites in northern Finland, the Austrian
Alps, and northern Canada. These data, along with compre-
hensive snow measurements during the data acquisition pe-
riods, are freely available as described in Lemmetyinen et al.
(2022). While temporally limited, these measurements pro-
vide the first spatially distributed Ku-band backscatter data,
which provided a new perspective on radar signatures in
snow-covered environments, including the important influ-
ence of snow microstructure (King et al., 2018). Collective
analysis of the SnowSAR datasets from the CoReH20 era
showed the potential for machine learning (ML) techniques
to be effectively trained to retrieve SWE across the range
of snow-climate classes flown by SnowSAR (Santi et al.,
2021). The SnowSAR was also flown over Grand Mesa, Col-
orado, as part of the NASA Snow Experiment (SnowEx) in
2017 (Singh et al., 2023). These studies (e.g. Tsang et al.,
2022; Lemmetyinen et al., 2022; King et al., 2018) have
shown that the Ku-band frequency range is most sensitive
to SWE, and a priori knowledge of snow microstructure is
necessary to accurately estimate SWE. This is why a Cana-
dian, dual-frequency Ku-band (13.5 and 17.25 GHz), dual-
polarization (VV/VH) SAR mission is currently in devel-
opment by the Canadian Space Agency and Environment
and Climate Change Canada (Terrestrial Snow Mass Mis-
sion, TSMM). This Canadian-led mission aims at providing
weekly coverage over the Northern Hemisphere at a nominal
resolution of 500 m.

A dual-frequency (13.285 and 35.9 GHz) radar was de-
veloped at the University of Massachusetts (UMass) as
a demonstration and precursor to NASA’s Surface Wa-
ter and Ocean Topography (SWOT) mission. Subsequently,
the lower-frequency Ku-band component of the system at
13.285 GHz was repurposed in 2018 and developed into an
airborne system that could be easily ported between common
aircraft platforms. In this study, we utilized measurements
from this UMass instrument, deployed during the 2018/19
winter over the Trail Valley Creek study area in the North-
west Territories, Canada, to advance science readiness activ-
ities of TSMM (Siqueira et al., 2021).
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This paper focuses on the forward radiative transfer mod-
eling component of a future SWE retrieval algorithm similar
to what is proposed by Rott et al. (2012) and Pan et al. (2024).
The data collected during the Trail Valley Creek (TVC) ex-
periment are used to validate the SMRT model as the for-
ward model used for such an SWE algorithm and will pro-
vide insight into the model parameterization needed to link
snow properties to the Ku-band signal, i.e. (1) isolating the
background soil contribution to the backscattered signal and
(2) tuning the snow microstructure to properly link the snow
volume scattering to SWE.

2 The Trail Valley Creek 2018/19 snow radar
experiment

To evaluate Ku-band radar sensitivity to snow properties,
airborne measurements with the UMass Ku-band radar in-
strument were acquired over the TVC watershed near Inu-
vik, Northwest Territories, Canada, in November, January,
and March during the 2018/19 winter season (Siqueira et al.,
2021). Snow measurements and distributed hydrological
modeling research activities have been conducted at TVC
since 1995 (e.g. Shi et al., 2015; Wilcox et al., 2022), includ-
ing a portion of the airborne SnowSAR snow radar campaign
conducted during the 2012/13 winter season (King et al.,
2018). Amongst these studies, a detailed vegetation map was
completed by Grünberg and Boike (2019). The Siksik sub-
basin studied for the TVC experiment is predominantly com-
posed of tussock tundra (39.1 %), followed by dwarf shrub
(30.6 %) and lichen (26.6 %) covers and sparse riparian shrub
elements (3.7 %). Isolated black spruce stands located within
the TVC research watershed were not evaluated in this study.
The snowpack at TVC is a typical Canadian Arctic snow-
pack with a maximum snow depth of around 50 cm and two
dominant snow layers, i.e. a wind slab with mostly rounded
snow grains at the surface and a less cohesive depth hoar
grain layer at the bottom (Rutter et al., 2019; Derksen et al.,
2009).

2.1 Airborne SAR measurements

For the TVC experiment, a vertically polarized waveguide
antenna for signal transmission was installed in the lower
half of a modified Cessna 208 baggage door (Fig. 1). Two
additional waveguides were mounted in the upper half of the
door for simultaneous dual-channel reception, enabling both
single-polarization VV SAR and single-pass InSAR capabil-
ities. At a nominal flight altitude of 1000 m, the system im-
ages a 2 km swath with a 2 m ground range resolution and
across an incidence angle range of ∼ 20–70°.

Flight lines with the UMass system were optimized to
maximize repeat coverage of the smaller Siksik sub-basin
and surrounding regions (∼ 24 km2) within the greater TVC
watershed (58 km2; Fig. 2). Concentrating the flight lines

over this smaller area of interest was done to maximize over-
lap with coincident ground snow surveys and locally installed
meteorological and soil stations (Fig. 2). Furthermore, the
design of the radar acquisitions involving generous swath
overlaps and inter-campaign repeat passes was implemented
to allow for filtering of motion uncertainties where needed,
as well as to increase inter-swath calibration opportunities
(see King et al., 2018).

Balancing budget, time, and overlap requirements, 16
flight lines were planned, and all areas within the selected
domain were measured in four distinct look directions and
from multiple incident angles due to the 75 % overlap estab-
lished between sequential passes. Where time allowed, flight
lines were repeated within each deployment to generate fur-
ther samples. Multiple revisits during a flight mission gener-
ated a diversity of radar viewing geometries.

This study will focus on optimizing the forward model-
ing of the SAR data acquired during the January campaign
to focus on dry winter snow conditions. The November cam-
paign Ku-band data require additional calibration due to un-
stable flight lines. This is attributed to difficult weather con-
ditions for flying and the need for manual in-flight correc-
tions from the pilot to control the roll, pitch, and yaw of
the plane. The January flights had much more stable flight
lines, yielding better-calibrated SAR data. The March cam-
paign had above-freezing temperatures, which made it dif-
ficult to retrieve snow properties in the field. Some liquid
water content in the top portion of the snowpack was also
present, which prevents good forward modeling of the snow-
pack since the radar signal does not penetrate the wet snow
layers.

2.2 Satellite SAR measurements

For this campaign, C-band satellite SAR data from
RADARSAT-2 (RSAT-2) were acquired as well as X-band
TerraSAR-X (TSX) data. A total of 87 Fine Quad Wide
(FQW) RSAT-2 and 40 TSX StripMap images were acquired
over the Siksik basin from September 2018 to June 2019. Ta-
ble 1 gives the details of the different acquisition modes, po-
larizations, and incidence angles for both RSAT-2 and TSX.

With little sensitivity of the C- and X-band signal in-
tensities to snow volume scattering at co-polarizations (co-
pol) (Duguay and Bernier, 2012), these satellite datasets
were used to estimate the background contribution of the
total backscattered signal in the forward modeling scheme
(Sect. 3.2). To focus on the UMass Ku-band data forward
modeling optimization, which is single-polarization VV, only
the VV channel of the satellite imagery was used in this
study. The available satellite data are provided in Table 1 as
information in case future work requires additional polariza-
tions. To increase the number of points in the optimization
process, the satellite imagery acquired 2 weeks before and
after the intensive ground campaigns was considered only if
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Figure 1. UMass Ku-band radar mounted in a modified Cessna 208 baggage door (a). A single transmit antenna is mounted in the lower half
and two receiver antennas in the upper half (b). Electronics for the system are mounted as a single rack easily transported between a variety
of aircraft platforms.

Figure 2. Flight lines completed during each of the TVC snow deployments (a). The 2016 vegetation classification map (Grünberg and
Boike, 2019) with the location of the surveyed sites and soil stations (b). The weather station is located at the SM site. The size of the
surveyed site box corresponds to the 100 m footprint of the radar data.

the intensity variability (standard deviation) from one image
to another for all surveyed sites was below 2 dB.

2.3 Ground-based snow and soil measurements

Within the Siksik sub-basin, six static sites were estab-
lished to represent the contrasting land cover and associated
snow conditions also present across the greater TVC domain
(Fig. 2): a snow drift site (SD), a site near the meteorolog-
ical station (SM), a site near an old trench site (SO; Rutter
et al., 2019), an open tundra site (ST), and a site within a val-
ley (SV). Repeat snow measurements were completed during
each deployment to characterize temporal variability in snow
properties. Care was taken to not complete measurements
in identical locations on successive deployments; however,

the general location of the sites remained the same. At these
sites, four HydroProbe soil sensors were installed horizon-
tally in a soil pit in each of the cardinal directions approxi-
mately 5 m outwards from a central datalogger. Two sensors
were buried at 5 cm, and two were buried 10 cm below the
surface within the top layer of organic material. The soil sen-
sor networks collected hourly measurements of temperature,
moisture, and complex permittivity during the experiment.
From these measurements it was possible to determine the
freeze–thaw state of the soil and provide modeling inputs to
estimate the background scattering through the winter sea-
son.

At the center of each snow survey site, a snowpit was exca-
vated as a reference measurement. From the pit face, stratig-
raphy and layer heights were interpreted via visual inspec-
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Table 1. List of beam modes, respective polarizations, and incidence angles for the RSAT-2 and TSX acquisitions.

Sensor Beam mode Polarizations θ range No. of scenes

RSAT-2

FQ2W

HH+HV+VH+VV

19.0–22.7 19
FQ6W 23.7–27.2 5
FQ12W 30.6–33.7 11
FQ14W 32.7–35.7 8
FQ17W 35.7–38.6 13
FQ19W 37.7–40.4 31

TSX StripMap
VH+VV 33.0–34.4 24
HH+HV 38.1–39.4 16

tion following standard methods (Fierz et al., 2009). Snow
samples extracted from each layer were visually identified by
grain origin type using a 2 mm comparator card and a 40×
magnification field microscope. Density profiles were col-
lected from the pit face as continuous profiles with a Taylor–
LaChapelle style cutter (100 cm3; 3 cm height). Extracted
samples of a known volume were immediately weighed with
a shielded digital scale (±0.01 g accuracy) to obtain density
estimates. The consistent presence of vegetation voids and
weak basal layers at the base of the pack made the collec-
tion of continuous profiles challenging. As a result, measure-
ments of basal hoar or ground-interfacing layers are likely
to be underrepresented, a common issue in tundra studies
(Domine et al., 2016). Profiles of snow specific area (SSA)
were collected as an objective metric of microstructure with
the A2 Photonics IceCube. The IceCube is a commercial
implementation of infrared reflectometry sensors commonly
used in snow studies (Domine et al., 2007; Gallet et al.,
2009). Measurements of the reflected 1310 nm laser were
calibrated using a set of six Spectralon diffuse reflectance
targets before and after each profile. With a 3 cm extractor,
samples were taken as continuous vertical profiles where co-
hesive samples could be extracted. For samples in depth hoar
or vegetation voids, the filling and packing of the sampler
were often required to ensure the laser would not fully pen-
etrate the sample. Reported in square meters per kilogram
(m2 kg−1), measurement uncertainty of SSA is expected to
be ±10 %. See Fig. A1 of Tsang et al. (2022) for a typical
representation of vertical snowpit measurements.

At each snowpit site, a minimum of two snow micropen-
etrometer (SMP; Proksch et al., 2015) profiles were collected
near the central snowpit to calibrate against layered density
and SSA from the typical snowpit measurements. SMP cali-
bration measurements were taken within 10 cm of the snow-
pit face, adjacent to the profiles of density and SSA mea-
surements. The calibration of the density and SSA models
extends the work of King et al. (2020) and Calonne et al.
(2020), as modified from the foundational work of Proksch
et al. (2015) and Pielmeier and Schneebeli (2003). Following
the pre-processing steps outlined in King et al. (2020), pro-
files penetrating less than 90 % of the measured snow thick-

Figure 3. Ground-based snow measurement sampling scheme.

ness were removed. Individual profiles were also evaluated
to flag and remove signal artefacts including values below
0.001 N or changes in force of greater than 100 % over dis-
tances of less than 2.5 mm (Proksch et al., 2015; Marshall
and Johnson, 2009). Applying a one-dimensional shot-noise
process conceptualized in Löwe and van Herwijnen (2012),
profiles of mean force (F̃ ) and length scale (L) of the pen-
etration window were computed for all SMP profiles using
a moving window of 5 mm with 50 % overlap. The contin-
uous profiles were then aggregated into 5 cm layers, small
enough to represent average layers (Sandells et al., 2022).
Results of the SMP calibration are shown in Sect. 4.2. To
capture vertical variability in snow properties within a 100 m
footprint around the snowpit, a north–south and an east–west
SMP transect was measured with a 10 m distance between
each profile (∼ 18 profiles per site; Fig. 3). These profiles
were then converted to snow density and SSA using the cali-
bration obtained from the pit profiles.
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To get a better representation of snow depth distributions
within the 100 m footprint around the snowpits, magnaprobe
(Sturm and Holmgren, 2018) measurements along the SMP
transects were recorded every 1–2 m (∼ 290 measurements
per site; Fig. 3).

In addition to surveying the same six static sites during
each campaign visit, snow measurements were also made
at a series of roving survey sites (i.e. roving pits, RPs) in
November (15), January (16), and March (25). Those sites
were selected using a stratified random sampling approach
which considered land cover and topography. These extra
sites were sampled in order to capture the variability in snow
properties within the Siksik basin and how it impacts radar
backscatter. They were also used to determine how represen-
tative the background soil properties measured were at the
static sites of the entire domain by retrieving a distribution
of soil permittivity and roughness parameters from the for-
ward modeling optimization process (Sect. 3.2). The same
sampling strategy was used for the static and roving sites for
snow properties. Only the soil surface temperature was mea-
sured at the roving sites at the time of sampling.

3 Methods

This section provides the processing steps of the UMass
radar data as well as the satellite imagery. The forward radia-
tive transfer modeling optimization approach is also detailed.

3.1 Processing of SAR measurements

UMass radar measurements (2 m× 2 m) were aggregated by
considering pixels within a 50 m radius of central snow-
pits (n= 2500 pixels). The evaluated pixels were filtered to
remove 3σ outliers and averaged to obtain a single value
for analysis. This pre-processing was applied to minimize
or negate the complex influence of pixel-scale variabilities
(hummocks and vegetation) and radar speckle. Overlapping
passes of the flight grid produced an average of 25 indepen-
dent radar measurements per snowpit site (Table 2; 8 mea-
surements in the worst case and 38 measurements for the best
case). The overlapping flight lines provided a diverse view-
ing geometry. On average, a 45.5° range of incidence was
available at each site from approximately 19.5 to 65.0°. The
ability to view the same site from multiple incident-angle and
look-direction configurations is a unique ability of airborne
SAR, which in this study enabled forward modeling and re-
trieval testing across a broad range of geometries.

The satellite imagery was processed using the ESA SNAP
software, and processing steps include image calibration to
σ 0, orthorectification (range Doppler terrain correction) us-
ing the ArcticDEM (Porter et al., 2023) at 2 m spatial res-
olution, and extraction of the local incidence angle and
its corresponding corrected backscatter values. An area of
100 m× 100 m with the snowpit geo-coordinates as the cen-

Table 2. Number of measurements per site for the TVC Jan-
uary 2019 campaign with the respective incidence angle range.

Site Number of measurements θ range

RP16 24 21.1–69.0
RP17 38 18.8–64.9
RP18 35 19.7–71.9
RP19 37 17.9–70.2
RP20 37 17.9–61.0
RP21 28 18.9–69.8
RP22 35 18.8–76.0
RP23 19 19.3–64.9
RP24 16 19.0–52.7
RP25 22 17.5–65.3
RP26 11 20.1–51.0
RP27 12 17.7–63.6
RP28 11 21.1–60.2
RP29 13 18.2–61.0
RP30 9 19.6–53.1
RP31 8 23.3–76.1
SC 33 20.9–64.5
SD 37 19.7–70.9
SM 36 19.3–64.3
SO 31 18.8–62.5
ST 32 19.1–57.1
SV 35 22.4–80.3

troids was extracted from the imagery. Approximately 1100
and 400 pixels were averaged for TSX (∼ 3 m pixel spacing)
and RSAT-2 (∼ 5 m pixel spacing), respectively. No filtering
was necessary given the wavelength of the two sensors and
the fact that averaging over that large number of pixels re-
moves speckle noise.

3.2 Forward modeling

In this study, the Snow Microwave Radiative Transfer
(SMRT; Picard et al., 2018) model was used to simulate the
backscattered signal (σ 0) at C-, X-, and Ku-bands at VV po-
larization. To properly simulate σ 0, some parameters need to
be properly estimated, mainly (1) the background roughness
and permittivity (Meloche et al., 2021; Montpetit et al., 2018)
and (2) the snow microwave grain size (Picard et al., 2022)
related to microstructure and volume scattering.

For every optimization process at every site of the Jan-
uary 2019 campaign, the most representative SMP profile
was selected to provide input of snow properties to the SMRT
model for the multi-layered snowpack analysis. The SMP
profile selection was based on using the SMP profile with
the snow depth that best corresponded to the median snow
depth of all magnaprobe measurements for a given site. For
discussion purposes, further testing using a two-layer snow-
pack was performed, where the median values of the rounded
and depth hoar grain type layers, using all the SMP profiles,
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were used to determine their snow geophysical properties
(e.g. thickness, temperature, SSA, density).

For the background surface scattering modeling, the ge-
ometric optics (GO) model (Tsang and Kong, 2001), im-
plemented in the SMRT model, was used since the surface
roughness parameters at the 100 m scale and the wavelengths
of the sensors largely surpass the validity range of other mod-
els such as the Advanced Integral Equation Model (AIEM)
(Meloche et al., 2021). With little sensitivity to snow vol-
ume scattering of the signal intensity at C- and X-bands, the
satellite data of RSAT-2 and TSX were used to retrieve the
effective soil permittivity (εsoil) for each band and effective
soil roughness, i.e. mean square slope (mss), which is the pa-
rameter used in the GO surface scattering model.

Given the recent progress in understanding the microwave
scattering properties of snow grains (Picard et al., 2022) and
the two-layer nature of the Arctic snowpack (Rutter et al.,
2019), it was decided to optimize the snow volume scat-
tering using the polydispersity (K) parameter for two grain
types, i.e. (1) rounded and (2) depth hoar grains. Those two
grain types are the dominant grain in the two layer types re-
ported by Derksen et al. (2012, 2009) for Canadian Arctic
snowpacks. This means that the data at the Ku-band are used
to retrieve three parameters: (1) εsoil[Ku], (2) rounded-grain
polydispersity (KR), and (3) depth hoar polydispersity (KH).

With the amount of data available for all bands (Tables 1
and 2) and the diversity of SAR viewing geometry avail-
able, a simple least-squares method, using the trust region
reflective algorithm (Conn et al., 2009), was used to retrieve
all parameters. This algorithm has the advantage of allowing
boundary constraints which prevent the optimization process
from converging on unrealistic values. The different effec-
tive parameters were thus constrained by values found in the
literature.

4 Results

In this section, the seasonal evolution of snow properties
as documented by the field measurements will be presented
to provide context, even though only data from the Jan-
uary 2019 campaign will be used for the rest of the analysis
and discussion. The results of the SMP calibration with the
snowpit measurements for both snow density and SSA will
be shown. Retrieved background effective properties will be
given as well as the error estimation for forward modeling at
C- and X-bands. Finally, the forward modeling results at the
Ku-band will be presented.

4.1 Spatio-temporal variability in snow properties

Figure 4 shows the seasonal evolution of snow depth, from
magnaprobe measurements, depth hoar fraction, and classi-
fied SMP profiles (Table 5) throughout the campaign. A me-
dian snow depth of 32 cm in the early season (November)

was observed. Measurements show a median accumulation
of up to 46 cm in the mid-season (January) and a median of
42 cm in the late season (March) with a more normal distri-
bution across the entire domain. Figure 4 also shows that the
fraction of the snowpack that consists of depth hoar is mainly
concentrated around 0.4 during November and then stabilizes
around 0.5 for the rest of the winter. There are fewer snow
profiles that show no depth hoar from the classification as
the winter season progresses.

Figure 5 shows the evolution of SSA, density, and tem-
perature for the two dominant snow layers throughout the
field campaign. Table 3 gives the median and standard devi-
ations of the different snow properties measured for the en-
tire campaign shown in Figs. 4 and 5. Figure 5 and Table 3
show that the grain size tends to get larger as the season pro-
gresses (i.e. lower SSA values). The only exception is during
the January campaign when the rounded grain layer tends to
have an increase in SSA followed by a decrease during the
March campaign. As for density, an overall densification of
the snowpack for both snow layers was observed, and a slight
decrease in density can be seen from January to March. The
snow temperatures reflect the air temperature trends for each
site visit, where colder temperatures and warmer air temper-
atures were measured during the January and March cam-
paigns, respectively, compared to the November campaign.

4.2 Characterization of snow properties

Figures 6 and 7 show the results of the density and SSA esti-
mates from the calibrated SMP measurements. Table 4 gives
the equations used to calibrate the SMP profiles to ρsnow and
SSA.

Following the methodology of King et al. (2020), good
agreement is achieved between the SMP and density cut-
ter measurements. With 646 comparison points, we get an
RMSE= 31 kgm−3 (12 % error) and an R2

= 0.81, which is
comparable to results obtained by King et al. (2020) for snow
on sea ice and to the results of Dutch et al. (2022), who used
a subset of these same field measurements while studying the
impact of snow properties on heat transfer within the snow-
pack. Figure 6 also shows that the density measurement dis-
tributions for both the SMP and density cutter overlap well,
which further validates the measurement agreement.

Figure 7 shows that the calibration coefficients of Calonne
et al. (2020) (labeled Calonne2020) do not generate SSA val-
ues comparable to IceCube measurements for low SSA val-
ues (< 15 m2 kg−1). Given this result, new coefficients were
generated for this study (labeled King-TVC). With 627 com-
parison points, we get an RMSE= 5.2 m2 kg−1 (29 % er-
ror) and R2

= 0.68 with this new calibration compared to
RMSE= 6.0 m2 kg−1 (35 % error) and R2

= 0.57 with the
Calonne et al. (2020) calibration. The systematic underesti-
mation of low SSA values from the SMP measurements is
also removed with the new calibration.
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Figure 4. Evolution of snow depth distributions and depth hoar fraction throughout the field campaign.

Figure 5. Evolution of snow geophysical properties (SSA, density, and temperature) throughout the winter season for the two dominant snow
grain type layers: rounded (R) and depth hoar grains (H).

Figure 8 illustrates an example of the distribution of mag-
naprobe snow depths, the corresponding snow depth for the
different SMP measurements, and the selected profile which
is closest to the median value of the magnaprobe distribution
for a given site.

In order to retrieve the polydispersity parameters to op-
timize the snow volume scattering at the Ku-band, the dif-
ferent snow layers had to be classified into rounded grains
versus depth hoar layers. To achieve this, the same support
vector machine (SVM) classifier methodology used in King
et al. (2020) was used for rounded and depth hoar snow grain
classes. To generate the SVM classifier, the SMP profiles
acquired behind the central snowpit wall were used as in-
puts. Layers of mixed/faceted grains were frequently identi-
fied by the surveyors. These layers were labeled as rounded
grains due to the similarity of the ρsnow and SSA distributions
(Fig. 9).

Table 5 shows the confusion matrix of the classification
results. An overall accuracy of 88.4 % (±2.5 %) was ob-
tained over 10 different randomly shuffled iterations with an
80%/20 % split for training and testing, respectively.

With this classifier, 67 % of the layers that were classified
as mixed/faceted layers by the surveyors were classified as
rounded grains and the other 33 % as depth hoar.

4.3 Forward modeling of C- and X-band backscatter

This section presents the forward modeling optimization of
the background soil properties at C- and X-bands, using the
January campaign data alone to focus solely on dry winter
conditions. Initial values of permittivity for the optimization
process were extrapolated from the retrieved values of Mont-
petit et al. (2018). The boundaries which the optimization
process could not go beyond were determined by published
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Table 3. Median and standard deviations of measured snowpack properties during the TVC 2018/19 winter season for the two dominant
snow grain type layers: rounded (R) and depth hoar grains (H).

Site Grain type Nov. Jan. Mar.

Depth (cm) – 33.2 (9.5) 45.6 (13.2) 42.5 (14.0)
H fraction – 0.6 (0.1) 0.6 (0.1) 0.7 (0.2)

SSA (m2 kg−1)
R 21.9 (7.0) 31.7 (8.7) 20.7 (4.8)
H 14.5 (4.1) 12.4 (3.5) 11.0 (4.0)

ρsnow (kgm3)
R 193.7 (35.1) 334.0 (80.1) 320.5 (56.1)
H 212.3 (21.4) 229.2 (20.2) 233.2 (23.0)

Tsnow (oC)
R −16.9 (3.4) −27.8 (4.2) −8.8 (2.6)
H −12.1 (3.9) −19.9 (5.1) −8.2 (2.0)

Figure 6. Results of calibrated SMP snow density measurements.

values (Meloche et al., 2021; Pulliainen and Grandell, 1999).
The initial mean square slope, i.e. soil roughness (msssoil)
value, was set by the median value obtained from airborne
lidar measurements collected in August 2018 before the field
campaign (Lange et al., 2021). The range was determined by
the standard deviation of these measurements. Since the lidar
point clouds were noisy with inconsistent point density for all
the sites of the January campaign, these measurements were
not used directly to simulate the backscatter at the different
frequencies. For all parameters, none of them had converged
towards the upper or lower boundaries for any sites, meaning
there was always a minimum within the constrained values.
Table 6 shows the results of the background optimization for
all January sites (including static and roving sites) and the
static sites individually to show the variability in the differ-
ent land coverages of the Siksik basin. Out of the six static
sites, only one site (SC02; Table 2) was neglected for the pa-
rameter retrieval due to the fact that a permanently installed
radar corner reflector was mounted nearby within the 100 m
footprint surrounding the static snow measurement site. This

corner reflector artificially increased the backscatter at C- and
X-bands for this site and was thus not considered for the re-
trieval.

Figure 10 shows the distributions of all the retrieved real
εsoil values for all January sites. Both frequencies have very
similar distributions with slightly different median values
(Table 6). Overall, we get εsoil = 2.47+ i0.0045(±0.21+
i0.0014) and εsoil = 2.61+ i0.0061(±0.23+ i0.0012) for C-
and X-bands, respectively. Uncertainties were calculated us-
ing the standard deviation of the retrieved parameters for all
January sites. As shown in Fig. 10, both frequencies have
similar uncertainties. The global mean square slope rough-
ness parameter was msssoil = 0.010(±0.002). Given that the
msssoil value is centered at 0.010 with very little variability,
this validates the use of a single value for all sites.

Figure 11 displays the results between the measured and
simulated backscatter values for all snow survey sites of the
January campaign for both bands. Figure 11a shows the re-
sults when simulating the backscatter with a single set of pa-
rameters for the entire domain and Fig. 11b for simulated
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Figure 7. Results of calibrated SMP SSA measurements.

Table 4. Density and SSA calibration equations used for Figs. 6 and 7.

Calibration Equation

Calonne et al. (2020) SSA= 0.57− 18.56ln(L)− 3.66ln(F̃ )

King-TVC
ρsnow = 307.76+ 53.81ln(F̃ )− 44.24ln(F̃ )L− 64.8L
SSA= 2.37− 0.70ln(L)− 0.06ln(F̃ )

Figure 8. Example of the SMP profile selection as a representative
snowpack for the SM site (Table 2).

Table 5. Confusion matrix of the grain type classification for the
January snowpits.

Predicted

R H

O
bs

. R 0.83 0.17
H 0.18 0.82

Table 6. Retrieved soil parameters using C- and X-band data for
the static sites individually and all the sites including the static sites
(all) of the January campaign.

Site
εsoil

C-band X-band msssoil

All 2.47+ i0.0045 2.61+ i0.0061 0.010
SD 2.63+ i0.0026 2.95+ i0.0051 0.011
SM 2.32+ i0.0018 2.44+ i0.0025 0.011
SO 2.54+ i0.0033 2.40+ i0.0022 0.010
ST 2.27+ i0.0017 2.38+ i0.0021 0.009
SV 2.50+ i0.0032 2.50+ i0.0028 0.010

backscatter using retrieved values for each site individually
(distributed values of Fig. 10).

Overall, there is a larger spread in Fig. 11a, which trans-
lates into larger errors (RMSE= 1.1 dB and bias= 0.1 dB
and RMSE= 0.7 dB and bias= 0.0 dB for Fig. 11a and b,
respectively).

4.4 Forward modeling of Ku-band backscatter

Since Ku-band data are sensitive to snow volume scattering,
polydispersity parameters for the two dominant grain types
had to be considered in this optimization process. As shown
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Figure 9. Distribution of snow density and SSA for the three dominant grain type layers for the January campaign.

Figure 10. Distributions of the retrieved real εsoil for C- and X-band
data for all the sites measured during the January campaign.

in Sect. 4.3, the permittivity parameter in the GO soil surface
scattering model is frequency-dependent. Since the msssoil is
considered independent of frequency, a single parameter was
used for all sites (“All” in Table 6). This optimization pro-
cess thus had four parameters to optimize in total. For the
initial permittivity value, the parameter was set by extrap-
olating from the two previous values retrieved in Sect. 4.3.
The same boundaries were set as the optimization at C- and
X-bands. The scaling factor φ = 1.09 obtained by King et al.
(2018) for TVC depth-hoar-dominated snowpacks was used
as the initial optimization polydispersity value. A slightly
wider range of values than those published by Picard et al.
(2022) was used to constrain the range of plausible values,

Table 7. Retrieved soil and snow parameters using Ku-band data for
January.

εsoil KR KH

2.77+ i0.7406 (0.75+ i0.15) 0.74 (0.15) 1.11 (0.26)

i.e. 0.5 to 1 for rounded grains and 1 to 2 for depth hoar
compared to 0.6 to 0.9 for rounded grains and 1.2 to 1.9 for
Canadian Arctic depth hoar.

Table 7 illustrates the median and standard deviation val-
ues of the retrieved parameters over the January sites. Fig-
ure 12 shows the distributions of the retrieved parameters.

Compared to Fig. 10, there is a much larger spread in dis-
tribution of the real part of the εsoil at the Ku-band, and it
seems to have two clusters: one centered at 2.41 and the other
at 3.82.

For the polydispersity values (K), the values retrieved for
the rounded grains (KR) show a distribution centered around
0.74. The values for the depth hoar grains (KH) show a dif-
ferent spread, but most values are centered around 1.11.

Figure 13a shows the results when simulating the
backscatter with a single set of parameters for all the domain
and Fig. 13b for simulated backscatter using retrieved values
for each site individually (distributed values of Fig. 12).

Similarly to Fig. 11 there is less spread and better agree-
ment between the simulated and measured σ 0 when consid-
ering distributed parameterizations instead of a single set of
parameters for the entire domain. The mean bias and RMSE
are 0.9 and 2.6 dB for Fig. 13a and −0.1 and 0.9 dB for
Fig. 13b, respectively. Figure 13c shows the same figure as
Fig. 13a but with median values of the two different ε′soil
clusters. These results show less spread and better accuracy
(bias= 0.0 dB and RMSE= 1.3 dB) than a single set of per-
mittivity values for all sites.
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Figure 11. Comparison between simulated and measured σ 0 at C- and X-bands for (a) using a single set of parameters for all sites (“All” in
Table 6) and (b) retrieved parameters for each site individually (distributed values shown in Fig. 10).

Figure 12. Distribution of retrieved parameters at the Ku-band (Table 7). The range of retrieved K values from Picard et al. (2022) for both
grain types (PG22) and the different values retrieved by King et al. (2018) and Montpetit et al. (2013) (KJ18 and MB13, respectively) are
also displayed.

5 Discussion

5.1 Characterization of snow properties for radar

SMP measurements have become increasingly useful to bet-
ter characterize spatial variability in the snowpack proper-
ties in the field (King et al., 2020; Hagenmuller and Pilloix,
2016; Teich et al., 2019; Tsang et al., 2022). As reported by
King et al. (2020), no single method works for every SMP
instrument in every study area even though there are differ-
ent published calibration parameters and methods (Proksch
et al., 2015; King et al., 2020; Pielmeier and Schneebeli,
2003). This means that SMP calibration against density and
SSA measurements is required for each instrument and field
campaign. In this study we show that the approach of King
et al. (2020) can retrieve snow density and SSA from SMP

profiles rapidly and efficiently given the proper snowpit sam-
pling strategy (Sect. 2.3). For SSA, low values when using
the previous work of Calonne et al. (2020) were improved by
6 % overall and 17 % for low SSA values by generating new
calibration coefficients for the SMP data.

Snow layers of the SMP profiles were classified into the
two dominant snow type categories for the Canadian Arctic
(Derksen et al., 2009; Picard et al., 2022) to simplify the gen-
eration of statistically representative snowpacks. It should
be noted that a fresh snow layer was not considered in this
study since it was not present during the January campaign.
Having 33 % of the mixed/faceted layers reported by sur-
veyors for the January campaign be classified as depth hoar
can be explained by its overlapping SSA and ρsnow distribu-
tions (Fig. 9) with the two main grain types. Faceted grains
found during the 2018/19 winter season at TVC consist of
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Figure 13. Comparison between simulated and measured σ 0 at the Ku-band for (a) using a single set of parameters for all sites (Table 7),
(b) retrieved parameters for each site individually (distributed values shown in Fig. 12), and (c) the same parameterization as (a) except the
median values of ε′soil of the two clusters of Fig. 12 were used. Colour code corresponds to each surveyed site in January.

faceted rounded particles as reported in Picard et al. (2022)
for Antarctica and alpine snowpacks, which is why those lay-
ers were originally labeled as rounded grains for the classi-
fication. The similar distributions between the mixed/faceted
grains and the rounded grains also support this assumption.
Some solid faceted particles were identified in the mixed/-
faceted layers surveyed, which might explain the lower SSA
distribution compared to rounded grains (Fig. 9). This could
also explain why 33 % of the faceted crystals are linked to
depth hoar.

The overall evolution of snow depth and depth hoar frac-
tion (Fig. 5) observed throughout the winter season is similar
to what was previously reported in studies for TVC (King
et al., 2018; Dutch et al., 2022). The SSA and ρsnow distribu-
tions during the March campaign might be underestimated.
This is due to the difficult surveying conditions due to air
temperatures above 0 °C on some survey dates. Warm air
temperatures make it difficult to retrieve proper samples for
IceCube and density measurements, especially for depth hoar
layers as snow sticks to the instruments. Some liquid water
content was also present in some snow samples which im-
pacts density and SSA measurements. All these uncertainties
result in less accurate calibration of the SMP data. Unfortu-
nately, with the liquid water content potentially present in the
snowpack during some radar flights, it will be challenging to
validate these snow geophysical properties against Ku-band
radar data.

5.2 Forward modeling of C- and X-band backscatter

The fact that with two frequencies the msssoil values all con-
verge towards a single value, i.e. msssoil = 0.010, with little
variability (18 %) indicates that this value can be used at the
satellite and airborne scale for radiative transfer modeling.
This value is also identical to the msssoil = 0.01 reported by

Zhu (2021). Even though the lidar data were not used directly
for the backscatter simulations, the retrieved value is in good
agreement with the measured median value of 0.011 obtained
over the January sites after filtering the extreme values due
to noise and anthropogenic sources.

As shown by Tsang and Kong (2001), the GO model is not
frequency-dependent, but results indicate that this is due to
the permittivity value used in the model. The low variability
(7 %) observed in the retrieved permittivity values for both
C- and X-bands and the small errors between the simulated
and measured backscatter indicate that the intensity signal
at these frequencies is not impacted by snow volume scat-
tering for Arctic tundra snowpacks found at TVC. Also, the
small variability in permittivities indicate that the ground sig-
nal is fairly stable, which suggests the signal penetrates into
the soil surface and is less impacted by the variable surface
vegetation composition.

5.3 Forward modeling of Ku-band backscatter

Figure 12 shows a large spread of background soil permit-
tivities, which indicates that the Ku-band signal is much
more sensitive to the composition of the soil surface than the
other two lower frequencies analyzed in this study. In fact,
there are two distinct permittivity clusters. The land cover
types at the survey sites associated with the lower-value clus-
ter are mostly dominated by lichen and tussocks, whereas
the land cover types at the sites with the higher values are
mostly dominated by lichen and dwarf shrubs. The results
here are in agreement with permittivity values reported by
Savin and Mironov (2020), where higher permittivity values
were found for sites dominated by shrubs compared to sites
dominated by tussocks. Since the retrieved effective permit-
tivities encompass both soil and vegetation, it is possible that
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the higher permittivity values compensate for higher scatter-
ing from the shrubs.

With only three data points, it is difficult to extrapolate
the effective permittivity values to higher frequencies using
the GO model. Zhu (2021) reported that permittivities should
saturate in the Ku- to K-band frequency range using the same
background model. This implies that little variability should
be observed for permittivities at higher frequencies than at
the Ku-band in this study.

The polydispersity (K) values retrieved for both dominant
grain types are in agreement with the values reported by Pi-
card et al. (2022). The KR values are normally distributed
around 0.74 and range between 0.5 and 1, as established by
Mätzler (2002). The values forKH do not really follow a spe-
cific distribution and show a wider spread, indicating larger
uncertainty on the depth hoar polydispersity. Though no sig-
nificant relationship was found, the higher values ofKH tend
to be associated with a higher depth hoar fraction (> 0.45).
The median value retrieved of 1.11 is also in agreement with
grain size correction factors (φ), which can now be explained
by the polydispersity (Picard et al., 2022), reported by King
et al. (2018) and Montpetit et al. (2013) for Canadian Arctic
tundra sites. Those studies applied a single correction factor
to all layers, and it is known that the microwave snow volume
scattering is dominated by the depth hoar layer, which tends
to boost the overall polydispersity close to KH in this case.
While not investigated in depth in this study, using a single
polydispersity value for both grain types resulted inK = 1.5,
which further supports the dominance of the volume scatter-
ing component by the depth hoar layer.

The larger spread and lack of agreement between simu-
lated and measured backscatter values in Fig. 13a can be ex-
plained by the model not taking into account the two dif-
ferent clusters of soil permittivity observed in Fig. 12. When
using the median values from the two different clusters, there
is improved agreement and reduced bias, as confirmed in
Fig. 13c. In fact, changing the polydispersity values within
the retrieved range did not have a significant impact on the
overall error (< 0.5 dB improvement of RMSE). This indi-
cates that the lower spectrum of the Ku-band is still sensi-
tive to the background surface scattering even in the pres-
ence of snow volume scattering (which was negligible at
C- and X-bands). With the saturation effect of the modeled
background properties within the Ku-band range, the volume
scattering will only become more dominant compared to the
background surface scattering. These results show that a dis-
tributed, statistical approach for all the retrieved parameters
is more suited to forward modeling of the Ku-band signal
(Pan et al., 2024) even though this approach is less prefer-
able for satellite observation SWE retrievals (Durand et al.,
2024). To improve efficiency in forward modeling computa-
tion time, the snowpacks of January were reduced to two lay-
ers, i.e. rounded grains and depth hoar layers, where the me-
dian value of all the measured data, including magnaprobe,
SMP, and snowpits, was considered to generate the geophys-

ical properties of both layers. No significant change was ob-
served in the RMSE (∼ 7% difference) between the simu-
lated and observed backscatter values. This further supports
the two-layer classification approach used in this study and
confirms that two layers are sufficient to represent a Canadian
tundra snowpack (Derksen et al., 2012; King et al., 2018).

6 Conclusions

This study describes in detail the spatio-temporal evolution
of snow geophysical properties during the Trail Valley Creek
experiment conducted during the winter of 2018/19. It was
shown that the snow micropenetrometer is an efficient in-
strument to quickly and quantitatively determine spatial vari-
ability in the vertical snow structure within a given footprint,
representative of a single grid cell measurement at satellite
scale. It was also demonstrated that the Canadian Arctic tun-
dra snowpack is represented well by a two-layer snowpack
consisting of a wind-compacted rounded grain layer and a
depth hoar layer.

Using satellite data from RADARSAT-2 and TerraSAR-
X, the background soil contribution to measured backscat-
ter was characterized. An RMSE of 0.7 dB was achieved be-
tween the simulated and measured backscatter at C- and X-
bands using the retrieved background properties. Using the
geometrical optics surface backscatter model, we proved that
the real part of the effective permittivity tends to increase
with frequency.

Following the constraint of the soil background proper-
ties, the contribution of snow volume scattering at the Ku-
band was also optimized. Using the two-layer classification
approach for all the different layers measured by the SMP,
we showed that the snow volume scattering was dominated
by the depth hoar layer, where KH needed to be increased
(∼ 1.11) and where theKR of the rounded grain layer needed
to be reduced (∼ 0.74). An overall RMSE between the sim-
ulated and measured backscatter at the Ku-band of 0.9 dB
was achieved when using the distributed retrieved values of
soil permittivity and snow polydispersity. This confirms that
a statistical approach is better suited to reproduce the mea-
sured radar backscatter from ground geophysical properties
(Pan et al., 2024) than using a single set of values to represent
a larger domain such as TVC.

This validates the use of the SMRT model and its different
subroutines, i.e. geometrical optics for soil surface backscat-
ter, improved born approximation (IBA) with an exponential
autocorrelation function for snow scattering, and the discrete
ordinate radiative transfer (DORT) solver, to forward simu-
late the airborne UMass radar measurements. These results
confirm the development direction of the snow water equiv-
alent retrieval algorithm for the future Canadian Terrestrial
Snow Mass Mission (TSMM), which will use SMRT simu-
lations.
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The fact that the background properties saturate in the Ku-
band spectrum further validates the proposed use of the dual-
frequency Ku-band (13.5 and 17.25 GHz) TSMM concept.
The lower Ku frequency is more sensitive to the background
soil properties than the higher Ku frequency, and the fact that
the background properties should be similar for both frequen-
cies will allow the ability to isolate the background surface
scattering component from the snow volume scattering com-
ponent of the signal received by a dual-frequency sensor.

Having the two frequencies will also allow for the better
estimation of depth hoar fraction using the retrieved poly-
dispersity values from this study. Having a first guess of
the snow vertical profiles from a land surface model like
the Soil Vegetation Snow Version 2 (SVS-2; Garnaud et al.,
2019; Vionnet et al., 2022), using Crocus as the snow model
component (Vionnet et al., 2012), should further constrain
the plausible snow physical properties within a known dis-
tributed range of values, which will allow the measured Ku-
band radar backscatter to be related to the bulk SWE values
using the SMRT scheme presented in this study.

In order to improve computational efficiency, future work
needs to be conducted in order to reduce the number of snow
layers of the land surface models to a number of layers rele-
vant to radar radiative transfer modeling, i.e. a “microwave-
relevant” snowpack. We have shown that for the snowpack
measured at TVC, reducing the number of layers to the two
main snow grain types, i.e. depth hoar and rounded grains, is
appropriate for skillful forward modeling of the radar signal.

Code availability. All codes are available at https://github.com/
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