Articles | Volume 16, issue 7
https://doi.org/10.5194/tc-16-2655-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-2655-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Clouds drive differences in future surface melt over the Antarctic ice shelves
Department of Geography, UR SPHERES, University of Liège, Liège, Belgium
Institut des Géosciences de l’Environnement (IGE), Université Grenoble Alpes/CNRS/IRD/G-INP, Grenoble, France
Charles Amory
Institut des Géosciences de l’Environnement (IGE), Université Grenoble Alpes/CNRS/IRD/G-INP, Grenoble, France
Stefan Hofer
Department of Geosciences, University of Oslo, Oslo, Norway
Cécile Agosta
Laboratoire des Sciences du Climat et de l'Environnement, LSCE-IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
Nicolas C. Jourdain
Institut des Géosciences de l’Environnement (IGE), Université Grenoble Alpes/CNRS/IRD/G-INP, Grenoble, France
Ella Gilbert
British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, UK
Louis Le Toumelin
Université Grenoble Alpes, Université de Toulouse, Météo-France, CNRS, CNRM, Centre d’Études de la Neige, Grenoble, France
Étienne Vignon
Laboratoire de Météorologie Dynamique, IPSL, Sorbone Université, École Polytechnique, CNRS, UMR 8539, Paris, France
Hubert Gallée
Institut des Géosciences de l’Environnement (IGE), Université Grenoble Alpes/CNRS/IRD/G-INP, Grenoble, France
Xavier Fettweis
Department of Geography, UR SPHERES, University of Liège, Liège, Belgium
Related authors
Sanne B. M. Veldhuijsen, Willem Jan van de Berg, Peter Kuipers Munneke, Nicolaj Hansen, Fredrik Boberg, Christoph Kittel, Charles Amory, and Michiel R. van den Broeke
EGUsphere, https://doi.org/10.5194/egusphere-2024-2855, https://doi.org/10.5194/egusphere-2024-2855, 2024
Short summary
Short summary
Perennial firn aquifers (PFAs), year-round bodies of liquid water within firn, can potentially impact ice-shelf and ice-sheet stability. We developed a fast XGBoost firn emulator to predict 21st-century distribution of PFAs in Antarctica for 12 climatic forcings datasets. Our findings suggest that under low emission scenarios, PFAs remain confined to the Antarctic Peninsula. However, under a high-emission scenario, PFAs are projected to expand to a region in West Antarctica and East Antarctica.
Cécile Davrinche, Anaïs Orsi, Cécile Agosta, Charles Amory, and Christoph Kittel
The Cryosphere, 18, 2239–2256, https://doi.org/10.5194/tc-18-2239-2024, https://doi.org/10.5194/tc-18-2239-2024, 2024
Short summary
Short summary
Coastal surface winds in Antarctica are amongst the strongest winds on Earth. They are either driven by the cooling of the surface air mass by the ice sheet (katabatic) or by large-scale pressure systems. Here we compute the relative contribution of these drivers. We find that seasonal variations in the wind speed come from the katabatic acceleration, but, at a 3-hourly timescale, none of the large-scale or katabatic accelerations can be considered as the main driver.
Alison Delhasse, Johanna Beckmann, Christoph Kittel, and Xavier Fettweis
The Cryosphere, 18, 633–651, https://doi.org/10.5194/tc-18-633-2024, https://doi.org/10.5194/tc-18-633-2024, 2024
Short summary
Short summary
Aiming to study the long-term influence of an extremely warm climate in the Greenland Ice Sheet contribution to sea level rise, a new regional atmosphere–ice sheet model setup was established. The coupling, explicitly considering the melt–elevation feedback, is compared to an offline method to consider this feedback. We highlight mitigation of the feedback due to local changes in atmospheric circulation with changes in surface topography, making the offline correction invalid on the margins.
Violaine Coulon, Ann Kristin Klose, Christoph Kittel, Tamsin Edwards, Fiona Turner, Ricarda Winkelmann, and Frank Pattyn
The Cryosphere, 18, 653–681, https://doi.org/10.5194/tc-18-653-2024, https://doi.org/10.5194/tc-18-653-2024, 2024
Short summary
Short summary
We present new projections of the evolution of the Antarctic ice sheet until the end of the millennium, calibrated with observations. We show that the ocean will be the main trigger of future ice loss. As temperatures continue to rise, the atmosphere's role may shift from mitigating to amplifying Antarctic mass loss already by the end of the century. For high-emission scenarios, this may lead to substantial sea-level rise. Adopting sustainable practices would however reduce the rate of ice loss.
Nicolas C. Jourdain, Charles Amory, Christoph Kittel, and Gaël Durand
EGUsphere, https://doi.org/10.5194/egusphere-2024-58, https://doi.org/10.5194/egusphere-2024-58, 2024
Short summary
Short summary
A mixed statistical-physical approach is used to reproduce the behaviour of a regional climate model. From that, we estimate the contribution of snowfall and melting at the surface of the Antarctic Ice Sheet to changes in global mean sea level. We also investigate the impact of surface melting in a warmer climate on the stability of the Antarctic ice shelves that provide a back stress on the ice flow to the ocean.
Justine Caillet, Nicolas C. Jourdain, Pierre Mathiot, Fabien Gillet-Chaulet, Benoit Urruty, Clara Burgard, Charles Amory, Christoph Kittel, and Mondher Chekki
EGUsphere, https://doi.org/10.5194/egusphere-2024-128, https://doi.org/10.5194/egusphere-2024-128, 2024
Short summary
Short summary
Internal climate variability, resulting from processes intrinsic to the climate system, modulates the Antarctic response to climate change, by delaying or offsetting its effects. Using climate and ice-sheet models, we highlight that irreducible internal climate variability significantly enlarges the likely range of Antarctic contribution to sea level rise until 2100. Thus, we recommend considering internal climate variability as a source of uncertainty for future ice-sheet projections.
Aymeric P. M. Servettaz, Cécile Agosta, Christoph Kittel, and Anaïs J. Orsi
The Cryosphere, 17, 5373–5389, https://doi.org/10.5194/tc-17-5373-2023, https://doi.org/10.5194/tc-17-5373-2023, 2023
Short summary
Short summary
It has been previously observed in polar regions that the atmospheric temperature is warmer during precipitation events. Here, we use a regional atmospheric model to quantify the temperature changes associated with snowfall events across Antarctica. We show that more intense snowfall is statistically associated with a warmer temperature anomaly compared to the seasonal average, with the largest anomalies seen in winter. This bias may affect water isotopes in ice cores deposited during snowfall.
Damien Maure, Christoph Kittel, Clara Lambin, Alison Delhasse, and Xavier Fettweis
The Cryosphere, 17, 4645–4659, https://doi.org/10.5194/tc-17-4645-2023, https://doi.org/10.5194/tc-17-4645-2023, 2023
Short summary
Short summary
The Arctic is warming faster than the rest of the Earth. Studies have already shown that Greenland and the Canadian Arctic are experiencing a record increase in melting rates, while Svalbard has been relatively less impacted. Looking at those regions but also extending the study to Iceland and the Russian Arctic archipelagoes, we see a heterogeneity in the melting-rate response to the Arctic warming, with the Russian archipelagoes experiencing lower melting rates than other regions.
Thomas Dethinne, Quentin Glaude, Ghislain Picard, Christoph Kittel, Patrick Alexander, Anne Orban, and Xavier Fettweis
The Cryosphere, 17, 4267–4288, https://doi.org/10.5194/tc-17-4267-2023, https://doi.org/10.5194/tc-17-4267-2023, 2023
Short summary
Short summary
We investigate the sensitivity of the regional climate model
Modèle Atmosphérique Régional(MAR) to the assimilation of wet-snow occurrence estimated by remote sensing datasets. The assimilation is performed by nudging the MAR snowpack temperature. The data assimilation is performed over the Antarctic Peninsula for the 2019–2021 period. The results show an increase in the melt production (+66.7 %) and a decrease in surface mass balance (−4.5 %) of the model for the 2019–2020 melt season.
Inès N. Otosaka, Andrew Shepherd, Erik R. Ivins, Nicole-Jeanne Schlegel, Charles Amory, Michiel R. van den Broeke, Martin Horwath, Ian Joughin, Michalea D. King, Gerhard Krinner, Sophie Nowicki, Anthony J. Payne, Eric Rignot, Ted Scambos, Karen M. Simon, Benjamin E. Smith, Louise S. Sørensen, Isabella Velicogna, Pippa L. Whitehouse, Geruo A, Cécile Agosta, Andreas P. Ahlstrøm, Alejandro Blazquez, William Colgan, Marcus E. Engdahl, Xavier Fettweis, Rene Forsberg, Hubert Gallée, Alex Gardner, Lin Gilbert, Noel Gourmelen, Andreas Groh, Brian C. Gunter, Christopher Harig, Veit Helm, Shfaqat Abbas Khan, Christoph Kittel, Hannes Konrad, Peter L. Langen, Benoit S. Lecavalier, Chia-Chun Liang, Bryant D. Loomis, Malcolm McMillan, Daniele Melini, Sebastian H. Mernild, Ruth Mottram, Jeremie Mouginot, Johan Nilsson, Brice Noël, Mark E. Pattle, William R. Peltier, Nadege Pie, Mònica Roca, Ingo Sasgen, Himanshu V. Save, Ki-Weon Seo, Bernd Scheuchl, Ernst J. O. Schrama, Ludwig Schröder, Sebastian B. Simonsen, Thomas Slater, Giorgio Spada, Tyler C. Sutterley, Bramha Dutt Vishwakarma, Jan Melchior van Wessem, David Wiese, Wouter van der Wal, and Bert Wouters
Earth Syst. Sci. Data, 15, 1597–1616, https://doi.org/10.5194/essd-15-1597-2023, https://doi.org/10.5194/essd-15-1597-2023, 2023
Short summary
Short summary
By measuring changes in the volume, gravitational attraction, and ice flow of Greenland and Antarctica from space, we can monitor their mass gain and loss over time. Here, we present a new record of the Earth’s polar ice sheet mass balance produced by aggregating 50 satellite-based estimates of ice sheet mass change. This new assessment shows that the ice sheets have lost (7.5 x 1012) t of ice between 1992 and 2020, contributing 21 mm to sea level rise.
Jeremy Carter, Amber Leeson, Andrew Orr, Christoph Kittel, and J. Melchior van Wessem
The Cryosphere, 16, 3815–3841, https://doi.org/10.5194/tc-16-3815-2022, https://doi.org/10.5194/tc-16-3815-2022, 2022
Short summary
Short summary
Climate models provide valuable information for studying processes such as the collapse of ice shelves over Antarctica which impact estimates of sea level rise. This paper examines variability across climate simulations over Antarctica for fields including snowfall, temperature and melt. Significant systematic differences between outputs are found, occurring at both large and fine spatial scales across Antarctica. Results are important for future impact assessments and model development.
Nicolaj Hansen, Sebastian B. Simonsen, Fredrik Boberg, Christoph Kittel, Andrew Orr, Niels Souverijns, J. Melchior van Wessem, and Ruth Mottram
The Cryosphere, 16, 711–718, https://doi.org/10.5194/tc-16-711-2022, https://doi.org/10.5194/tc-16-711-2022, 2022
Short summary
Short summary
We investigate the impact of different ice masks when modelling surface mass balance over Antarctica. We used ice masks and data from five of the most used regional climate models and a common mask. We see large disagreement between the ice masks, which has a large impact on the surface mass balance, especially around the Antarctic Peninsula and some of the largest glaciers. We suggest a solution for creating a new, up-to-date, high-resolution ice mask that can be used in Antarctic modelling.
Charles Pelletier, Thierry Fichefet, Hugues Goosse, Konstanze Haubner, Samuel Helsen, Pierre-Vincent Huot, Christoph Kittel, François Klein, Sébastien Le clec'h, Nicole P. M. van Lipzig, Sylvain Marchi, François Massonnet, Pierre Mathiot, Ehsan Moravveji, Eduardo Moreno-Chamarro, Pablo Ortega, Frank Pattyn, Niels Souverijns, Guillian Van Achter, Sam Vanden Broucke, Alexander Vanhulle, Deborah Verfaillie, and Lars Zipf
Geosci. Model Dev., 15, 553–594, https://doi.org/10.5194/gmd-15-553-2022, https://doi.org/10.5194/gmd-15-553-2022, 2022
Short summary
Short summary
We present PARASO, a circumpolar model for simulating the Antarctic climate. PARASO features five distinct models, each covering different Earth system subcomponents (ice sheet, atmosphere, land, sea ice, ocean). In this technical article, we describe how this tool has been developed, with a focus on the
coupling interfacesrepresenting the feedbacks between the distinct models used for contribution. PARASO is stable and ready to use but is still characterized by significant biases.
Camilla K. Crockart, Tessa R. Vance, Alexander D. Fraser, Nerilie J. Abram, Alison S. Criscitiello, Mark A. J. Curran, Vincent Favier, Ailie J. E. Gallant, Christoph Kittel, Helle A. Kjær, Andrew R. Klekociuk, Lenneke M. Jong, Andrew D. Moy, Christopher T. Plummer, Paul T. Vallelonga, Jonathan Wille, and Lingwei Zhang
Clim. Past, 17, 1795–1818, https://doi.org/10.5194/cp-17-1795-2021, https://doi.org/10.5194/cp-17-1795-2021, 2021
Short summary
Short summary
We present preliminary analyses of the annual sea salt concentrations and snowfall accumulation in a new East Antarctic ice core, Mount Brown South. We compare this record with an updated Law Dome (Dome Summit South site) ice core record over the period 1975–2016. The Mount Brown South record preserves a stronger and inverse signal for the El Niño–Southern Oscillation (in austral winter and spring) compared to the Law Dome record (in summer).
Ruth Mottram, Nicolaj Hansen, Christoph Kittel, J. Melchior van Wessem, Cécile Agosta, Charles Amory, Fredrik Boberg, Willem Jan van de Berg, Xavier Fettweis, Alexandra Gossart, Nicole P. M. van Lipzig, Erik van Meijgaard, Andrew Orr, Tony Phillips, Stuart Webster, Sebastian B. Simonsen, and Niels Souverijns
The Cryosphere, 15, 3751–3784, https://doi.org/10.5194/tc-15-3751-2021, https://doi.org/10.5194/tc-15-3751-2021, 2021
Short summary
Short summary
We compare the calculated surface mass budget (SMB) of Antarctica in five different regional climate models. On average ~ 2000 Gt of snow accumulates annually, but different models vary by ~ 10 %, a difference equivalent to ± 0.5 mm of global sea level rise. All models reproduce observed weather, but there are large differences in regional patterns of snowfall, especially in areas with very few observations, giving greater uncertainty in Antarctic mass budget than previously identified.
Louis Le Toumelin, Charles Amory, Vincent Favier, Christoph Kittel, Stefan Hofer, Xavier Fettweis, Hubert Gallée, and Vinay Kayetha
The Cryosphere, 15, 3595–3614, https://doi.org/10.5194/tc-15-3595-2021, https://doi.org/10.5194/tc-15-3595-2021, 2021
Short summary
Short summary
Snow is frequently eroded from the surface by the wind in Adelie Land (Antarctica) and suspended in the lower atmosphere. By performing model simulations, we show firstly that suspended snow layers interact with incoming radiation similarly to a near-surface cloud. Secondly, suspended snow modifies the atmosphere's thermodynamic structure and energy exchanges with the surface. Our results suggest snow transport by the wind should be taken into account in future model studies over the region.
Thomas James Barnes, Amber Alexandra Leeson, Malcolm McMillan, Vincent Verjans, Jeremy Carter, and Christoph Kittel
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-214, https://doi.org/10.5194/tc-2021-214, 2021
Revised manuscript not accepted
Short summary
Short summary
We find that the area covered by lakes on George VI ice shelf in 2020 is similar to that seen in other years such as 1989. However, the climate conditions are much more in favour of lakes forming. We find that it is likely that snowfall, and the build up of a surface snow layer limits the development of lakes on the surface of George VI ice shelf in 2020. We also find that in future, snowfall is predicted to decrease, and therefore this limiting effect may be reduced in future.
Xavier Fettweis, Stefan Hofer, Roland Séférian, Charles Amory, Alison Delhasse, Sébastien Doutreloup, Christoph Kittel, Charlotte Lang, Joris Van Bever, Florent Veillon, and Peter Irvine
The Cryosphere, 15, 3013–3019, https://doi.org/10.5194/tc-15-3013-2021, https://doi.org/10.5194/tc-15-3013-2021, 2021
Short summary
Short summary
Without any reduction in our greenhouse gas emissions, the Greenland ice sheet surface mass loss can be brought in line with a medium-mitigation emissions scenario by reducing the solar downward flux at the top of the atmosphere by 1.5 %. In addition to reducing global warming, these solar geoengineering measures also dampen the well-known positive melt–albedo feedback over the ice sheet by 6 %. However, only stronger reductions in solar radiation could maintain a stable ice sheet in 2100.
Charles Amory, Christoph Kittel, Louis Le Toumelin, Cécile Agosta, Alison Delhasse, Vincent Favier, and Xavier Fettweis
Geosci. Model Dev., 14, 3487–3510, https://doi.org/10.5194/gmd-14-3487-2021, https://doi.org/10.5194/gmd-14-3487-2021, 2021
Short summary
Short summary
This paper presents recent developments in the drifting-snow scheme of the regional climate model MAR and its application to simulate drifting snow and the surface mass balance of Adélie Land in East Antarctica. The model is extensively described and evaluated against a multi-year drifting-snow dataset and surface mass balance estimates available in the area. The model sensitivity to input parameters and improvements over a previously published version are also assessed.
Christoph Kittel, Charles Amory, Cécile Agosta, Nicolas C. Jourdain, Stefan Hofer, Alison Delhasse, Sébastien Doutreloup, Pierre-Vincent Huot, Charlotte Lang, Thierry Fichefet, and Xavier Fettweis
The Cryosphere, 15, 1215–1236, https://doi.org/10.5194/tc-15-1215-2021, https://doi.org/10.5194/tc-15-1215-2021, 2021
Short summary
Short summary
The future surface mass balance (SMB) of the Antarctic ice sheet (AIS) will influence the ice dynamics and the contribution of the ice sheet to the sea level rise. We investigate the AIS sensitivity to different warmings using physical and statistical downscaling of CMIP5 and CMIP6 models. Our results highlight a contrasting effect between the grounded ice sheet (where the SMB is projected to increase) and ice shelves (where the future SMB depends on the emission scenario).
Marion Donat-Magnin, Nicolas C. Jourdain, Christoph Kittel, Cécile Agosta, Charles Amory, Hubert Gallée, Gerhard Krinner, and Mondher Chekki
The Cryosphere, 15, 571–593, https://doi.org/10.5194/tc-15-571-2021, https://doi.org/10.5194/tc-15-571-2021, 2021
Short summary
Short summary
We simulate the West Antarctic climate in 2100 under increasing greenhouse gases. Future accumulation over the ice sheet increases, which reduces sea level changing rate. Surface ice-shelf melt rates increase until 2100. Some ice shelves experience a lot of liquid water at their surface, which indicates potential ice-shelf collapse. In contrast, no liquid water is found over other ice shelves due to huge amounts of snowfall that bury liquid water, favouring refreezing and ice-shelf stability.
Xavier Fettweis, Stefan Hofer, Uta Krebs-Kanzow, Charles Amory, Teruo Aoki, Constantijn J. Berends, Andreas Born, Jason E. Box, Alison Delhasse, Koji Fujita, Paul Gierz, Heiko Goelzer, Edward Hanna, Akihiro Hashimoto, Philippe Huybrechts, Marie-Luise Kapsch, Michalea D. King, Christoph Kittel, Charlotte Lang, Peter L. Langen, Jan T. M. Lenaerts, Glen E. Liston, Gerrit Lohmann, Sebastian H. Mernild, Uwe Mikolajewicz, Kameswarrao Modali, Ruth H. Mottram, Masashi Niwano, Brice Noël, Jonathan C. Ryan, Amy Smith, Jan Streffing, Marco Tedesco, Willem Jan van de Berg, Michiel van den Broeke, Roderik S. W. van de Wal, Leo van Kampenhout, David Wilton, Bert Wouters, Florian Ziemen, and Tobias Zolles
The Cryosphere, 14, 3935–3958, https://doi.org/10.5194/tc-14-3935-2020, https://doi.org/10.5194/tc-14-3935-2020, 2020
Short summary
Short summary
We evaluated simulated Greenland Ice Sheet surface mass balance from 5 kinds of models. While the most complex (but expensive to compute) models remain the best, the faster/simpler models also compare reliably with observations and have biases of the same order as the regional models. Discrepancies in the trend over 2000–2012, however, suggest that large uncertainties remain in the modelled future SMB changes as they are highly impacted by the meltwater runoff biases over the current climate.
Alison Delhasse, Christoph Kittel, Charles Amory, Stefan Hofer, Dirk van As, Robert S. Fausto, and Xavier Fettweis
The Cryosphere, 14, 957–965, https://doi.org/10.5194/tc-14-957-2020, https://doi.org/10.5194/tc-14-957-2020, 2020
Short summary
Short summary
The ERA5 reanalysis of the ECMWF replaced the ERA-Interim in August 2019 and has never been evaluated over Greenland. The aim was to evaluate the performance of ERA5 to simulate the near-surface climate of the Greenland Ice sheet (GrIS) against ERA-Interim and regional climate models with the help of in situ observations from the PROMICE dataset. We also highlighted that polar regional climate models are still a useful tool to study the GrIS climate compared to ERA5.
Alison Delhasse, Edward Hanna, Christoph Kittel, and Xavier Fettweis
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-332, https://doi.org/10.5194/tc-2019-332, 2020
Preprint withdrawn
Short summary
Short summary
Significant melting events over Greenland ice sheet related to unusual atmospheric pattern in summer, as observed this summer 2019, are still not considered by the new generation of Earth-system models (CMIP6) and therefore the projected surface melt increase of the ice sheet is likely to be underestimated if such changes persist in the next decades.
Marion Donat-Magnin, Nicolas C. Jourdain, Hubert Gallée, Charles Amory, Christoph Kittel, Xavier Fettweis, Jonathan D. Wille, Vincent Favier, Amine Drira, and Cécile Agosta
The Cryosphere, 14, 229–249, https://doi.org/10.5194/tc-14-229-2020, https://doi.org/10.5194/tc-14-229-2020, 2020
Short summary
Short summary
Modeling the interannual variability of the surface conditions over Antarctic glaciers is important for the identification of climate trends and climate predictions and to assess models. We simulate snow accumulation and surface melting in the Amundsen sector (West Antarctica) over 1979–2017. For all the glaciers, the interannual variability of summer snow accumulation and surface melting is driven by two distinct mechanisms related to variations in the Amundsen Sea Low strength and position.
Charles Amory and Christoph Kittel
The Cryosphere, 13, 3405–3412, https://doi.org/10.5194/tc-13-3405-2019, https://doi.org/10.5194/tc-13-3405-2019, 2019
Short summary
Short summary
Snow mass fluxes and vertical profiles of relative humidity are used to document concurrent occurrences of drifting snow and near-surface air saturation at a site dominated by katabatic winds in East Antarctica. Despite a high prevalence of drifting snow conditions, we demonstrate that saturation is reached only in the most extreme wind and transport conditions and discuss implications for the understanding of surface mass and atmospheric moisture budgets of the Antarctic ice sheet.
Cécile Agosta, Charles Amory, Christoph Kittel, Anais Orsi, Vincent Favier, Hubert Gallée, Michiel R. van den Broeke, Jan T. M. Lenaerts, Jan Melchior van Wessem, Willem Jan van de Berg, and Xavier Fettweis
The Cryosphere, 13, 281–296, https://doi.org/10.5194/tc-13-281-2019, https://doi.org/10.5194/tc-13-281-2019, 2019
Short summary
Short summary
Antarctic surface mass balance (ASMB), a component of the sea level budget, is commonly estimated through modelling as observations are scarce. The polar-oriented regional climate model MAR performs well in simulating the observed ASMB. MAR and RACMO2 share common biases we relate to drifting snow transport, with a 3 times larger magnitude than in previous estimates. Sublimation of precipitation in the katabatic layer modelled by MAR is of a magnitude similar to an observation-based estimate.
Christoph Kittel, Charles Amory, Cécile Agosta, Alison Delhasse, Sébastien Doutreloup, Pierre-Vincent Huot, Coraline Wyard, Thierry Fichefet, and Xavier Fettweis
The Cryosphere, 12, 3827–3839, https://doi.org/10.5194/tc-12-3827-2018, https://doi.org/10.5194/tc-12-3827-2018, 2018
Short summary
Short summary
Regional climate models (RCMs) used to estimate the surface mass balance (SMB) of Antarctica depend on boundary forcing fields including sea surface conditions. Here, we assess the sensitivity of the Antarctic SMB to perturbations in sea surface conditions with the RCM MAR using unchanged atmospheric conditions. Significant SMB anomalies are found for SSC perturbations in the range of CMIP5 global climate model biases.
Alison Delhasse, Xavier Fettweis, Christoph Kittel, Charles Amory, and Cécile Agosta
The Cryosphere, 12, 3409–3418, https://doi.org/10.5194/tc-12-3409-2018, https://doi.org/10.5194/tc-12-3409-2018, 2018
Short summary
Short summary
Since the 2000s, an atmospheric circulation change (CC) gauged by a negative summer shift in the North Atlantic Oscillation has been observed, enhancing surface melt over the Greenland Ice Sheet (GrIS). Future GrIS surface mass balance (SMB) projections are based on global climate models that do not represent this CC. The model MAR has been used to show that previous estimates of these projections could have been significantly overestimated if this current circulation pattern persists.
Xavier Fettweis, Jason E. Box, Cécile Agosta, Charles Amory, Christoph Kittel, Charlotte Lang, Dirk van As, Horst Machguth, and Hubert Gallée
The Cryosphere, 11, 1015–1033, https://doi.org/10.5194/tc-11-1015-2017, https://doi.org/10.5194/tc-11-1015-2017, 2017
Short summary
Short summary
This paper shows that the surface melt increase over the Greenland ice sheet since the end of the 1990s has been unprecedented, with respect to the last 120 years, using a regional climate model. These simulations also suggest an increase of the snowfall accumulation through the last century before a surface mass decrease in the 2000s. Such a mass gain could have impacted the ice sheet's dynamic stability and could explain the recent observed increase of the glaciers' velocity.
Weiran Li, Stef Lhermitte, Bert Wouters, Cornelis Slobbe, Max Brils, and Xavier Fettweis
EGUsphere, https://doi.org/10.5194/egusphere-2024-3251, https://doi.org/10.5194/egusphere-2024-3251, 2024
Short summary
Short summary
Due to the melt events in recent decades, the snow condition over Greenland has been changed. To observe this, we use a parameter (leading edge width; LeW) derived from satellite altimetry, and analyse its spatial and temporal variations. By comparing the LeW variations with modelled firn parameters, we concluded that the 2012 melt event has a long-lasting impact on the volume scattering of Greenland firn. This impact cannot fully recover due to the recent and more frequent melt events.
Sylvie Charbit, Christophe Dumas, Fabienne Maignan, Catherine Ottlé, Nina Raoult, Xavier Fettweis, and Philippe Conesa
The Cryosphere, 18, 5067–5099, https://doi.org/10.5194/tc-18-5067-2024, https://doi.org/10.5194/tc-18-5067-2024, 2024
Short summary
Short summary
The evolution of the Greenland ice sheet is highly dependent on surface melting and therefore on the processes operating at the snow–atmosphere interface and within the snow cover. Here we present new developments to apply a snow model to the Greenland ice sheet. The performance of this model is analysed in terms of its ability to simulate ablation processes. Our analysis shows that the model performs well when compared with the MAR regional polar atmospheric model.
Sanne B. M. Veldhuijsen, Willem Jan van de Berg, Peter Kuipers Munneke, Nicolaj Hansen, Fredrik Boberg, Christoph Kittel, Charles Amory, and Michiel R. van den Broeke
EGUsphere, https://doi.org/10.5194/egusphere-2024-2855, https://doi.org/10.5194/egusphere-2024-2855, 2024
Short summary
Short summary
Perennial firn aquifers (PFAs), year-round bodies of liquid water within firn, can potentially impact ice-shelf and ice-sheet stability. We developed a fast XGBoost firn emulator to predict 21st-century distribution of PFAs in Antarctica for 12 climatic forcings datasets. Our findings suggest that under low emission scenarios, PFAs remain confined to the Antarctic Peninsula. However, under a high-emission scenario, PFAs are projected to expand to a region in West Antarctica and East Antarctica.
Jan De Rydt, Nicolas C. Jourdain, Yoshihiro Nakayama, Mathias van Caspel, Ralph Timmermann, Pierre Mathiot, Xylar S. Asay-Davis, Hélène Seroussi, Pierre Dutrieux, Ben Galton-Fenzi, David Holland, and Ronja Reese
Geosci. Model Dev., 17, 7105–7139, https://doi.org/10.5194/gmd-17-7105-2024, https://doi.org/10.5194/gmd-17-7105-2024, 2024
Short summary
Short summary
Global climate models do not reliably simulate sea-level change due to ice-sheet–ocean interactions. We propose a community modelling effort to conduct a series of well-defined experiments to compare models with observations and study how models respond to a range of perturbations in climate and ice-sheet geometry. The second Marine Ice Sheet–Ocean Model Intercomparison Project will continue to lay the groundwork for including ice-sheet–ocean interactions in global-scale IPCC-class models.
Horst Machguth, Andrew Tedstone, Peter Kuipers Munneke, Max Brils, Brice Noël, Nicole Clerx, Nicolas Jullien, Xavier Fettweis, and Michiel van den Broeke
EGUsphere, https://doi.org/10.5194/egusphere-2024-2750, https://doi.org/10.5194/egusphere-2024-2750, 2024
Short summary
Short summary
Due to increasing air temperatures, surface melt expands to higher elevations on the Greenland ice sheet. This is visible on satellite imagery in the form of rivers of meltwater running across the surface of the ice sheet. We compare model results of meltwater at high elevations on the ice sheet to satellite observations. We find that each of the models shows strengths and weaknesses. A detailed look into the model results reveals potential reasons for the differences between models.
Jonathan Wiskandt and Nicolas Jourdain
EGUsphere, https://doi.org/10.5194/egusphere-2024-2239, https://doi.org/10.5194/egusphere-2024-2239, 2024
Short summary
Short summary
In ocean models, submarine melt of ice shelves is parameterized based on the heat budget at the interface. The heat budget includes the ocean heat transport, the heat conducted into the ice and the heat available for melting. Here we compare three different approaches to estimate the heat conduction. We show that the most accurate approximation is not the one used most, despite it overestimating the melt by up to 25 % and not being computationally more expensive.
Jean-François Grailet, Robin J. Hogan, Nicolas Ghilain, Xavier Fettweis, and Marilaure Grégoire
EGUsphere, https://doi.org/10.5194/egusphere-2024-1858, https://doi.org/10.5194/egusphere-2024-1858, 2024
Short summary
Short summary
The MAR model is a regional climate model used for weather forecasting and studying the climate over various regions. This paper presents an update of MAR thanks to which it can decompose solar radiation into various ranges. In particular, MAR can now simulate precisely solar radiation in the ultraviolet and photosynthesis ranges, both being critical to human health and ecosystems. As a first application of this new capability, this paper presents a method for predicting UV indices with MAR.
Ella Gilbert, Denis Pishniak, José Abraham Torres, Andrew Orr, Michelle Maclennan, Nander Wever, and Kristiina Verro
EGUsphere, https://doi.org/10.5194/egusphere-2024-2111, https://doi.org/10.5194/egusphere-2024-2111, 2024
Short summary
Short summary
We use 3 sophisticated climate models to examine extreme precipitation in a critical region of West Antarctica. We found that rainfall probably occurred during the two cases we examined, and that it was generated by the interaction of air with steep topography. Our results show that kilometre scale models are useful tools for exploring extreme precipitation in this region, and that more observations of rainfall are needed.
Nicolaj Hansen, Andrew Orr, Xun Zou, Fredrik Boberg, Thomas J. Bracegirdle, Ella Gilbert, Peter L. Langen, Matthew A. Lazzara, Ruth Mottram, Tony Phillips, Ruth Price, Sebastian B. Simonsen, and Stuart Webster
The Cryosphere, 18, 2897–2916, https://doi.org/10.5194/tc-18-2897-2024, https://doi.org/10.5194/tc-18-2897-2024, 2024
Short summary
Short summary
We investigated a melt event over the Ross Ice Shelf. We use regional climate models and a firn model to simulate the melt and compare the results with satellite data. We find that the firn model aligned well with observed melt days in certain parts of the ice shelf. The firn model had challenges accurately simulating the melt extent in the western sector. We identified potential reasons for these discrepancies, pointing to limitations in the models related to representing the cloud properties.
Cécile Davrinche, Anaïs Orsi, Cécile Agosta, Charles Amory, and Christoph Kittel
The Cryosphere, 18, 2239–2256, https://doi.org/10.5194/tc-18-2239-2024, https://doi.org/10.5194/tc-18-2239-2024, 2024
Short summary
Short summary
Coastal surface winds in Antarctica are amongst the strongest winds on Earth. They are either driven by the cooling of the surface air mass by the ice sheet (katabatic) or by large-scale pressure systems. Here we compute the relative contribution of these drivers. We find that seasonal variations in the wind speed come from the katabatic acceleration, but, at a 3-hourly timescale, none of the large-scale or katabatic accelerations can be considered as the main driver.
Amaelle Landais, Cécile Agosta, Françoise Vimeux, Olivier Magand, Cyrielle Solis, Alexandre Cauquoin, Niels Dutrievoz, Camille Risi, Christophe Leroy-Dos Santos, Elise Fourré, Olivier Cattani, Olivier Jossoud, Bénédicte Minster, Frédéric Prié, Mathieu Casado, Aurélien Dommergue, Yann Bertrand, and Martin Werner
Atmos. Chem. Phys., 24, 4611–4634, https://doi.org/10.5194/acp-24-4611-2024, https://doi.org/10.5194/acp-24-4611-2024, 2024
Short summary
Short summary
We have monitored water vapor isotopes since January 2020 on Amsterdam Island in the Indian Ocean. We show 11 periods associated with abrupt negative excursions of water vapor δ18Ο. Six of these events show a decrease in gaseous elemental mercury, suggesting subsidence of air from a higher altitude. Accurately representing the water isotopic signal during these cold fronts is a real challenge for the atmospheric components of Earth system models equipped with water isotopes.
Ella Gilbert, Jhaswantsing Purseed, Yun Li, Martina Krämer, Beatrice Altamura, and Nicolas Bellouin
EGUsphere, https://doi.org/10.5194/egusphere-2024-821, https://doi.org/10.5194/egusphere-2024-821, 2024
Preprint withdrawn
Short summary
Short summary
We use a simple experiment to explore the non-CO2 impacts of aviation on climate, which are considerably larger than the impact of the sector’s carbon emissions alone. We show that the main effect of our experiments – which intend to mimic the effect of aircraft soot emissions reaching existing high-altitude cirrus clouds – is to extend cloud lifetime, thereby enhancing their effect on climate.
Matthieu Baron, Ange Haddjeri, Matthieu Lafaysse, Louis Le Toumelin, Vincent Vionnet, and Mathieu Fructus
Geosci. Model Dev., 17, 1297–1326, https://doi.org/10.5194/gmd-17-1297-2024, https://doi.org/10.5194/gmd-17-1297-2024, 2024
Short summary
Short summary
Increasing the spatial resolution of numerical systems simulating snowpack evolution in mountain areas requires representing small-scale processes such as wind-induced snow transport. We present SnowPappus, a simple scheme coupled with the Crocus snow model to compute blowing-snow fluxes and redistribute snow among grid points at 250 m resolution. In terms of numerical cost, it is suitable for large-scale applications. We present point-scale evaluations of fluxes and snow transport occurrence.
Louis Le Toumelin, Isabelle Gouttevin, Clovis Galiez, and Nora Helbig
Nonlin. Processes Geophys., 31, 75–97, https://doi.org/10.5194/npg-31-75-2024, https://doi.org/10.5194/npg-31-75-2024, 2024
Short summary
Short summary
Forecasting wind fields over mountains is of high importance for several applications and particularly for understanding how wind erodes and disperses snow. Forecasters rely on operational wind forecasts over mountains, which are currently only available on kilometric scales. These forecasts can also be affected by errors of diverse origins. Here we introduce a new strategy based on artificial intelligence to correct large-scale wind forecasts in mountains and increase their spatial resolution.
Sara Bacer, Julien Beaumet, Martin Ménégoz, Hubert Gallée, Enzo Le Bouëdec, and Chantal Staquet
Weather Clim. Dynam., 5, 211–229, https://doi.org/10.5194/wcd-5-211-2024, https://doi.org/10.5194/wcd-5-211-2024, 2024
Short summary
Short summary
A model chain is used to downscale outputs from a climate model to the Grenoble valley atmosphere over the 21st century in order to study the impact of climate change on persistent cold-air pool episodes. We find that the atmosphere in the Grenoble valleys during these episodes tends to be slightly less stable in the future under the SSP5–8.5 scenario, and statistically unchanged under the SSP2–4.5 scenario but that very stable persistent cold-air pool episodes can still form.
Alison Delhasse, Johanna Beckmann, Christoph Kittel, and Xavier Fettweis
The Cryosphere, 18, 633–651, https://doi.org/10.5194/tc-18-633-2024, https://doi.org/10.5194/tc-18-633-2024, 2024
Short summary
Short summary
Aiming to study the long-term influence of an extremely warm climate in the Greenland Ice Sheet contribution to sea level rise, a new regional atmosphere–ice sheet model setup was established. The coupling, explicitly considering the melt–elevation feedback, is compared to an offline method to consider this feedback. We highlight mitigation of the feedback due to local changes in atmospheric circulation with changes in surface topography, making the offline correction invalid on the margins.
Baptiste Vandecrux, Robert S. Fausto, Jason E. Box, Federico Covi, Regine Hock, Åsa K. Rennermalm, Achim Heilig, Jakob Abermann, Dirk van As, Elisa Bjerre, Xavier Fettweis, Paul C. J. P. Smeets, Peter Kuipers Munneke, Michiel R. van den Broeke, Max Brils, Peter L. Langen, Ruth Mottram, and Andreas P. Ahlstrøm
The Cryosphere, 18, 609–631, https://doi.org/10.5194/tc-18-609-2024, https://doi.org/10.5194/tc-18-609-2024, 2024
Short summary
Short summary
How fast is the Greenland ice sheet warming? In this study, we compiled 4500+ temperature measurements at 10 m below the ice sheet surface (T10m) from 1912 to 2022. We trained a machine learning model on these data and reconstructed T10m for the ice sheet during 1950–2022. After a slight cooling during 1950–1985, the ice sheet warmed at a rate of 0.7 °C per decade until 2022. Climate models showed mixed results compared to our observations and underestimated the warming in key regions.
Violaine Coulon, Ann Kristin Klose, Christoph Kittel, Tamsin Edwards, Fiona Turner, Ricarda Winkelmann, and Frank Pattyn
The Cryosphere, 18, 653–681, https://doi.org/10.5194/tc-18-653-2024, https://doi.org/10.5194/tc-18-653-2024, 2024
Short summary
Short summary
We present new projections of the evolution of the Antarctic ice sheet until the end of the millennium, calibrated with observations. We show that the ocean will be the main trigger of future ice loss. As temperatures continue to rise, the atmosphere's role may shift from mitigating to amplifying Antarctic mass loss already by the end of the century. For high-emission scenarios, this may lead to substantial sea-level rise. Adopting sustainable practices would however reduce the rate of ice loss.
Nicolas C. Jourdain, Charles Amory, Christoph Kittel, and Gaël Durand
EGUsphere, https://doi.org/10.5194/egusphere-2024-58, https://doi.org/10.5194/egusphere-2024-58, 2024
Short summary
Short summary
A mixed statistical-physical approach is used to reproduce the behaviour of a regional climate model. From that, we estimate the contribution of snowfall and melting at the surface of the Antarctic Ice Sheet to changes in global mean sea level. We also investigate the impact of surface melting in a warmer climate on the stability of the Antarctic ice shelves that provide a back stress on the ice flow to the ocean.
Justine Caillet, Nicolas C. Jourdain, Pierre Mathiot, Fabien Gillet-Chaulet, Benoit Urruty, Clara Burgard, Charles Amory, Christoph Kittel, and Mondher Chekki
EGUsphere, https://doi.org/10.5194/egusphere-2024-128, https://doi.org/10.5194/egusphere-2024-128, 2024
Short summary
Short summary
Internal climate variability, resulting from processes intrinsic to the climate system, modulates the Antarctic response to climate change, by delaying or offsetting its effects. Using climate and ice-sheet models, we highlight that irreducible internal climate variability significantly enlarges the likely range of Antarctic contribution to sea level rise until 2100. Thus, we recommend considering internal climate variability as a source of uncertainty for future ice-sheet projections.
Valentin Wiener, Marie-Laure Roussel, Christophe Genthon, Étienne Vignon, Jacopo Grazioli, and Alexis Berne
Earth Syst. Sci. Data, 16, 821–836, https://doi.org/10.5194/essd-16-821-2024, https://doi.org/10.5194/essd-16-821-2024, 2024
Short summary
Short summary
This paper presents 7 years of data from a precipitation radar deployed at the Dumont d'Urville station in East Antarctica. The main characteristics of the dataset are outlined in a short statistical study. Interannual and seasonal variability are also investigated. Then, we extensively describe the processing method to retrieve snowfall profiles from the radar data. Lastly, a brief comparison is made with two climate models as an application example of the dataset.
Idunn Aamnes Mostue, Stefan Hofer, Trude Storelvmo, and Xavier Fettweis
The Cryosphere, 18, 475–488, https://doi.org/10.5194/tc-18-475-2024, https://doi.org/10.5194/tc-18-475-2024, 2024
Short summary
Short summary
The latest generation of climate models (Coupled Model Intercomparison Project Phase 6 – CMIP6) warm more over Greenland and the Arctic and thus also project a larger mass loss from the Greenland Ice Sheet (GrIS) compared to the previous generation of climate models (CMIP5). Our work suggests for the first time that part of the greater mass loss in CMIP6 over the GrIS is driven by a difference in the surface mass balance sensitivity from a change in cloud representation in the CMIP6 models.
Laura J. Dietrich, Hans Christian Steen-Larsen, Sonja Wahl, Anne-Katrine Faber, and Xavier Fettweis
The Cryosphere, 18, 289–305, https://doi.org/10.5194/tc-18-289-2024, https://doi.org/10.5194/tc-18-289-2024, 2024
Short summary
Short summary
The contribution of the humidity flux to the surface mass balance in the accumulation zone of the Greenland Ice Sheet is uncertain. Here, we evaluate the regional climate model MAR using a multi-annual dataset of eddy covariance measurements and bulk estimates of the humidity flux. The humidity flux largely contributes to the summer surface mass balance (SMB) in the accumulation zone, indicating its potential importance for the annual SMB in a warming climate.
Aymeric P. M. Servettaz, Cécile Agosta, Christoph Kittel, and Anaïs J. Orsi
The Cryosphere, 17, 5373–5389, https://doi.org/10.5194/tc-17-5373-2023, https://doi.org/10.5194/tc-17-5373-2023, 2023
Short summary
Short summary
It has been previously observed in polar regions that the atmospheric temperature is warmer during precipitation events. Here, we use a regional atmospheric model to quantify the temperature changes associated with snowfall events across Antarctica. We show that more intense snowfall is statistically associated with a warmer temperature anomaly compared to the seasonal average, with the largest anomalies seen in winter. This bias may affect water isotopes in ice cores deposited during snowfall.
Christophe Leroy-Dos Santos, Elise Fourré, Cécile Agosta, Mathieu Casado, Alexandre Cauquoin, Martin Werner, Benedicte Minster, Frédéric Prié, Olivier Jossoud, Leila Petit, and Amaëlle Landais
The Cryosphere, 17, 5241–5254, https://doi.org/10.5194/tc-17-5241-2023, https://doi.org/10.5194/tc-17-5241-2023, 2023
Short summary
Short summary
In the face of global warming, understanding the changing water cycle and temperatures in polar regions is crucial. These factors directly impact the balance of ice sheets in the Arctic and Antarctic. By studying the composition of water vapor, we gain insights into climate variations. Our 2-year study at Dumont d’Urville station, Adélie Land, offers valuable data to refine models. Additionally, we demonstrate how modeling aids in interpreting signals from ice core samples in the region.
Hélène Seroussi, Vincent Verjans, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Peter Van Katwyk, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 17, 5197–5217, https://doi.org/10.5194/tc-17-5197-2023, https://doi.org/10.5194/tc-17-5197-2023, 2023
Short summary
Short summary
Mass loss from Antarctica is a key contributor to sea level rise over the 21st century, and the associated uncertainty dominates sea level projections. We highlight here the Antarctic glaciers showing the largest changes and quantify the main sources of uncertainty in their future evolution using an ensemble of ice flow models. We show that on top of Pine Island and Thwaites glaciers, Totten and Moscow University glaciers show rapid changes and a strong sensitivity to warmer ocean conditions.
Marco Tedesco, Paolo Colosio, Xavier Fettweis, and Guido Cervone
The Cryosphere, 17, 5061–5074, https://doi.org/10.5194/tc-17-5061-2023, https://doi.org/10.5194/tc-17-5061-2023, 2023
Short summary
Short summary
We developed a technique to improve the outputs of a model that calculates the gain and loss of Greenland and consequently its contribution to sea level rise. Our technique generates “sharper” images of the maps generated by the model to better understand and quantify where losses occur. This has implications for improving models, understanding what drives the contributions of Greenland to sea level rise, and more.
Alfonso Ferrone, Étienne Vignon, Andrea Zonato, and Alexis Berne
The Cryosphere, 17, 4937–4956, https://doi.org/10.5194/tc-17-4937-2023, https://doi.org/10.5194/tc-17-4937-2023, 2023
Short summary
Short summary
In austral summer 2019/2020, three K-band Doppler profilers were deployed across the Sør Rondane Mountains, south of the Belgian base Princess Elisabeth Antarctica. Their measurements, along with atmospheric simulations and reanalyses, have been used to study the spatial variability in precipitation over the region, as well as investigate the interaction between the complex terrain and the typical flow associated with precipitating systems.
Pierre Mathiot and Nicolas C. Jourdain
Ocean Sci., 19, 1595–1615, https://doi.org/10.5194/os-19-1595-2023, https://doi.org/10.5194/os-19-1595-2023, 2023
Short summary
Short summary
How much the Antarctic ice shelf basal melt rate can increase in response to global warming remains an open question. To achieve this, we compared an ocean simulation under present-day atmospheric condition to a one under late 23rd century atmospheric conditions. The ocean response to the perturbation includes a decrease in the production of cold dense water and an increased intrusion of warmer water onto the continental shelves. This induces a substantial increase in ice shelf basal melt rates.
Damien Maure, Christoph Kittel, Clara Lambin, Alison Delhasse, and Xavier Fettweis
The Cryosphere, 17, 4645–4659, https://doi.org/10.5194/tc-17-4645-2023, https://doi.org/10.5194/tc-17-4645-2023, 2023
Short summary
Short summary
The Arctic is warming faster than the rest of the Earth. Studies have already shown that Greenland and the Canadian Arctic are experiencing a record increase in melting rates, while Svalbard has been relatively less impacted. Looking at those regions but also extending the study to Iceland and the Russian Arctic archipelagoes, we see a heterogeneity in the melting-rate response to the Arctic warming, with the Russian archipelagoes experiencing lower melting rates than other regions.
Prateek Gantayat, Alison F. Banwell, Amber A. Leeson, James M. Lea, Dorthe Petersen, Noel Gourmelen, and Xavier Fettweis
Geosci. Model Dev., 16, 5803–5823, https://doi.org/10.5194/gmd-16-5803-2023, https://doi.org/10.5194/gmd-16-5803-2023, 2023
Short summary
Short summary
We developed a new supraglacial hydrology model for the Greenland Ice Sheet. This model simulates surface meltwater routing, meltwater drainage, supraglacial lake (SGL) overflow, and formation of lake ice. The model was able to reproduce 80 % of observed lake locations and provides a good match between the observed and modelled temporal evolution of SGLs.
Thomas Dethinne, Quentin Glaude, Ghislain Picard, Christoph Kittel, Patrick Alexander, Anne Orban, and Xavier Fettweis
The Cryosphere, 17, 4267–4288, https://doi.org/10.5194/tc-17-4267-2023, https://doi.org/10.5194/tc-17-4267-2023, 2023
Short summary
Short summary
We investigate the sensitivity of the regional climate model
Modèle Atmosphérique Régional(MAR) to the assimilation of wet-snow occurrence estimated by remote sensing datasets. The assimilation is performed by nudging the MAR snowpack temperature. The data assimilation is performed over the Antarctic Peninsula for the 2019–2021 period. The results show an increase in the melt production (+66.7 %) and a decrease in surface mass balance (−4.5 %) of the model for the 2019–2020 melt season.
Fanny Brun, Owen King, Marion Réveillet, Charles Amory, Anton Planchot, Etienne Berthier, Amaury Dehecq, Tobias Bolch, Kévin Fourteau, Julien Brondex, Marie Dumont, Christoph Mayer, Silvan Leinss, Romain Hugonnet, and Patrick Wagnon
The Cryosphere, 17, 3251–3268, https://doi.org/10.5194/tc-17-3251-2023, https://doi.org/10.5194/tc-17-3251-2023, 2023
Short summary
Short summary
The South Col Glacier is a small body of ice and snow located on the southern ridge of Mt. Everest. A recent study proposed that South Col Glacier is rapidly losing mass. In this study, we examined the glacier thickness change for the period 1984–2017 and found no thickness change. To reconcile these results, we investigate wind erosion and surface energy and mass balance and find that melt is unlikely a dominant process, contrary to previous findings.
Katherine Hutchinson, Julie Deshayes, Christian Éthé, Clément Rousset, Casimir de Lavergne, Martin Vancoppenolle, Nicolas C. Jourdain, and Pierre Mathiot
Geosci. Model Dev., 16, 3629–3650, https://doi.org/10.5194/gmd-16-3629-2023, https://doi.org/10.5194/gmd-16-3629-2023, 2023
Short summary
Short summary
Bottom Water constitutes the lower half of the ocean’s overturning system and is primarily formed in the Weddell and Ross Sea in the Antarctic due to interactions between the atmosphere, ocean, sea ice and ice shelves. Here we use a global ocean 1° resolution model with explicit representation of the three large ice shelves important for the formation of the parent waters of Bottom Water. We find doing so reduces salt biases, improves water mass realism and gives realistic ice shelf melt rates.
Inès N. Otosaka, Andrew Shepherd, Erik R. Ivins, Nicole-Jeanne Schlegel, Charles Amory, Michiel R. van den Broeke, Martin Horwath, Ian Joughin, Michalea D. King, Gerhard Krinner, Sophie Nowicki, Anthony J. Payne, Eric Rignot, Ted Scambos, Karen M. Simon, Benjamin E. Smith, Louise S. Sørensen, Isabella Velicogna, Pippa L. Whitehouse, Geruo A, Cécile Agosta, Andreas P. Ahlstrøm, Alejandro Blazquez, William Colgan, Marcus E. Engdahl, Xavier Fettweis, Rene Forsberg, Hubert Gallée, Alex Gardner, Lin Gilbert, Noel Gourmelen, Andreas Groh, Brian C. Gunter, Christopher Harig, Veit Helm, Shfaqat Abbas Khan, Christoph Kittel, Hannes Konrad, Peter L. Langen, Benoit S. Lecavalier, Chia-Chun Liang, Bryant D. Loomis, Malcolm McMillan, Daniele Melini, Sebastian H. Mernild, Ruth Mottram, Jeremie Mouginot, Johan Nilsson, Brice Noël, Mark E. Pattle, William R. Peltier, Nadege Pie, Mònica Roca, Ingo Sasgen, Himanshu V. Save, Ki-Weon Seo, Bernd Scheuchl, Ernst J. O. Schrama, Ludwig Schröder, Sebastian B. Simonsen, Thomas Slater, Giorgio Spada, Tyler C. Sutterley, Bramha Dutt Vishwakarma, Jan Melchior van Wessem, David Wiese, Wouter van der Wal, and Bert Wouters
Earth Syst. Sci. Data, 15, 1597–1616, https://doi.org/10.5194/essd-15-1597-2023, https://doi.org/10.5194/essd-15-1597-2023, 2023
Short summary
Short summary
By measuring changes in the volume, gravitational attraction, and ice flow of Greenland and Antarctica from space, we can monitor their mass gain and loss over time. Here, we present a new record of the Earth’s polar ice sheet mass balance produced by aggregating 50 satellite-based estimates of ice sheet mass change. This new assessment shows that the ice sheets have lost (7.5 x 1012) t of ice between 1992 and 2020, contributing 21 mm to sea level rise.
Benjamin E. Smith, Brooke Medley, Xavier Fettweis, Tyler Sutterley, Patrick Alexander, David Porter, and Marco Tedesco
The Cryosphere, 17, 789–808, https://doi.org/10.5194/tc-17-789-2023, https://doi.org/10.5194/tc-17-789-2023, 2023
Short summary
Short summary
We use repeated satellite measurements of the height of the Greenland ice sheet to learn about how three computational models of snowfall, melt, and snow compaction represent actual changes in the ice sheet. We find that the models do a good job of estimating how the parts of the ice sheet near the coast have changed but that two of the models have trouble representing surface melt for the highest part of the ice sheet. This work provides suggestions for how to better model snowmelt.
Jilu Li, Fernando Rodriguez-Morales, Xavier Fettweis, Oluwanisola Ibikunle, Carl Leuschen, John Paden, Daniel Gomez-Garcia, and Emily Arnold
The Cryosphere, 17, 175–193, https://doi.org/10.5194/tc-17-175-2023, https://doi.org/10.5194/tc-17-175-2023, 2023
Short summary
Short summary
Alaskan glaciers' loss of ice mass contributes significantly to ocean surface rise. It is important to know how deeply and how much snow accumulates on these glaciers to comprehend and analyze the glacial mass loss process. We reported the observed seasonal snow depth distribution from our radar data taken in Alaska in 2018 and 2021, developed a method to estimate the annual snow accumulation rate at Mt. Wrangell caldera, and identified transition zones from wet-snow zones to ablation zones.
Clara Burgard, Nicolas C. Jourdain, Ronja Reese, Adrian Jenkins, and Pierre Mathiot
The Cryosphere, 16, 4931–4975, https://doi.org/10.5194/tc-16-4931-2022, https://doi.org/10.5194/tc-16-4931-2022, 2022
Short summary
Short summary
The ocean-induced melt at the base of the floating ice shelves around Antarctica is one of the largest uncertainty factors in the Antarctic contribution to future sea-level rise. We assess the performance of several existing parameterisations in simulating basal melt rates on a circum-Antarctic scale, using an ocean simulation resolving the cavities below the shelves as our reference. We find that the simple quadratic slope-independent and plume parameterisations yield the best compromise.
Thomas Caton Harrison, Stavroula Biri, Thomas J. Bracegirdle, John C. King, Elizabeth C. Kent, Étienne Vignon, and John Turner
Weather Clim. Dynam., 3, 1415–1437, https://doi.org/10.5194/wcd-3-1415-2022, https://doi.org/10.5194/wcd-3-1415-2022, 2022
Short summary
Short summary
Easterly winds encircle Antarctica, impacting sea ice and helping drive ocean currents which shield ice shelves from warmer waters. Reanalysis datasets give us our most complete picture of how these winds behave. In this paper we use satellite data, surface measurements and weather balloons to test how realistic recent reanalysis estimates are. The winds are generally accurate, especially in the most recent of the datasets, but important short-term variations are often misrepresented.
Raf M. Antwerpen, Marco Tedesco, Xavier Fettweis, Patrick Alexander, and Willem Jan van de Berg
The Cryosphere, 16, 4185–4199, https://doi.org/10.5194/tc-16-4185-2022, https://doi.org/10.5194/tc-16-4185-2022, 2022
Short summary
Short summary
The ice on Greenland has been melting more rapidly over the last few years. Most of this melt comes from the exposure of ice when the overlying snow melts. This ice is darker than snow and absorbs more sunlight, leading to more melt. It remains challenging to accurately simulate the brightness of the ice. We show that the color of ice simulated by Modèle Atmosphérique Régional (MAR) is too bright. We then show that this means that MAR may underestimate how fast the Greenland ice is melting.
Étienne Vignon, Lea Raillard, Christophe Genthon, Massimo Del Guasta, Andrew J. Heymsfield, Jean-Baptiste Madeleine, and Alexis Berne
Atmos. Chem. Phys., 22, 12857–12872, https://doi.org/10.5194/acp-22-12857-2022, https://doi.org/10.5194/acp-22-12857-2022, 2022
Short summary
Short summary
The near-surface atmosphere over the Antarctic Plateau is cold and pristine and resembles to a certain extent the high troposphere where cirrus clouds form. In this study, we use innovative humidity measurements at Concordia Station to study the formation of ice fogs at temperatures <−40°C. We provide observational evidence that ice fogs can form through the homogeneous freezing of solution aerosols, a common nucleation pathway for cirrus clouds.
Jeremy Carter, Amber Leeson, Andrew Orr, Christoph Kittel, and J. Melchior van Wessem
The Cryosphere, 16, 3815–3841, https://doi.org/10.5194/tc-16-3815-2022, https://doi.org/10.5194/tc-16-3815-2022, 2022
Short summary
Short summary
Climate models provide valuable information for studying processes such as the collapse of ice shelves over Antarctica which impact estimates of sea level rise. This paper examines variability across climate simulations over Antarctica for fields including snowfall, temperature and melt. Significant systematic differences between outputs are found, occurring at both large and fine spatial scales across Antarctica. Results are important for future impact assessments and model development.
Sébastien Doutreloup, Xavier Fettweis, Ramin Rahif, Essam Elnagar, Mohsen S. Pourkiaei, Deepak Amaripadath, and Shady Attia
Earth Syst. Sci. Data, 14, 3039–3051, https://doi.org/10.5194/essd-14-3039-2022, https://doi.org/10.5194/essd-14-3039-2022, 2022
Short summary
Short summary
This data set provides historical (1980–2014) and future (2015–2100) weather data for 12 cities in Belgium. This data set is intended for architects or building or energy designers. In particular, it makes available to all users hourly open-access weather data according to certain standards to recreate a Typical and an Extreme Meteorological Year. In addition, it provides hourly data on heatwaves from 1980 to 2100. Weather data were produced from the outputs of the MAR model simulations.
Patrick Le Moigne, Eric Bazile, Anning Cheng, Emanuel Dutra, John M. Edwards, William Maurel, Irina Sandu, Olivier Traullé, Etienne Vignon, Ayrton Zadra, and Weizhong Zheng
The Cryosphere, 16, 2183–2202, https://doi.org/10.5194/tc-16-2183-2022, https://doi.org/10.5194/tc-16-2183-2022, 2022
Short summary
Short summary
This paper describes an intercomparison of snow models, of varying complexity, used for numerical weather prediction or academic research. The results show that the simplest models are, under certain conditions, able to reproduce the surface temperature just as well as the most complex models. Moreover, the diversity of surface parameters of the models has a strong impact on the temporal variability of the components of the simulated surface energy balance.
Christophe Genthon, Dana E. Veron, Etienne Vignon, Jean-Baptiste Madeleine, and Luc Piard
Earth Syst. Sci. Data, 14, 1571–1580, https://doi.org/10.5194/essd-14-1571-2022, https://doi.org/10.5194/essd-14-1571-2022, 2022
Short summary
Short summary
The surface atmosphere of the high Antarctic Plateau is very cold and clean. Such conditions favor water vapor supersaturation. A 3-year quasi-continuous series of atmospheric moisture in a ~40 m atmospheric layer at Dome C is reported that documents time variability, vertical profiles and occurrences of supersaturation. Supersaturation with respect to ice is frequently observed throughout the column, with relative humidities occasionally reaching values near liquid water saturation.
Sara Bacer, Fatima Jomaa, Julien Beaumet, Hubert Gallée, Enzo Le Bouëdec, Martin Ménégoz, and Chantal Staquet
Weather Clim. Dynam., 3, 377–389, https://doi.org/10.5194/wcd-3-377-2022, https://doi.org/10.5194/wcd-3-377-2022, 2022
Short summary
Short summary
We study the impact of climate change on wintertime atmospheric blocking over Europe. We focus on the frequency, duration, and size of blocking events. The blocking events are identified via the weather type decomposition methodology. We find that blocking frequency, duration, and size are mostly stationary over the 21st century. Additionally, we compare the blocking size results with the size of the blocking events identified via a different approach using a blocking index.
Nicolaj Hansen, Sebastian B. Simonsen, Fredrik Boberg, Christoph Kittel, Andrew Orr, Niels Souverijns, J. Melchior van Wessem, and Ruth Mottram
The Cryosphere, 16, 711–718, https://doi.org/10.5194/tc-16-711-2022, https://doi.org/10.5194/tc-16-711-2022, 2022
Short summary
Short summary
We investigate the impact of different ice masks when modelling surface mass balance over Antarctica. We used ice masks and data from five of the most used regional climate models and a common mask. We see large disagreement between the ice masks, which has a large impact on the surface mass balance, especially around the Antarctic Peninsula and some of the largest glaciers. We suggest a solution for creating a new, up-to-date, high-resolution ice mask that can be used in Antarctic modelling.
Paraskevi Georgakaki, Georgia Sotiropoulou, Étienne Vignon, Anne-Claire Billault-Roux, Alexis Berne, and Athanasios Nenes
Atmos. Chem. Phys., 22, 1965–1988, https://doi.org/10.5194/acp-22-1965-2022, https://doi.org/10.5194/acp-22-1965-2022, 2022
Short summary
Short summary
The modelling study focuses on the importance of ice multiplication processes in orographic mixed-phase clouds, which is one of the least understood cloud types in the climate system. We show that the consideration of ice seeding and secondary ice production through ice–ice collisional breakup is essential for correct predictions of precipitation in mountainous terrain, with important implications for radiation processes.
Charles Pelletier, Thierry Fichefet, Hugues Goosse, Konstanze Haubner, Samuel Helsen, Pierre-Vincent Huot, Christoph Kittel, François Klein, Sébastien Le clec'h, Nicole P. M. van Lipzig, Sylvain Marchi, François Massonnet, Pierre Mathiot, Ehsan Moravveji, Eduardo Moreno-Chamarro, Pablo Ortega, Frank Pattyn, Niels Souverijns, Guillian Van Achter, Sam Vanden Broucke, Alexander Vanhulle, Deborah Verfaillie, and Lars Zipf
Geosci. Model Dev., 15, 553–594, https://doi.org/10.5194/gmd-15-553-2022, https://doi.org/10.5194/gmd-15-553-2022, 2022
Short summary
Short summary
We present PARASO, a circumpolar model for simulating the Antarctic climate. PARASO features five distinct models, each covering different Earth system subcomponents (ice sheet, atmosphere, land, sea ice, ocean). In this technical article, we describe how this tool has been developed, with a focus on the
coupling interfacesrepresenting the feedbacks between the distinct models used for contribution. PARASO is stable and ready to use but is still characterized by significant biases.
Christophe Genthon, Dana Veron, Etienne Vignon, Delphine Six, Jean-Louis Dufresne, Jean-Baptiste Madeleine, Emmanuelle Sultan, and François Forget
Earth Syst. Sci. Data, 13, 5731–5746, https://doi.org/10.5194/essd-13-5731-2021, https://doi.org/10.5194/essd-13-5731-2021, 2021
Short summary
Short summary
A 10-year dataset of observation in the atmospheric boundary layer at Dome C on the high Antarctic plateau is presented. This is obtained with sensors at six levels along a tower higher than 40 m. The temperature inversion can reach more than 25 °C along the tower in winter, while full mixing by convection can occur in summer. Different amplitudes of variability for wind and temperature at the different levels reflect different signatures of solar vs. synoptic forcing of the boundary layer.
Florent Veillon, Marie Dumont, Charles Amory, and Mathieu Fructus
Geosci. Model Dev., 14, 7329–7343, https://doi.org/10.5194/gmd-14-7329-2021, https://doi.org/10.5194/gmd-14-7329-2021, 2021
Short summary
Short summary
In climate models, the snow albedo scheme generally calculates only a narrowband or broadband albedo. Therefore, we have developed the VALHALLA method to optimize snow spectral albedo calculations through the determination of spectrally fixed radiative variables. The development of VALHALLA v1.0 with the use of the snow albedo model TARTES and the spectral irradiance model SBDART indicates a considerable reduction in calculation time while maintaining an adequate accuracy of albedo values.
Kenneth D. Mankoff, Xavier Fettweis, Peter L. Langen, Martin Stendel, Kristian K. Kjeldsen, Nanna B. Karlsson, Brice Noël, Michiel R. van den Broeke, Anne Solgaard, William Colgan, Jason E. Box, Sebastian B. Simonsen, Michalea D. King, Andreas P. Ahlstrøm, Signe Bech Andersen, and Robert S. Fausto
Earth Syst. Sci. Data, 13, 5001–5025, https://doi.org/10.5194/essd-13-5001-2021, https://doi.org/10.5194/essd-13-5001-2021, 2021
Short summary
Short summary
We estimate the daily mass balance and its components (surface, marine, and basal mass balance) for the Greenland ice sheet. Our time series begins in 1840 and has annual resolution through 1985 and then daily from 1986 through next week. Results are operational (updated daily) and provided for the entire ice sheet or by commonly used regions or sectors. This is the first input–output mass balance estimate to include the basal mass balance.
Camilla K. Crockart, Tessa R. Vance, Alexander D. Fraser, Nerilie J. Abram, Alison S. Criscitiello, Mark A. J. Curran, Vincent Favier, Ailie J. E. Gallant, Christoph Kittel, Helle A. Kjær, Andrew R. Klekociuk, Lenneke M. Jong, Andrew D. Moy, Christopher T. Plummer, Paul T. Vallelonga, Jonathan Wille, and Lingwei Zhang
Clim. Past, 17, 1795–1818, https://doi.org/10.5194/cp-17-1795-2021, https://doi.org/10.5194/cp-17-1795-2021, 2021
Short summary
Short summary
We present preliminary analyses of the annual sea salt concentrations and snowfall accumulation in a new East Antarctic ice core, Mount Brown South. We compare this record with an updated Law Dome (Dome Summit South site) ice core record over the period 1975–2016. The Mount Brown South record preserves a stronger and inverse signal for the El Niño–Southern Oscillation (in austral winter and spring) compared to the Law Dome record (in summer).
Ruth Mottram, Nicolaj Hansen, Christoph Kittel, J. Melchior van Wessem, Cécile Agosta, Charles Amory, Fredrik Boberg, Willem Jan van de Berg, Xavier Fettweis, Alexandra Gossart, Nicole P. M. van Lipzig, Erik van Meijgaard, Andrew Orr, Tony Phillips, Stuart Webster, Sebastian B. Simonsen, and Niels Souverijns
The Cryosphere, 15, 3751–3784, https://doi.org/10.5194/tc-15-3751-2021, https://doi.org/10.5194/tc-15-3751-2021, 2021
Short summary
Short summary
We compare the calculated surface mass budget (SMB) of Antarctica in five different regional climate models. On average ~ 2000 Gt of snow accumulates annually, but different models vary by ~ 10 %, a difference equivalent to ± 0.5 mm of global sea level rise. All models reproduce observed weather, but there are large differences in regional patterns of snowfall, especially in areas with very few observations, giving greater uncertainty in Antarctic mass budget than previously identified.
Julien Beaumet, Michel Déqué, Gerhard Krinner, Cécile Agosta, Antoinette Alias, and Vincent Favier
The Cryosphere, 15, 3615–3635, https://doi.org/10.5194/tc-15-3615-2021, https://doi.org/10.5194/tc-15-3615-2021, 2021
Short summary
Short summary
We use empirical run-time bias correction (also called flux correction) to correct the systematic errors of the ARPEGE atmospheric climate model. When applying the method to future climate projections, we found a lesser poleward shift and an intensification of the maximum of westerly winds present in the southern high latitudes. This yields a significant additional warming of +0.6 to +0.9 K of the Antarctic Ice Sheet with respect to non-corrected control projections using the RCP8.5 scenario.
Louis Le Toumelin, Charles Amory, Vincent Favier, Christoph Kittel, Stefan Hofer, Xavier Fettweis, Hubert Gallée, and Vinay Kayetha
The Cryosphere, 15, 3595–3614, https://doi.org/10.5194/tc-15-3595-2021, https://doi.org/10.5194/tc-15-3595-2021, 2021
Short summary
Short summary
Snow is frequently eroded from the surface by the wind in Adelie Land (Antarctica) and suspended in the lower atmosphere. By performing model simulations, we show firstly that suspended snow layers interact with incoming radiation similarly to a near-surface cloud. Secondly, suspended snow modifies the atmosphere's thermodynamic structure and energy exchanges with the surface. Our results suggest snow transport by the wind should be taken into account in future model studies over the region.
Thomas James Barnes, Amber Alexandra Leeson, Malcolm McMillan, Vincent Verjans, Jeremy Carter, and Christoph Kittel
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-214, https://doi.org/10.5194/tc-2021-214, 2021
Revised manuscript not accepted
Short summary
Short summary
We find that the area covered by lakes on George VI ice shelf in 2020 is similar to that seen in other years such as 1989. However, the climate conditions are much more in favour of lakes forming. We find that it is likely that snowfall, and the build up of a surface snow layer limits the development of lakes on the surface of George VI ice shelf in 2020. We also find that in future, snowfall is predicted to decrease, and therefore this limiting effect may be reduced in future.
Xavier Fettweis, Stefan Hofer, Roland Séférian, Charles Amory, Alison Delhasse, Sébastien Doutreloup, Christoph Kittel, Charlotte Lang, Joris Van Bever, Florent Veillon, and Peter Irvine
The Cryosphere, 15, 3013–3019, https://doi.org/10.5194/tc-15-3013-2021, https://doi.org/10.5194/tc-15-3013-2021, 2021
Short summary
Short summary
Without any reduction in our greenhouse gas emissions, the Greenland ice sheet surface mass loss can be brought in line with a medium-mitigation emissions scenario by reducing the solar downward flux at the top of the atmosphere by 1.5 %. In addition to reducing global warming, these solar geoengineering measures also dampen the well-known positive melt–albedo feedback over the ice sheet by 6 %. However, only stronger reductions in solar radiation could maintain a stable ice sheet in 2100.
Noémie Planat, Josué Gehring, Étienne Vignon, and Alexis Berne
Atmos. Meas. Tech., 14, 4543–4564, https://doi.org/10.5194/amt-14-4543-2021, https://doi.org/10.5194/amt-14-4543-2021, 2021
Short summary
Short summary
We implement a new method to identify microphysical processes during cold precipitation events based on the sign of the vertical gradient of polarimetric radar variables. We analytically asses the meteorological conditions for this vertical analysis to hold, apply it on two study cases and successfully compare it with other methods informing about the microphysics. Finally, we are able to obtain the main vertical structure and characteristics of the different processes during these study cases.
Paolo Colosio, Marco Tedesco, Roberto Ranzi, and Xavier Fettweis
The Cryosphere, 15, 2623–2646, https://doi.org/10.5194/tc-15-2623-2021, https://doi.org/10.5194/tc-15-2623-2021, 2021
Short summary
Short summary
We use a new satellite dataset to study the spatiotemporal evolution of surface melting over Greenland at an enhanced resolution of 3.125 km. Using meteorological data and the MAR model, we observe that a dynamic algorithm can best detect surface melting. We found that the melting season is elongating, the melt extent is increasing and that high-resolution data better describe the spatiotemporal evolution of the melting season, which is crucial to improve estimates of sea level rise.
Charles Amory, Christoph Kittel, Louis Le Toumelin, Cécile Agosta, Alison Delhasse, Vincent Favier, and Xavier Fettweis
Geosci. Model Dev., 14, 3487–3510, https://doi.org/10.5194/gmd-14-3487-2021, https://doi.org/10.5194/gmd-14-3487-2021, 2021
Short summary
Short summary
This paper presents recent developments in the drifting-snow scheme of the regional climate model MAR and its application to simulate drifting snow and the surface mass balance of Adélie Land in East Antarctica. The model is extensively described and evaluated against a multi-year drifting-snow dataset and surface mass balance estimates available in the area. The model sensitivity to input parameters and improvements over a previously published version are also assessed.
Christoph Kittel, Charles Amory, Cécile Agosta, Nicolas C. Jourdain, Stefan Hofer, Alison Delhasse, Sébastien Doutreloup, Pierre-Vincent Huot, Charlotte Lang, Thierry Fichefet, and Xavier Fettweis
The Cryosphere, 15, 1215–1236, https://doi.org/10.5194/tc-15-1215-2021, https://doi.org/10.5194/tc-15-1215-2021, 2021
Short summary
Short summary
The future surface mass balance (SMB) of the Antarctic ice sheet (AIS) will influence the ice dynamics and the contribution of the ice sheet to the sea level rise. We investigate the AIS sensitivity to different warmings using physical and statistical downscaling of CMIP5 and CMIP6 models. Our results highlight a contrasting effect between the grounded ice sheet (where the SMB is projected to increase) and ice shelves (where the future SMB depends on the emission scenario).
William H. Lipscomb, Gunter R. Leguy, Nicolas C. Jourdain, Xylar Asay-Davis, Hélène Seroussi, and Sophie Nowicki
The Cryosphere, 15, 633–661, https://doi.org/10.5194/tc-15-633-2021, https://doi.org/10.5194/tc-15-633-2021, 2021
Short summary
Short summary
This paper describes Antarctic climate change experiments in which the Community Ice Sheet Model is forced with ocean warming predicted by global climate models. Generally, ice loss begins slowly, accelerates by 2100, and then continues unabated, with widespread retreat of the West Antarctic Ice Sheet. The mass loss by 2500 varies from about 150 to 1300 mm of equivalent sea level rise, based on the predicted ocean warming and assumptions about how this warming drives melting beneath ice shelves.
Marion Donat-Magnin, Nicolas C. Jourdain, Christoph Kittel, Cécile Agosta, Charles Amory, Hubert Gallée, Gerhard Krinner, and Mondher Chekki
The Cryosphere, 15, 571–593, https://doi.org/10.5194/tc-15-571-2021, https://doi.org/10.5194/tc-15-571-2021, 2021
Short summary
Short summary
We simulate the West Antarctic climate in 2100 under increasing greenhouse gases. Future accumulation over the ice sheet increases, which reduces sea level changing rate. Surface ice-shelf melt rates increase until 2100. Some ice shelves experience a lot of liquid water at their surface, which indicates potential ice-shelf collapse. In contrast, no liquid water is found over other ice shelves due to huge amounts of snowfall that bury liquid water, favouring refreezing and ice-shelf stability.
Georgia Sotiropoulou, Étienne Vignon, Gillian Young, Hugh Morrison, Sebastian J. O'Shea, Thomas Lachlan-Cope, Alexis Berne, and Athanasios Nenes
Atmos. Chem. Phys., 21, 755–771, https://doi.org/10.5194/acp-21-755-2021, https://doi.org/10.5194/acp-21-755-2021, 2021
Short summary
Short summary
Summer clouds have a significant impact on the radiation budget of the Antarctic surface and thus on ice-shelf melting. However, these are poorly represented in climate models due to errors in their microphysical structure, including the number of ice crystals that they contain. We show that breakup from ice particle collisions can substantially magnify the ice crystal number concentration with significant implications for surface radiation. This process is currently missing in climate models.
Martin Ménégoz, Evgenia Valla, Nicolas C. Jourdain, Juliette Blanchet, Julien Beaumet, Bruno Wilhelm, Hubert Gallée, Xavier Fettweis, Samuel Morin, and Sandrine Anquetin
Hydrol. Earth Syst. Sci., 24, 5355–5377, https://doi.org/10.5194/hess-24-5355-2020, https://doi.org/10.5194/hess-24-5355-2020, 2020
Short summary
Short summary
The study investigates precipitation changes in the Alps, using observations and a 7 km resolution climate simulation over 1900–2010. An increase in mean precipitation is found in winter over the Alps, whereas a drying occurred in summer in the surrounding plains. A general increase in the daily annual maximum of precipitation is evidenced (20 to 40 % per century), suggesting an increase in extreme events that is significant only when considering long time series, typically 50 to 80 years.
Kenneth D. Mankoff, Brice Noël, Xavier Fettweis, Andreas P. Ahlstrøm, William Colgan, Ken Kondo, Kirsty Langley, Shin Sugiyama, Dirk van As, and Robert S. Fausto
Earth Syst. Sci. Data, 12, 2811–2841, https://doi.org/10.5194/essd-12-2811-2020, https://doi.org/10.5194/essd-12-2811-2020, 2020
Short summary
Short summary
This work partitions regional climate model (RCM) runoff from the MAR and RACMO RCMs to hydrologic outlets at the ice margin and coast. Temporal resolution is daily from 1959 through 2019. Spatial grid is ~ 100 m, resolving individual streams. In addition to discharge at outlets, we also provide the streams, outlets, and basin geospatial data, as well as a script to query and access the geospatial or time series discharge data from the data files.
Xavier Fettweis, Stefan Hofer, Uta Krebs-Kanzow, Charles Amory, Teruo Aoki, Constantijn J. Berends, Andreas Born, Jason E. Box, Alison Delhasse, Koji Fujita, Paul Gierz, Heiko Goelzer, Edward Hanna, Akihiro Hashimoto, Philippe Huybrechts, Marie-Luise Kapsch, Michalea D. King, Christoph Kittel, Charlotte Lang, Peter L. Langen, Jan T. M. Lenaerts, Glen E. Liston, Gerrit Lohmann, Sebastian H. Mernild, Uwe Mikolajewicz, Kameswarrao Modali, Ruth H. Mottram, Masashi Niwano, Brice Noël, Jonathan C. Ryan, Amy Smith, Jan Streffing, Marco Tedesco, Willem Jan van de Berg, Michiel van den Broeke, Roderik S. W. van de Wal, Leo van Kampenhout, David Wilton, Bert Wouters, Florian Ziemen, and Tobias Zolles
The Cryosphere, 14, 3935–3958, https://doi.org/10.5194/tc-14-3935-2020, https://doi.org/10.5194/tc-14-3935-2020, 2020
Short summary
Short summary
We evaluated simulated Greenland Ice Sheet surface mass balance from 5 kinds of models. While the most complex (but expensive to compute) models remain the best, the faster/simpler models also compare reliably with observations and have biases of the same order as the regional models. Discrepancies in the trend over 2000–2012, however, suggest that large uncertainties remain in the modelled future SMB changes as they are highly impacted by the meltwater runoff biases over the current climate.
Kang Yang, Aleah Sommers, Lauren C. Andrews, Laurence C. Smith, Xin Lu, Xavier Fettweis, and Manchun Li
The Cryosphere, 14, 3349–3365, https://doi.org/10.5194/tc-14-3349-2020, https://doi.org/10.5194/tc-14-3349-2020, 2020
Short summary
Short summary
This study compares hourly supraglacial moulin discharge simulations from three surface meltwater routing models. Results show that these models are superior to simply using regional climate model runoff without routing, but different routing models, different-spatial-resolution DEMs, and parameterized seasonal evolution of supraglacial stream and river networks induce significant variability in diurnal moulin discharges and corresponding subglacial effective pressures.
Nicolas C. Jourdain, Xylar Asay-Davis, Tore Hattermann, Fiammetta Straneo, Hélène Seroussi, Christopher M. Little, and Sophie Nowicki
The Cryosphere, 14, 3111–3134, https://doi.org/10.5194/tc-14-3111-2020, https://doi.org/10.5194/tc-14-3111-2020, 2020
Short summary
Short summary
To predict the future Antarctic contribution to sea level rise, we need to use ice sheet models. The Ice Sheet Model Intercomparison Project for AR6 (ISMIP6) builds an ensemble of ice sheet projections constrained by atmosphere and ocean projections from the 6th Coupled Model Intercomparison Project (CMIP6). In this work, we present and assess a method to derive ice shelf basal melting in ISMIP6 from the CMIP6 ocean outputs, and we give examples of projected melt rates.
Heiko Goelzer, Sophie Nowicki, Anthony Payne, Eric Larour, Helene Seroussi, William H. Lipscomb, Jonathan Gregory, Ayako Abe-Ouchi, Andrew Shepherd, Erika Simon, Cécile Agosta, Patrick Alexander, Andy Aschwanden, Alice Barthel, Reinhard Calov, Christopher Chambers, Youngmin Choi, Joshua Cuzzone, Christophe Dumas, Tamsin Edwards, Denis Felikson, Xavier Fettweis, Nicholas R. Golledge, Ralf Greve, Angelika Humbert, Philippe Huybrechts, Sebastien Le clec'h, Victoria Lee, Gunter Leguy, Chris Little, Daniel P. Lowry, Mathieu Morlighem, Isabel Nias, Aurelien Quiquet, Martin Rückamp, Nicole-Jeanne Schlegel, Donald A. Slater, Robin S. Smith, Fiamma Straneo, Lev Tarasov, Roderik van de Wal, and Michiel van den Broeke
The Cryosphere, 14, 3071–3096, https://doi.org/10.5194/tc-14-3071-2020, https://doi.org/10.5194/tc-14-3071-2020, 2020
Short summary
Short summary
In this paper we use a large ensemble of Greenland ice sheet models forced by six different global climate models to project ice sheet changes and sea-level rise contributions over the 21st century.
The results for two different greenhouse gas concentration scenarios indicate that the Greenland ice sheet will continue to lose mass until 2100, with contributions to sea-level rise of 90 ± 50 mm and 32 ± 17 mm for the high (RCP8.5) and low (RCP2.6) scenario, respectively.
Hélène Seroussi, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 14, 3033–3070, https://doi.org/10.5194/tc-14-3033-2020, https://doi.org/10.5194/tc-14-3033-2020, 2020
Short summary
Short summary
The Antarctic ice sheet has been losing mass over at least the past 3 decades in response to changes in atmospheric and oceanic conditions. This study presents an ensemble of model simulations of the Antarctic evolution over the 2015–2100 period based on various ice sheet models, climate forcings and emission scenarios. Results suggest that the West Antarctic ice sheet will continue losing a large amount of ice, while the East Antarctic ice sheet could experience increased snow accumulation.
Shujie Wang, Marco Tedesco, Patrick Alexander, Min Xu, and Xavier Fettweis
The Cryosphere, 14, 2687–2713, https://doi.org/10.5194/tc-14-2687-2020, https://doi.org/10.5194/tc-14-2687-2020, 2020
Short summary
Short summary
Glacial algal blooms play a significant role in darkening the Greenland Ice Sheet during summertime. The dark pigments generated by glacial algae could substantially reduce the bare ice albedo and thereby enhance surface melt. We used satellite data to map the spatial distribution of glacial algae and characterized the seasonal growth pattern and interannual trends of glacial algae in southwestern Greenland. Our study is important for bridging microbial activities with ice sheet mass balance.
Florentin Lemonnier, Alizée Chemison, Hubert Gallée, Gerhard Krinner, Jean-Baptiste Madeleine, Chantal Claud, and Christophe Genthon
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-167, https://doi.org/10.5194/tc-2020-167, 2020
Manuscript not accepted for further review
Short summary
Short summary
This study presents the first evaluation from snowfall observations in Antarctica of the general circulation model LMDz (global), the atmospheric component of the coupled IPSL Climate Model that is part of CMIP6 (IPCC). We also present an evaluation of the new version of the MAR model (regional), considered as a reference in terms of polar climate modelling. Both models show satisfying results for the modelling of precipitation in Antarctica.
Sophie Nowicki, Heiko Goelzer, Hélène Seroussi, Anthony J. Payne, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Patrick Alexander, Xylar S. Asay-Davis, Alice Barthel, Thomas J. Bracegirdle, Richard Cullather, Denis Felikson, Xavier Fettweis, Jonathan M. Gregory, Tore Hattermann, Nicolas C. Jourdain, Peter Kuipers Munneke, Eric Larour, Christopher M. Little, Mathieu Morlighem, Isabel Nias, Andrew Shepherd, Erika Simon, Donald Slater, Robin S. Smith, Fiammetta Straneo, Luke D. Trusel, Michiel R. van den Broeke, and Roderik van de Wal
The Cryosphere, 14, 2331–2368, https://doi.org/10.5194/tc-14-2331-2020, https://doi.org/10.5194/tc-14-2331-2020, 2020
Short summary
Short summary
This paper describes the experimental protocol for ice sheet models taking part in the Ice Sheet Model Intercomparion Project for CMIP6 (ISMIP6) and presents an overview of the atmospheric and oceanic datasets to be used for the simulations. The ISMIP6 framework allows for exploring the uncertainty in 21st century sea level change from the Greenland and Antarctic ice sheets.
Josué Gehring, Annika Oertel, Étienne Vignon, Nicolas Jullien, Nikola Besic, and Alexis Berne
Atmos. Chem. Phys., 20, 7373–7392, https://doi.org/10.5194/acp-20-7373-2020, https://doi.org/10.5194/acp-20-7373-2020, 2020
Short summary
Short summary
In this study, we analyse how large-scale meteorological conditions influenced the local enhancement of snowfall during an intense precipitation event in Korea. We used atmospheric models, weather radars and snowflake images. We found out that a rising airstream in the warm sector of the low pressure system associated to this event influenced the evolution of snowfall. This study highlights the importance of interactions between large and local scales in this intense precipitation event.
Heiko Goelzer, Brice P. Y. Noël, Tamsin L. Edwards, Xavier Fettweis, Jonathan M. Gregory, William H. Lipscomb, Roderik S. W. van de Wal, and Michiel R. van den Broeke
The Cryosphere, 14, 1747–1762, https://doi.org/10.5194/tc-14-1747-2020, https://doi.org/10.5194/tc-14-1747-2020, 2020
Short summary
Short summary
Future sea-level change projections with process-based ice sheet models are typically driven with surface mass balance forcing derived from climate models. In this work we address the problems arising from a mismatch of the modelled ice sheet geometry with the one used by the climate model. The proposed remapping method reproduces the original forcing data closely when applied to the original geometry and produces a physically meaningful forcing when applied to different modelled geometries.
Charles Amory
The Cryosphere, 14, 1713–1725, https://doi.org/10.5194/tc-14-1713-2020, https://doi.org/10.5194/tc-14-1713-2020, 2020
Short summary
Short summary
This paper presents an assessment of drifting-snow occurrences and snow mass transport from up to 9 years (2010–2018) of half-hourly observational records collected at two remote locations in coastal Adelie Land (East Antarctica) using second-generation IAV Engineering acoustic FlowCapt sensors. The dataset is freely available to the scientific community and can be used to complement satellite products and evaluate snow-transport models close to the surface and at high temporal frequency.
Nicolas Jullien, Étienne Vignon, Michael Sprenger, Franziska Aemisegger, and Alexis Berne
The Cryosphere, 14, 1685–1702, https://doi.org/10.5194/tc-14-1685-2020, https://doi.org/10.5194/tc-14-1685-2020, 2020
Short summary
Short summary
Although snowfall is the main input of water to the Antarctic ice sheet, snowflakes are often evaporated by dry and fierce winds near the surface of the continent. The amount of snow that actually reaches the ground is therefore considerably reduced. By analyzing the position of cyclones and fronts as well as by back-tracing the atmospheric moisture pathway towards Antarctica, this study explains in which meteorological conditions snowfall is either completely evaporated or reaches the ground.
Marco Tedesco and Xavier Fettweis
The Cryosphere, 14, 1209–1223, https://doi.org/10.5194/tc-14-1209-2020, https://doi.org/10.5194/tc-14-1209-2020, 2020
Short summary
Short summary
Unprecedented atmospheric conditions occurring in the summer of 2019 over Greenland promoted new record or close-to-record values of mass loss. Summer of 2019 was characterized by an exceptional persistence of anticyclonic conditions that enhanced melting.
Donald A. Slater, Denis Felikson, Fiamma Straneo, Heiko Goelzer, Christopher M. Little, Mathieu Morlighem, Xavier Fettweis, and Sophie Nowicki
The Cryosphere, 14, 985–1008, https://doi.org/10.5194/tc-14-985-2020, https://doi.org/10.5194/tc-14-985-2020, 2020
Short summary
Short summary
Changes in the ocean around Greenland play an important role in determining how much the ice sheet will contribute to global sea level over the coming century. However, capturing these links in models is very challenging. This paper presents a strategy enabling an ensemble of ice sheet models to feel the effect of the ocean for the first time and should therefore result in a significant improvement in projections of the Greenland ice sheet's contribution to future sea level change.
Alison Delhasse, Christoph Kittel, Charles Amory, Stefan Hofer, Dirk van As, Robert S. Fausto, and Xavier Fettweis
The Cryosphere, 14, 957–965, https://doi.org/10.5194/tc-14-957-2020, https://doi.org/10.5194/tc-14-957-2020, 2020
Short summary
Short summary
The ERA5 reanalysis of the ECMWF replaced the ERA-Interim in August 2019 and has never been evaluated over Greenland. The aim was to evaluate the performance of ERA5 to simulate the near-surface climate of the Greenland Ice sheet (GrIS) against ERA-Interim and regional climate models with the help of in situ observations from the PROMICE dataset. We also highlighted that polar regional climate models are still a useful tool to study the GrIS climate compared to ERA5.
Alice Barthel, Cécile Agosta, Christopher M. Little, Tore Hattermann, Nicolas C. Jourdain, Heiko Goelzer, Sophie Nowicki, Helene Seroussi, Fiammetta Straneo, and Thomas J. Bracegirdle
The Cryosphere, 14, 855–879, https://doi.org/10.5194/tc-14-855-2020, https://doi.org/10.5194/tc-14-855-2020, 2020
Short summary
Short summary
We compare existing coupled climate models to select a total of six models to provide forcing to the Greenland and Antarctic ice sheet simulations of the Ice Sheet Model Intercomparison Project (ISMIP6). We select models based on (i) their representation of current climate near Antarctica and Greenland relative to observations and (ii) their ability to sample a diversity of projected atmosphere and ocean changes over the 21st century.
Andrew J. Tedstone, Joseph M. Cook, Christopher J. Williamson, Stefan Hofer, Jenine McCutcheon, Tristram Irvine-Fynn, Thomas Gribbin, and Martyn Tranter
The Cryosphere, 14, 521–538, https://doi.org/10.5194/tc-14-521-2020, https://doi.org/10.5194/tc-14-521-2020, 2020
Short summary
Short summary
Albedo describes how much light that hits a surface is reflected without being absorbed. Low-albedo ice surfaces melt more quickly. There are large differences in the albedo of bare-ice areas of the Greenland Ice Sheet. They are caused both by dark glacier algae and by the condition of the underlying ice. Changes occur over centimetres to metres, so satellites do not always detect real albedo changes. Estimates of melt made using satellite measurements therefore tend to be underestimates.
Alison Delhasse, Edward Hanna, Christoph Kittel, and Xavier Fettweis
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-332, https://doi.org/10.5194/tc-2019-332, 2020
Preprint withdrawn
Short summary
Short summary
Significant melting events over Greenland ice sheet related to unusual atmospheric pattern in summer, as observed this summer 2019, are still not considered by the new generation of Earth-system models (CMIP6) and therefore the projected surface melt increase of the ice sheet is likely to be underestimated if such changes persist in the next decades.
Joseph M. Cook, Andrew J. Tedstone, Christopher Williamson, Jenine McCutcheon, Andrew J. Hodson, Archana Dayal, McKenzie Skiles, Stefan Hofer, Robert Bryant, Owen McAree, Andrew McGonigle, Jonathan Ryan, Alexandre M. Anesio, Tristram D. L. Irvine-Fynn, Alun Hubbard, Edward Hanna, Mark Flanner, Sathish Mayanna, Liane G. Benning, Dirk van As, Marian Yallop, James B. McQuaid, Thomas Gribbin, and Martyn Tranter
The Cryosphere, 14, 309–330, https://doi.org/10.5194/tc-14-309-2020, https://doi.org/10.5194/tc-14-309-2020, 2020
Short summary
Short summary
Melting of the Greenland Ice Sheet (GrIS) is a major source of uncertainty for sea level rise projections. Ice-darkening due to the growth of algae has been recognized as a potential accelerator of melting. This paper measures and models the algae-driven ice melting and maps the algae over the ice sheet for the first time. We estimate that as much as 13 % total runoff from the south-western GrIS can be attributed to these algae, showing that they must be included in future mass balance models.
Marion Donat-Magnin, Nicolas C. Jourdain, Hubert Gallée, Charles Amory, Christoph Kittel, Xavier Fettweis, Jonathan D. Wille, Vincent Favier, Amine Drira, and Cécile Agosta
The Cryosphere, 14, 229–249, https://doi.org/10.5194/tc-14-229-2020, https://doi.org/10.5194/tc-14-229-2020, 2020
Short summary
Short summary
Modeling the interannual variability of the surface conditions over Antarctic glaciers is important for the identification of climate trends and climate predictions and to assess models. We simulate snow accumulation and surface melting in the Amundsen sector (West Antarctica) over 1979–2017. For all the glaciers, the interannual variability of summer snow accumulation and surface melting is driven by two distinct mechanisms related to variations in the Amundsen Sea Low strength and position.
Charles Amory and Christoph Kittel
The Cryosphere, 13, 3405–3412, https://doi.org/10.5194/tc-13-3405-2019, https://doi.org/10.5194/tc-13-3405-2019, 2019
Short summary
Short summary
Snow mass fluxes and vertical profiles of relative humidity are used to document concurrent occurrences of drifting snow and near-surface air saturation at a site dominated by katabatic winds in East Antarctica. Despite a high prevalence of drifting snow conditions, we demonstrate that saturation is reached only in the most extreme wind and transport conditions and discuss implications for the understanding of surface mass and atmospheric moisture budgets of the Antarctic ice sheet.
Julien Beaumet, Michel Déqué, Gerhard Krinner, Cécile Agosta, and Antoinette Alias
The Cryosphere, 13, 3023–3043, https://doi.org/10.5194/tc-13-3023-2019, https://doi.org/10.5194/tc-13-3023-2019, 2019
Short summary
Short summary
The atmospheric model ARPEGE is used with a stretched grid in order to reach an average horizontal resolution of 35 km over Antarctica. Over 1981–2010, we forced the model with observed and modelled sea surface conditions (SSCs). For the late 21st century, we use original and bias-corrected sea surface conditions from RCP8.5 climate projections. We assess the impact of using direct or bias-corrected SSCs for the evolution of Antarctic climate and surface mass balance.
Donald A. Slater, Fiamma Straneo, Denis Felikson, Christopher M. Little, Heiko Goelzer, Xavier Fettweis, and James Holte
The Cryosphere, 13, 2489–2509, https://doi.org/10.5194/tc-13-2489-2019, https://doi.org/10.5194/tc-13-2489-2019, 2019
Short summary
Short summary
The ocean's influence on the retreat of Greenland's tidewater glaciers is a key factor determining future sea level. By considering observations of ~200 glaciers from 1960, we find a significant relationship between retreat and melting in the ocean. Projected forwards, this relationship estimates the future evolution of Greenland's tidewater glaciers and provides a practical and empirically validated way of representing ice–ocean interaction in large-scale models used to estimate sea level rise.
Thomas J. Ballinger, Thomas L. Mote, Kyle Mattingly, Angela C. Bliss, Edward Hanna, Dirk van As, Melissa Prieto, Saeideh Gharehchahi, Xavier Fettweis, Brice Noël, Paul C. J. P. Smeets, Carleen H. Reijmer, Mads H. Ribergaard, and John Cappelen
The Cryosphere, 13, 2241–2257, https://doi.org/10.5194/tc-13-2241-2019, https://doi.org/10.5194/tc-13-2241-2019, 2019
Short summary
Short summary
Arctic sea ice and the Greenland Ice Sheet (GrIS) are melting later in the year due to a warming climate. Through analyses of weather station, climate model, and reanalysis data, physical links are evaluated between Baffin Bay open water duration and western GrIS melt conditions. We show that sub-Arctic air mass movement across this portion of the GrIS strongly influences late summer and autumn melt, while near-surface, off-ice winds inhibit westerly atmospheric heat transfer from Baffin Bay.
Lionel Favier, Nicolas C. Jourdain, Adrian Jenkins, Nacho Merino, Gaël Durand, Olivier Gagliardini, Fabien Gillet-Chaulet, and Pierre Mathiot
Geosci. Model Dev., 12, 2255–2283, https://doi.org/10.5194/gmd-12-2255-2019, https://doi.org/10.5194/gmd-12-2255-2019, 2019
Short summary
Short summary
The melting at the base of floating ice shelves is the main driver of the Antarctic ice sheet current retreat. Here, we use an ideal set-up to assess a wide range of melting parameterisations depending on oceanic properties with regard to a new ocean–ice-sheet coupled model, published here for the first time. A parameterisation that depends quadratically on thermal forcing in both a local and a non-local way yields the best results and needs to be further assessed with more realistic set-ups.
Étienne Vignon, Olivier Traullé, and Alexis Berne
Atmos. Chem. Phys., 19, 4659–4683, https://doi.org/10.5194/acp-19-4659-2019, https://doi.org/10.5194/acp-19-4659-2019, 2019
Short summary
Short summary
The future sea-level rise will depend on how much the Antarctic ice sheet gain – via precipitation – or loose mass. The simulation of precipitation by numerical models used for projections depends on the representation of the atmospheric circulation over and around Antarctica. Using daily measurements from balloon soundings at nine Antarctic stations, this study characterizes the structure of the atmosphere over the Antarctic coast and its representation in atmospheric simulations.
Sébastien Le clec'h, Sylvie Charbit, Aurélien Quiquet, Xavier Fettweis, Christophe Dumas, Masa Kageyama, Coraline Wyard, and Catherine Ritz
The Cryosphere, 13, 373–395, https://doi.org/10.5194/tc-13-373-2019, https://doi.org/10.5194/tc-13-373-2019, 2019
Short summary
Short summary
Quantifying the future contribution of the Greenland ice sheet (GrIS) to sea-level rise in response to atmospheric changes is important but remains challenging. For the first time a full representation of the feedbacks between a GrIS model and a regional atmospheric model was implemented. The authors highlight the fundamental need for representing the GrIS topography change feedbacks with respect to the atmospheric component face to the strong impact on the projected sea-level rise.
Cécile Agosta, Charles Amory, Christoph Kittel, Anais Orsi, Vincent Favier, Hubert Gallée, Michiel R. van den Broeke, Jan T. M. Lenaerts, Jan Melchior van Wessem, Willem Jan van de Berg, and Xavier Fettweis
The Cryosphere, 13, 281–296, https://doi.org/10.5194/tc-13-281-2019, https://doi.org/10.5194/tc-13-281-2019, 2019
Short summary
Short summary
Antarctic surface mass balance (ASMB), a component of the sea level budget, is commonly estimated through modelling as observations are scarce. The polar-oriented regional climate model MAR performs well in simulating the observed ASMB. MAR and RACMO2 share common biases we relate to drifting snow transport, with a 3 times larger magnitude than in previous estimates. Sublimation of precipitation in the katabatic layer modelled by MAR is of a magnitude similar to an observation-based estimate.
Christoph Kittel, Charles Amory, Cécile Agosta, Alison Delhasse, Sébastien Doutreloup, Pierre-Vincent Huot, Coraline Wyard, Thierry Fichefet, and Xavier Fettweis
The Cryosphere, 12, 3827–3839, https://doi.org/10.5194/tc-12-3827-2018, https://doi.org/10.5194/tc-12-3827-2018, 2018
Short summary
Short summary
Regional climate models (RCMs) used to estimate the surface mass balance (SMB) of Antarctica depend on boundary forcing fields including sea surface conditions. Here, we assess the sensitivity of the Antarctic SMB to perturbations in sea surface conditions with the RCM MAR using unchanged atmospheric conditions. Significant SMB anomalies are found for SSC perturbations in the range of CMIP5 global climate model biases.
Shaojie Song, Hélène Angot, Noelle E. Selin, Hubert Gallée, Francesca Sprovieri, Nicola Pirrone, Detlev Helmig, Joël Savarino, Olivier Magand, and Aurélien Dommergue
Atmos. Chem. Phys., 18, 15825–15840, https://doi.org/10.5194/acp-18-15825-2018, https://doi.org/10.5194/acp-18-15825-2018, 2018
Short summary
Short summary
Mercury is a trace metal with adverse health effects on human and wildlife. Its unique property makes it undergo long-range transport, and even remote Antarctica receives significant inputs. This paper presents the first model that aims to understand mercury behavior over the Antarctic Plateau. We find that mercury is quickly cycled between snow and air in the sunlit period, likely driven by bromine chemistry, and that several uncertain processes contribute to its behavior in the dark period.
Alison Delhasse, Xavier Fettweis, Christoph Kittel, Charles Amory, and Cécile Agosta
The Cryosphere, 12, 3409–3418, https://doi.org/10.5194/tc-12-3409-2018, https://doi.org/10.5194/tc-12-3409-2018, 2018
Short summary
Short summary
Since the 2000s, an atmospheric circulation change (CC) gauged by a negative summer shift in the North Atlantic Oscillation has been observed, enhancing surface melt over the Greenland Ice Sheet (GrIS). Future GrIS surface mass balance (SMB) projections are based on global climate models that do not represent this CC. The model MAR has been used to show that previous estimates of these projections could have been significantly overestimated if this current circulation pattern persists.
Edward Hanna, Xavier Fettweis, and Richard J. Hall
The Cryosphere, 12, 3287–3292, https://doi.org/10.5194/tc-12-3287-2018, https://doi.org/10.5194/tc-12-3287-2018, 2018
Short summary
Short summary
The latest/recent generations of global climate models do not simulate the recent (last 30 years) increase in atmospheric high pressure over Greenland in summer but rather projects decreasing pressure.
This difference between climate models and observations raises serious questions about the ability of the models to accurately represent future changes in Greenland climate and ice-sheet mass balance. There are also likely effects on climate predictions downstream, e.g. over Europe.
Jiangjun Ran, Miren Vizcaino, Pavel Ditmar, Michiel R. van den Broeke, Twila Moon, Christian R. Steger, Ellyn M. Enderlin, Bert Wouters, Brice Noël, Catharina H. Reijmer, Roland Klees, Min Zhong, Lin Liu, and Xavier Fettweis
The Cryosphere, 12, 2981–2999, https://doi.org/10.5194/tc-12-2981-2018, https://doi.org/10.5194/tc-12-2981-2018, 2018
Short summary
Short summary
To accurately predict future sea level rise, the mechanisms driving the observed mass loss must be better understood. Here, we combine data from the satellite gravimetry, surface mass balance, and ice discharge to analyze the mass budget of Greenland at various temporal scales. This study, for the first time, suggests the existence of a substantial meltwater storage during summer, with a peak value of 80–120 Gt in July. We highlight its importance for understanding ice sheet mass variability
Rajashree Tri Datta, Marco Tedesco, Cecile Agosta, Xavier Fettweis, Peter Kuipers Munneke, and Michiel R. van den Broeke
The Cryosphere, 12, 2901–2922, https://doi.org/10.5194/tc-12-2901-2018, https://doi.org/10.5194/tc-12-2901-2018, 2018
Short summary
Short summary
Surface melting on the East Antarctic Peninsula (East AP) has been linked to ice shelf collapse, including the Larsen A (1995) and Larsen B (2002) ice shelves. Regional climate models (RCMs) are a valuable tool to understand how wind patterns and general warming can impact the stability of ice shelves through surface melt. Here, we evaluate one such RCM (Modèle Atmosphérique Régionale) over the East AP, including the remaining Larsen C ice shelf, by comparing it to satellite and ground data.
Achim Heilig, Olaf Eisen, Michael MacFerrin, Marco Tedesco, and Xavier Fettweis
The Cryosphere, 12, 1851–1866, https://doi.org/10.5194/tc-12-1851-2018, https://doi.org/10.5194/tc-12-1851-2018, 2018
Short summary
Short summary
This paper presents data on temporal changes in snow and firn, which were not available before. We present data on water infiltration in the percolation zone of the Greenland Ice Sheet that improve our understanding of liquid water retention in snow and firn and mass transfer. We compare those findings with model simulations. It appears that simulated accumulation in terms of SWE is fairly accurate, while modeling of the individual parameters density and liquid water content is incorrect.
Jan Melchior van Wessem, Willem Jan van de Berg, Brice P. Y. Noël, Erik van Meijgaard, Charles Amory, Gerit Birnbaum, Constantijn L. Jakobs, Konstantin Krüger, Jan T. M. Lenaerts, Stef Lhermitte, Stefan R. M. Ligtenberg, Brooke Medley, Carleen H. Reijmer, Kristof van Tricht, Luke D. Trusel, Lambertus H. van Ulft, Bert Wouters, Jan Wuite, and Michiel R. van den Broeke
The Cryosphere, 12, 1479–1498, https://doi.org/10.5194/tc-12-1479-2018, https://doi.org/10.5194/tc-12-1479-2018, 2018
Short summary
Short summary
We present a detailed evaluation of the latest version of the regional atmospheric climate model RACMO2.3p2 (1979-2016) over the Antarctic ice sheet. The model successfully reproduces the present-day climate and surface mass balance (SMB) when compared with an extensive set of observations and improves on previous estimates of the Antarctic climate and SMB.
This study shows that the latest version of RACMO2 can be used for high-resolution future projections over the AIS.
Amber A. Leeson, Emma Eastoe, and Xavier Fettweis
The Cryosphere, 12, 1091–1102, https://doi.org/10.5194/tc-12-1091-2018, https://doi.org/10.5194/tc-12-1091-2018, 2018
Short summary
Short summary
Future melting of the Greenland Ice Sheet is predicted using regional climate models (RCMs). Here, we assess the ability of the MAR RCM to reproduce observed extreme temperature events and the melt energy produced during these times at 14 locations. We find that MAR underestimates temperatures by >0.5 °C during extreme events, which leads to an underestimate in melt energy by up to 41 %. This is potentially an artefact of the data used to drive the MAR simulation and needs to be corrected for.
Andrew J. Tedstone, Jonathan L. Bamber, Joseph M. Cook, Christopher J. Williamson, Xavier Fettweis, Andrew J. Hodson, and Martyn Tranter
The Cryosphere, 11, 2491–2506, https://doi.org/10.5194/tc-11-2491-2017, https://doi.org/10.5194/tc-11-2491-2017, 2017
Short summary
Short summary
The bare ice albedo of the south-west Greenland ice sheet varies dramatically between years. The reasons are unclear but likely involve darkening by inorganic particulates, cryoconite and ice algae. We use satellite imagery to examine dark ice dynamics and climate model outputs to find likely climatological controls. Outcropping particulates can explain the spatial extent of dark ice, but the darkening itself is likely due to ice algae growth controlled by meltwater and light availability.
Johannes Jakob Fürst, Fabien Gillet-Chaulet, Toby J. Benham, Julian A. Dowdeswell, Mariusz Grabiec, Francisco Navarro, Rickard Pettersson, Geir Moholdt, Christopher Nuth, Björn Sass, Kjetil Aas, Xavier Fettweis, Charlotte Lang, Thorsten Seehaus, and Matthias Braun
The Cryosphere, 11, 2003–2032, https://doi.org/10.5194/tc-11-2003-2017, https://doi.org/10.5194/tc-11-2003-2017, 2017
Short summary
Short summary
For the large majority of glaciers and ice caps, there is no information on the thickness of the ice cover. Any attempt to predict glacier demise under climatic warming and to estimate the future contribution to sea-level rise is limited as long as the glacier thickness is not well constrained. Here, we present a two-step mass-conservation approach for mapping ice thickness. Measurements are naturally reproduced. The reliability is readily assessible from a complementary map of error estimates.
Xavier Fettweis, Jason E. Box, Cécile Agosta, Charles Amory, Christoph Kittel, Charlotte Lang, Dirk van As, Horst Machguth, and Hubert Gallée
The Cryosphere, 11, 1015–1033, https://doi.org/10.5194/tc-11-1015-2017, https://doi.org/10.5194/tc-11-1015-2017, 2017
Short summary
Short summary
This paper shows that the surface melt increase over the Greenland ice sheet since the end of the 1990s has been unprecedented, with respect to the last 120 years, using a regional climate model. These simulations also suggest an increase of the snowfall accumulation through the last century before a surface mass decrease in the 2000s. Such a mass gain could have impacted the ice sheet's dynamic stability and could explain the recent observed increase of the glaciers' velocity.
Christophe Genthon, Luc Piard, Etienne Vignon, Jean-Baptiste Madeleine, Mathieu Casado, and Hubert Gallée
Atmos. Chem. Phys., 17, 691–704, https://doi.org/10.5194/acp-17-691-2017, https://doi.org/10.5194/acp-17-691-2017, 2017
Short summary
Short summary
Natural atmospheric supersaturation is a norm rather than an exception at the surface of Dome C on the Antarctic Plateau. This is reported by hygrometers adapted to perform in extreme cold environments and avoid release of excess moisture before it is measured. One year of observation shows that atmospheric models with cold microphysics parameterizations designed for high altitude cirrus reproduce frequently but fail with the detailed statistics of supersaturation at the surface of Dome C.
Brice Noël, Willem Jan van de Berg, Horst Machguth, Stef Lhermitte, Ian Howat, Xavier Fettweis, and Michiel R. van den Broeke
The Cryosphere, 10, 2361–2377, https://doi.org/10.5194/tc-10-2361-2016, https://doi.org/10.5194/tc-10-2361-2016, 2016
Short summary
Short summary
We present a 1 km resolution data set (1958–2015) of daily Greenland ice sheet surface mass balance (SMB), statistically downscaled from the data of RACMO2.3 at 11 km using elevation dependence, precipitation and bare ice albedo corrections. The data set resolves Greenland narrow ablation zones and local outlet glaciers, and shows more realistic SMB patterns, owing to enhanced runoff at the ice sheet margins. An evaluation of the product against SMB measurements shows improved agreement.
Nicole-Jeanne Schlegel, David N. Wiese, Eric Y. Larour, Michael M. Watkins, Jason E. Box, Xavier Fettweis, and Michiel R. van den Broeke
The Cryosphere, 10, 1965–1989, https://doi.org/10.5194/tc-10-1965-2016, https://doi.org/10.5194/tc-10-1965-2016, 2016
Short summary
Short summary
We investigate Greenland Ice Sheet mass change from 2003–2012 by comparing observations from GRACE with state-of-the-art atmospheric and ice sheet model simulations. We find that the largest discrepancies (in the northwest and southeast) are likely controlled by errors in modeled surface climate as well as ice–ocean interaction and hydrological processes (not included in the models). Models should consider such processes at monthly to seasonal resolutions in order to improve future projections.
Lora S. Koenig, Alvaro Ivanoff, Patrick M. Alexander, Joseph A. MacGregor, Xavier Fettweis, Ben Panzer, John D. Paden, Richard R. Forster, Indrani Das, Joesph R. McConnell, Marco Tedesco, Carl Leuschen, and Prasad Gogineni
The Cryosphere, 10, 1739–1752, https://doi.org/10.5194/tc-10-1739-2016, https://doi.org/10.5194/tc-10-1739-2016, 2016
Short summary
Short summary
Contemporary climate warming over the Arctic is accelerating mass loss from the Greenland Ice Sheet through increasing surface melt, emphasizing the need to closely monitor surface mass balance in order to improve sea-level rise predictions. Here, we quantify the net annual accumulation over the Greenland Ice Sheet, which comprises the largest component of surface mass balance, at a higher spatial resolution than currently available using high-resolution, airborne-radar data.
Mathieu Casado, Amaelle Landais, Valérie Masson-Delmotte, Christophe Genthon, Erik Kerstel, Samir Kassi, Laurent Arnaud, Ghislain Picard, Frederic Prie, Olivier Cattani, Hans-Christian Steen-Larsen, Etienne Vignon, and Peter Cermak
Atmos. Chem. Phys., 16, 8521–8538, https://doi.org/10.5194/acp-16-8521-2016, https://doi.org/10.5194/acp-16-8521-2016, 2016
Short summary
Short summary
Climatic conditions in Concordia are very cold (−55 °C in average) and very dry, imposing difficult conditions to measure the water vapour isotopic composition. New developments in infrared spectroscopy enable now the measurement of isotopic composition in water vapour traces (down to 20 ppmv). Here we present the results results of a first campaign of measurement of isotopic composition of water vapour in Concordia, the site where the 800 000 years long ice core was drilled.
Patrick M. Alexander, Marco Tedesco, Nicole-Jeanne Schlegel, Scott B. Luthcke, Xavier Fettweis, and Eric Larour
The Cryosphere, 10, 1259–1277, https://doi.org/10.5194/tc-10-1259-2016, https://doi.org/10.5194/tc-10-1259-2016, 2016
Short summary
Short summary
We compared satellite-derived estimates of spatial and seasonal variations in Greenland Ice Sheet mass with a set of model simulations, revealing an agreement between models and satellite estimates for the ice-sheet-wide seasonal fluctuations in mass, but disagreement at finer spatial scales. The model simulations underestimate low-elevation mass loss. Improving the ability of models to capture variations and trends in Greenland Ice Sheet mass is important for estimating future sea level rise.
C. Amory, F. Naaim-Bouvet, H. Gallée, and E. Vignon
The Cryosphere, 10, 743–750, https://doi.org/10.5194/tc-10-743-2016, https://doi.org/10.5194/tc-10-743-2016, 2016
Short summary
Short summary
This study presents observational characterization of interactions between wind-induced surface roughness and aeolian erosion over a rough surface in coastal East Antarctica. It is shown that the drag caused by small-scale roughness elements can significantly affects the aeolian snow mass flux during an erosion event, depending on the ability of the surface to adjust according to the main wind. Such measurements are essential to improve parameterization schemes for aeolian snow transport models.
Marco Tedesco, Sarah Doherty, Xavier Fettweis, Patrick Alexander, Jeyavinoth Jeyaratnam, and Julienne Stroeve
The Cryosphere, 10, 477–496, https://doi.org/10.5194/tc-10-477-2016, https://doi.org/10.5194/tc-10-477-2016, 2016
Short summary
Short summary
Summer surface albedo over Greenland decreased at a rate of 0.02 per decade between 1996 and 2012. The decrease is due to snow grain growth, the expansion of bare ice areas, and trends in light-absorbing impurities on snow and ice surfaces. Neither aerosol models nor in situ observations indicate increasing trends in impurities in the atmosphere over Greenland. Albedo projections through to the end of the century under different warming scenarios consistently point to continued darkening.
M. Navari, S. A. Margulis, S. M. Bateni, M. Tedesco, P. Alexander, and X. Fettweis
The Cryosphere, 10, 103–120, https://doi.org/10.5194/tc-10-103-2016, https://doi.org/10.5194/tc-10-103-2016, 2016
Short summary
Short summary
An ensemble batch smoother was used to assess the feasibility of generating a reanalysis estimate of the Greenland ice sheet (GrIS) surface mass fluxes (SMF) via integrating measured ice surface temperatures with a regional climate model estimate. The results showed that assimilation of IST were able to overcome uncertainties in meteorological forcings that drive the GrIS surface processes. We showed that the proposed methodology is able to generate posterior reanalysis estimates of the SMF.
C. Agosta, X. Fettweis, and R. Datta
The Cryosphere, 9, 2311–2321, https://doi.org/10.5194/tc-9-2311-2015, https://doi.org/10.5194/tc-9-2311-2015, 2015
Short summary
Short summary
Estimates of the Antarctic surface mass balance with regional climate models (RCMs) require proper fields for forcing; hence we evaluate 41 CMIP5 climate models over Antarctica and include six reanalyses. Most of the models are biased compared to ERA-Interim, ACCESS1-3 being the best choice for forcing RCMs. Climate change is less sensitive to global warming than it is to the present-day simulated sea ice and to the feedback between sea-ice decrease and temperature increase around Antarctica.
S. L. Cornford, D. F. Martin, A. J. Payne, E. G. Ng, A. M. Le Brocq, R. M. Gladstone, T. L. Edwards, S. R. Shannon, C. Agosta, M. R. van den Broeke, H. H. Hellmer, G. Krinner, S. R. M. Ligtenberg, R. Timmermann, and D. G. Vaughan
The Cryosphere, 9, 1579–1600, https://doi.org/10.5194/tc-9-1579-2015, https://doi.org/10.5194/tc-9-1579-2015, 2015
Short summary
Short summary
We used a high-resolution ice sheet model capable of resolving grounding line dynamics (BISICLES) to compute responses of the major West Antarctic ice streams to projections of ocean and atmospheric warming. This is computationally demanding, and although other groups have considered parts of West Antarctica, we think this is the first calculation for the whole region at the sub-kilometer resolution that we show is required.
V. Masson-Delmotte, H. C. Steen-Larsen, P. Ortega, D. Swingedouw, T. Popp, B. M. Vinther, H. Oerter, A. E. Sveinbjornsdottir, H. Gudlaugsdottir, J. E. Box, S. Falourd, X. Fettweis, H. Gallée, E. Garnier, V. Gkinis, J. Jouzel, A. Landais, B. Minster, N. Paradis, A. Orsi, C. Risi, M. Werner, and J. W. C. White
The Cryosphere, 9, 1481–1504, https://doi.org/10.5194/tc-9-1481-2015, https://doi.org/10.5194/tc-9-1481-2015, 2015
Short summary
Short summary
The deep NEEM ice core provides the oldest Greenland ice core record, enabling improved understanding of the response of ice core records to local climate. Here, we focus on shallow ice cores providing a stack record of accumulation and water-stable isotopes spanning the past centuries. For the first time, we document the ongoing warming in a Greenland ice core. By combining our data with other Greenland ice cores and model results, we characterise the spatio-temporal patterns of variability.
C. Amory, A. Trouvilliez, H. Gallée, V. Favier, F. Naaim-Bouvet, C. Genthon, C. Agosta, L. Piard, and H. Bellot
The Cryosphere, 9, 1373–1383, https://doi.org/10.5194/tc-9-1373-2015, https://doi.org/10.5194/tc-9-1373-2015, 2015
H. Gallée, S. Preunkert, S. Argentini, M. M. Frey, C. Genthon, B. Jourdain, I. Pietroni, G. Casasanta, H. Barral, E. Vignon, C. Amory, and M. Legrand
Atmos. Chem. Phys., 15, 6225–6236, https://doi.org/10.5194/acp-15-6225-2015, https://doi.org/10.5194/acp-15-6225-2015, 2015
Short summary
Short summary
Regional climate model MAR was run for the region of Dome C located on the East Antarctic plateau, during summer 2011–2012, with a high vertical resolution in the lower troposphere. MAR is generally in very good agreement with the observations and provides sufficiently reliable information about surface turbulent fluxes and vertical profiles of vertical diffusion coefficients when discussing the representativeness of chemical measurements made nearby the ground surface at Dome C.
H. Gallée, H. Barral, E. Vignon, and C. Genthon
Atmos. Chem. Phys., 15, 6237–6246, https://doi.org/10.5194/acp-15-6237-2015, https://doi.org/10.5194/acp-15-6237-2015, 2015
Short summary
Short summary
This is the first time that a low-level jet observed above the East Antarctic Plateau is simulated by a regional climate model. This paper illustrates in a 3-D simulation the respective influences of the large-scale pressure gradient force and turbulence on the onset of the low-level jet. As atmospheric turbulence plays a key role in explaining the behaviour of chemical tracers during the OPALE campaign, this paper also increases our confidence in using the outputs of the model for this purpose.
C. Lang, X. Fettweis, and M. Erpicum
The Cryosphere, 9, 945–956, https://doi.org/10.5194/tc-9-945-2015, https://doi.org/10.5194/tc-9-945-2015, 2015
Short summary
Short summary
We simulated the 21st century Svalbard SMB with the regional model MAR (RCP8.5 scenario). Melt is projected to increase gently up to 2050 and then dramatically increase, with a larger increase in the south of the archipelago. This difference is due to larger ice albedo decrease in the south causing larger increase of absorbed solar radiation. The ablation area is projected to disappear over the entire Svalbard by 2085. The SMB decrease compared to present is projected to contribute 7mm to SLR.
C. Lang, X. Fettweis, and M. Erpicum
The Cryosphere, 9, 83–101, https://doi.org/10.5194/tc-9-83-2015, https://doi.org/10.5194/tc-9-83-2015, 2015
Short summary
Short summary
We have modelled the surface mass balance (SMB) of Svalbard with the model MAR over 1979--2013. The mean SMB is slightly negative and the Svalbard glaciers are losing mass through surface processes (mainly precipitation and runoff), but there has been no acceleration of the surface melt, contrary to Greenland where melt records have been broken since 2006. We attributed it to a change in atmospheric circulation, resulting in northerly cold flows over Svalbard damping Arctic warming.
A. Belleflamme, X. Fettweis, and M. Erpicum
The Cryosphere, 9, 53–64, https://doi.org/10.5194/tc-9-53-2015, https://doi.org/10.5194/tc-9-53-2015, 2015
Short summary
Short summary
The 2007-2012 summertime circulation anomaly over the Arctic region (i.e. more high pressure systems over the Beaufort Sea, the Canadian Arctic Archipelago, and Greenland) is put in a historical perspective. While the 2007-2012 anomaly seems to be exceptional, similar circulation conditions have occurred since 1871, on the basis of five reanalyses (ERA-Interim, ERA-40, NCEP/NCAR, ERA-20C, 20CRv2). The attribution of this anomaly (natural variability or global warming) remains debatable.
P. M. Alexander, M. Tedesco, X. Fettweis, R. S. W. van de Wal, C. J. P. P. Smeets, and M. R. van den Broeke
The Cryosphere, 8, 2293–2312, https://doi.org/10.5194/tc-8-2293-2014, https://doi.org/10.5194/tc-8-2293-2014, 2014
H. Barral, C. Genthon, A. Trouvilliez, C. Brun, and C. Amory
The Cryosphere, 8, 1905–1919, https://doi.org/10.5194/tc-8-1905-2014, https://doi.org/10.5194/tc-8-1905-2014, 2014
B. Noël, X. Fettweis, W. J. van de Berg, M. R. van den Broeke, and M. Erpicum
The Cryosphere, 8, 1871–1883, https://doi.org/10.5194/tc-8-1871-2014, https://doi.org/10.5194/tc-8-1871-2014, 2014
T. L. Edwards, X. Fettweis, O. Gagliardini, F. Gillet-Chaulet, H. Goelzer, J. M. Gregory, M. Hoffman, P. Huybrechts, A. J. Payne, M. Perego, S. Price, A. Quiquet, and C. Ritz
The Cryosphere, 8, 181–194, https://doi.org/10.5194/tc-8-181-2014, https://doi.org/10.5194/tc-8-181-2014, 2014
T. L. Edwards, X. Fettweis, O. Gagliardini, F. Gillet-Chaulet, H. Goelzer, J. M. Gregory, M. Hoffman, P. Huybrechts, A. J. Payne, M. Perego, S. Price, A. Quiquet, and C. Ritz
The Cryosphere, 8, 195–208, https://doi.org/10.5194/tc-8-195-2014, https://doi.org/10.5194/tc-8-195-2014, 2014
W. Colgan, W. Abdalati, M. Citterio, B. Csatho, X. Fettweis, S. Luthcke, G. Moholdt, and M. Stober
The Cryosphere Discuss., https://doi.org/10.5194/tcd-8-537-2014, https://doi.org/10.5194/tcd-8-537-2014, 2014
Revised manuscript not accepted
M. Tedesco, X. Fettweis, T. Mote, J. Wahr, P. Alexander, J. E. Box, and B. Wouters
The Cryosphere, 7, 615–630, https://doi.org/10.5194/tc-7-615-2013, https://doi.org/10.5194/tc-7-615-2013, 2013
C. L. Vernon, J. L. Bamber, J. E. Box, M. R. van den Broeke, X. Fettweis, E. Hanna, and P. Huybrechts
The Cryosphere, 7, 599–614, https://doi.org/10.5194/tc-7-599-2013, https://doi.org/10.5194/tc-7-599-2013, 2013
X. Fettweis, B. Franco, M. Tedesco, J. H. van Angelen, J. T. M. Lenaerts, M. R. van den Broeke, and H. Gallée
The Cryosphere, 7, 469–489, https://doi.org/10.5194/tc-7-469-2013, https://doi.org/10.5194/tc-7-469-2013, 2013
X. Fettweis, E. Hanna, C. Lang, A. Belleflamme, M. Erpicum, and H. Gallée
The Cryosphere, 7, 241–248, https://doi.org/10.5194/tc-7-241-2013, https://doi.org/10.5194/tc-7-241-2013, 2013
B. Franco, X. Fettweis, and M. Erpicum
The Cryosphere, 7, 1–18, https://doi.org/10.5194/tc-7-1-2013, https://doi.org/10.5194/tc-7-1-2013, 2013
Related subject area
Discipline: Ice sheets | Subject: Antarctic
Thwaites Glacier thins and retreats fastest where ice-shelf channels intersect its grounding zone
Melt sensitivity of irreversible retreat of Pine Island Glacier
A model framework for atmosphere–snow water vapor exchange and the associated isotope effects at Dome Argus, Antarctica – Part 1: The diurnal changes
The long-term sea-level commitment from Antarctica
The influence of present-day regional surface mass balance uncertainties on the future evolution of the Antarctic Ice Sheet
How well can satellite altimetry and firn models resolve Antarctic firn thickness variations?
Feedback mechanisms controlling Antarctic glacial-cycle dynamics simulated with a coupled ice sheet–solid Earth model
The effect of ice shelf rheology on shelf edge bending
Hysteresis of idealized, instability-prone outlet glaciers in response to pinning-point buttressing variation
A physics-based Antarctic melt detection technique: combining Advanced Microwave Scanning Radiometer 2, radiative-transfer modeling, and firn modeling
Brief communication: Precision measurement of the index of refraction of deep glacial ice at radio frequencies at Summit Station, Greenland
Widespread increase in discharge from west Antarctic Peninsula glaciers since 2018
Surface dynamics and history of the calving cycle of Astrolabe Glacier (Adélie Coast, Antarctica) derived from satellite imagery
Detecting Holocene retreat and readvance in the Amundsen Sea sector of Antarctica: assessing the suitability of sites near Pine Island Glacier for subglacial bedrock drilling
Weak relationship between remotely detected crevasses and inferred ice rheological parameters on Antarctic ice shelves
Extensive palaeo-surfaces beneath the Evans–Rutford region of the West Antarctic Ice Sheet control modern and past ice flow
Towards the systematic reconnaissance of seismic signals from glaciers and ice sheets – Part 1: Event detection for cryoseismology
Towards the systematic reconnaissance of seismic signals from glaciers and ice sheets – Part 2: Unsupervised learning for source process characterization
Geometric amplification and suppression of ice-shelf basal melt in West Antarctica
Alpine topography of the Gamburtsev Subglacial Mountains, Antarctica, mapped from ice sheet surface morphology
A fast and unified subglacial hydrological model applied to Thwaites Glacier, Antarctica
Impact of boundary conditions on the modeled thermal regime of the Antarctic ice sheet
The staggered retreat of grounded ice in the Ross Sea, Antarctica, since the Last Glacial Maximum (LGM)
The effect of landfast sea ice buttressing on ice dynamic speedup in the Larsen B embayment, Antarctica
ISMIP6-based Antarctic Projections to 2100: simulations with the BISICLES ice sheet model
Meteoric water and glacial melt in the southeastern Amundsen Sea: a time series from 1994 to 2020
Evaporative controls on Antarctic precipitation: an ECHAM6 model study using innovative water tracer diagnostics
Disentangling the drivers of future Antarctic ice loss with a historically calibrated ice-sheet model
Modelling GNSS-observed seasonal velocity changes of the Ross Ice Shelf, Antarctica, using the Ice-sheet and Sea-level System Model (ISSM)
Insights into the vulnerability of Antarctic glaciers from the ISMIP6 ice sheet model ensemble and associated uncertainty
Evaluation of four calving laws for Antarctic ice shelves
Oceanic gateways in Antarctica – Impact of relative sea-level change on sub-shelf melt
Englacial architecture of Lambert Glacier, East Antarctica
Mass changes of the northern Antarctic Peninsula Ice Sheet derived from repeat bi-static synthetic aperture radar acquisitions for the period 2013–2017
The evolution of future Antarctic surface melt using PISM-dEBM-simple
Characteristics and rarity of the strong 1940s westerly wind event over the Amundsen Sea, West Antarctica
Sensitivity of the MAR regional climate model snowpack to the parameterization of the assimilation of satellite-derived wet-snow masks on the Antarctic Peninsula
Stratigraphic noise and its potential drivers across the plateau of Dronning Maud Land, East Antarctica
Modes of Antarctic tidal grounding line migration revealed by Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) laser altimetry
Evaluating the impact of enhanced horizontal resolution over the Antarctic domain using a variable-resolution Earth system model
Statistically parameterizing and evaluating a positive degree-day model to estimate surface melt in Antarctica from 1979 to 2022
Widespread slowdown in thinning rates of West Antarctic ice shelves
Seasonal variability in Antarctic ice shelf velocities forced by sea surface height variations
Revisiting temperature sensitivity: how does Antarctic precipitation change with temperature?
Cosmogenic-nuclide data from Antarctic nunataks can constrain past ice sheet instabilities
Exploring ice sheet model sensitivity to ocean thermal forcing and basal sliding using the Community Ice Sheet Model (CISM)
High mid-Holocene accumulation rates over West Antarctica inferred from a pervasive ice-penetrating radar reflector
Seasonal and interannual variability of the landfast ice mass balance between 2009 and 2018 in Prydz Bay, East Antarctica
Megadunes in Antarctica: migration and characterization from remote and in situ observations
Slowdown of Shirase Glacier, East Antarctica, caused by strengthening alongshore winds
Allison M. Chartrand, Ian M. Howat, Ian R. Joughin, and Benjamin E. Smith
The Cryosphere, 18, 4971–4992, https://doi.org/10.5194/tc-18-4971-2024, https://doi.org/10.5194/tc-18-4971-2024, 2024
Short summary
Short summary
This study uses high-resolution remote-sensing data to show that shrinking of the West Antarctic Thwaites Glacier’s ice shelf (floating extension) is exacerbated by several sub-ice-shelf meltwater channels that form as the glacier transitions from full contact with the seafloor to fully floating. In mapping these channels, the position of the transition zone, and thinning rates of the Thwaites Glacier, this work elucidates important processes driving its rapid contribution to sea level rise.
Brad Reed, J. A. Mattias Green, Adrian Jenkins, and G. Hilmar Gudmundsson
The Cryosphere, 18, 4567–4587, https://doi.org/10.5194/tc-18-4567-2024, https://doi.org/10.5194/tc-18-4567-2024, 2024
Short summary
Short summary
We use a numerical ice-flow model to simulate the response of a 1940s Pine Island Glacier to changes in melting beneath its ice shelf. A decadal period of warm forcing is sufficient to push the glacier into an unstable, irreversible retreat from its long-term position on a subglacial ridge to an upstream ice plain. This retreat can only be stopped when unrealistic cold forcing is applied. These results show that short warm anomalies can lead to quick and substantial increases in ice flux.
Tianming Ma, Zhuang Jiang, Minghu Ding, Pengzhen He, Yuansheng Li, Wenqian Zhang, and Lei Geng
The Cryosphere, 18, 4547–4565, https://doi.org/10.5194/tc-18-4547-2024, https://doi.org/10.5194/tc-18-4547-2024, 2024
Short summary
Short summary
We constructed a box model to evaluate the isotope effects of atmosphere–snow water vapor exchange at Dome A, Antarctica. The results show clear and invisible diurnal changes in surface snow isotopes under summer and winter conditions, respectively. The model also predicts that the annual net effects of atmosphere–snow water vapor exchange would be overall enrichments in snow isotopes since the effects in summer appear to be greater than those in winter at the study site.
Ann Kristin Klose, Violaine Coulon, Frank Pattyn, and Ricarda Winkelmann
The Cryosphere, 18, 4463–4492, https://doi.org/10.5194/tc-18-4463-2024, https://doi.org/10.5194/tc-18-4463-2024, 2024
Short summary
Short summary
We systematically assess the long-term sea-level response from Antarctica to warming projected over the next centuries, using two ice-sheet models. We show that this committed Antarctic sea-level contribution is substantially higher than the transient sea-level change projected for the coming decades. A low-emission scenario already poses considerable risk of multi-meter sea-level increase over the next millennia, while additional East Antarctic ice loss unfolds under the high-emission pathway.
Christian Wirths, Thomas F. Stocker, and Johannes C. R. Sutter
The Cryosphere, 18, 4435–4462, https://doi.org/10.5194/tc-18-4435-2024, https://doi.org/10.5194/tc-18-4435-2024, 2024
Short summary
Short summary
We investigated the influence of several regional climate models on the Antarctic Ice Sheet when applied as forcing for the Parallel Ice Sheet Model (PISM). Our study shows that the choice of regional climate model forcing results in uncertainties of around a tenth of those in future sea level rise projections and also affects the extent of grounding line retreat in West Antarctica.
Maria T. Kappelsberger, Martin Horwath, Eric Buchta, Matthias O. Willen, Ludwig Schröder, Sanne B. M. Veldhuijsen, Peter Kuipers Munneke, and Michiel R. van den Broeke
The Cryosphere, 18, 4355–4378, https://doi.org/10.5194/tc-18-4355-2024, https://doi.org/10.5194/tc-18-4355-2024, 2024
Short summary
Short summary
The interannual variations in the height of the Antarctic Ice Sheet (AIS) are mainly due to natural variations in snowfall. Precise knowledge of these variations is important for the detection of any long-term climatic trends in AIS surface elevation. We present a new product that spatially resolves these height variations over the period 1992–2017. The product combines the strengths of atmospheric modeling results and satellite altimetry measurements.
Torsten Albrecht, Meike Bagge, and Volker Klemann
The Cryosphere, 18, 4233–4255, https://doi.org/10.5194/tc-18-4233-2024, https://doi.org/10.5194/tc-18-4233-2024, 2024
Short summary
Short summary
We performed coupled ice sheet–solid Earth simulations and discovered a positive (forebulge) feedback mechanism for advancing grounding lines, supporting a larger West Antarctic Ice Sheet during the Last Glacial Maximum. During deglaciation we found that the stabilizing glacial isostatic adjustment feedback dominates grounding-line retreat in the Ross Sea, with a weak Earth structure. This may have consequences for present and future ice sheet stability and potential rates of sea-level rise.
W. Roger Buck
The Cryosphere, 18, 4165–4176, https://doi.org/10.5194/tc-18-4165-2024, https://doi.org/10.5194/tc-18-4165-2024, 2024
Short summary
Short summary
Standard theory predicts that the edge of an ice shelf should bend downward. Satellite observations show that the edges of many ice shelves bend upward. A new theory for ice shelf bending is developed that, for the first time, includes the kind of vertical variations in ice flow properties expected for ice shelves. Upward bending of shelf edges is predicted as long as the ice surface is very cold and the ice flow properties depend strongly on temperature.
Johannes Feldmann, Anders Levermann, and Ricarda Winkelmann
The Cryosphere, 18, 4011–4028, https://doi.org/10.5194/tc-18-4011-2024, https://doi.org/10.5194/tc-18-4011-2024, 2024
Short summary
Short summary
Here we show in simplified simulations that the (ir)reversibility of the retreat of instability-prone, Antarctica-type glaciers can strongly depend on the depth of the bed depression they rest on. If it is sufficiently deep, then the destabilized glacier does not recover from its collapsed state. Our results suggest that glaciers resting on a wide and deep bed depression, such as Antarctica's Thwaites Glacier, are particularly susceptible to irreversible retreat.
Marissa E. Dattler, Brooke Medley, and C. Max Stevens
The Cryosphere, 18, 3613–3631, https://doi.org/10.5194/tc-18-3613-2024, https://doi.org/10.5194/tc-18-3613-2024, 2024
Short summary
Short summary
We developed an algorithm based on combining models and satellite observations to identify the presence of surface melt on the Antarctic Ice Sheet. We find that this method works similarly to previous methods by assessing 13 sites and the Larsen C ice shelf. Unlike previous methods, this algorithm is based on physical parameters, and updates to this method could allow the meltwater present on the Antarctic Ice Sheet to be quantified instead of simply detected.
Christoph Welling and The RNO-G Collaboration
The Cryosphere, 18, 3433–3437, https://doi.org/10.5194/tc-18-3433-2024, https://doi.org/10.5194/tc-18-3433-2024, 2024
Short summary
Short summary
We report on the measurement of the index of refraction in glacial ice at radio frequencies. We show that radio echoes from within the ice can be associated with specific features of the ice conductivity and use this to determine the wave velocity. This measurement is especially relevant for the Radio Neutrino Observatory Greenland (RNO-G), a neutrino detection experiment currently under construction at Summit Station, Greenland.
Benjamin J. Davison, Anna E. Hogg, Carlos Moffat, Michael P. Meredith, and Benjamin J. Wallis
The Cryosphere, 18, 3237–3251, https://doi.org/10.5194/tc-18-3237-2024, https://doi.org/10.5194/tc-18-3237-2024, 2024
Short summary
Short summary
Using a new dataset of ice motion, we observed glacier acceleration on the west coast of the Antarctic Peninsula. The speed-up began around January 2021, but some glaciers sped up earlier or later. Using a combination of ship-based ocean temperature observations and climate models, we show that the speed-up coincided with a period of unusually warm air and ocean temperatures in the region.
Floriane Provost, Dimitri Zigone, Emmanuel Le Meur, Jean-Philippe Malet, and Clément Hibert
The Cryosphere, 18, 3067–3079, https://doi.org/10.5194/tc-18-3067-2024, https://doi.org/10.5194/tc-18-3067-2024, 2024
Short summary
Short summary
The recent calving of Astrolabe Glacier in November 2021 presents an opportunity to better understand the processes leading to ice fracturing. Optical-satellite imagery is used to retrieve the calving cycle of the glacier ice tongue and to measure the ice velocity and strain rates in order to document fracture evolution. We observed that the presence of sea ice for consecutive years has favoured the glacier extension but failed to inhibit the growth of fractures that accelerated in June 2021.
Joanne S. Johnson, John Woodward, Ian Nesbitt, Kate Winter, Seth Campbell, Keir A. Nichols, Ryan A. Venturelli, Scott Braddock, Brent M. Goehring, Brenda Hall, Dylan H. Rood, and Greg Balco
EGUsphere, https://doi.org/10.5194/egusphere-2024-1452, https://doi.org/10.5194/egusphere-2024-1452, 2024
Short summary
Short summary
Determining where and when the Antarctic ice sheet was smaller than present requires recovery and exposure dating of subglacial bedrock. Here we use ice sheet model outputs and field data (geological and glaciological observations, bedrock samples and ground-penetrating radar from subglacial ridges) to assess the suitability for drilling of sites in the Hudson Mountains, West Antarctica. We find that no sites are perfect, but two are feasible, with the most suitable being Winkie Nunatak.
Cristina Gerli, Sebastian Rosier, G. Hilmar Gudmundsson, and Sainan Sun
The Cryosphere, 18, 2677–2689, https://doi.org/10.5194/tc-18-2677-2024, https://doi.org/10.5194/tc-18-2677-2024, 2024
Short summary
Short summary
Recent efforts have focused on using AI and satellite imagery to track crevasses for assessing ice shelf damage and informing ice flow models. Our study reveals a weak connection between these observed products and damage maps inferred from ice flow models. While there is some improvement in crevasse-dense regions, this association remains limited. Directly mapping ice damage from satellite observations may not significantly improve the representation of these processes within ice flow models.
Charlotte M. Carter, Michael J. Bentley, Stewart S. R. Jamieson, Guy J. G. Paxman, Tom A. Jordan, Julien A. Bodart, Neil Ross, and Felipe Napoleoni
The Cryosphere, 18, 2277–2296, https://doi.org/10.5194/tc-18-2277-2024, https://doi.org/10.5194/tc-18-2277-2024, 2024
Short summary
Short summary
We use radio-echo sounding data to investigate the presence of flat surfaces beneath the Evans–Rutford region in West Antarctica. These surfaces may be what remains of laterally continuous surfaces, formed before the inception of the West Antarctic Ice Sheet, and we assess two hypotheses for their formation. Tectonic structures in the region may have also had a control on the growth of the ice sheet by focusing ice flow into troughs adjoining these surfaces.
Rebecca B. Latto, Ross J. Turner, Anya M. Reading, and J. Paul Winberry
The Cryosphere, 18, 2061–2079, https://doi.org/10.5194/tc-18-2061-2024, https://doi.org/10.5194/tc-18-2061-2024, 2024
Short summary
Short summary
The study of icequakes allows for investigation of many glacier processes that are unseen by typical reconnaissance methods. However, detection of such seismic signals is challenging due to low signal-to-noise levels and diverse source mechanisms. Here we present a novel algorithm that is optimized to detect signals from a glacier environment. We apply the algorithm to seismic data recorded in the 2010–2011 austral summer from the Whillans Ice Stream and evaluate the resulting event catalogue.
Rebecca B. Latto, Ross J. Turner, Anya M. Reading, Sue Cook, Bernd Kulessa, and J. Paul Winberry
The Cryosphere, 18, 2081–2101, https://doi.org/10.5194/tc-18-2081-2024, https://doi.org/10.5194/tc-18-2081-2024, 2024
Short summary
Short summary
Seismic catalogues are potentially rich sources of information on glacier processes. In a companion study, we constructed an event catalogue for seismic data from the Whillans Ice Stream. Here, we provide a semi-automated workflow for consistent catalogue analysis using an unsupervised cluster analysis. We discuss the defining characteristics of identified signal types found in this catalogue and possible mechanisms for the underlying glacier processes and noise sources.
Jan De Rydt and Kaitlin Naughten
The Cryosphere, 18, 1863–1888, https://doi.org/10.5194/tc-18-1863-2024, https://doi.org/10.5194/tc-18-1863-2024, 2024
Short summary
Short summary
The West Antarctic Ice Sheet is losing ice at an accelerating pace. This is largely due to the presence of warm ocean water around the periphery of the Antarctic continent, which melts the ice. It is generally assumed that the strength of this process is controlled by the temperature of the ocean. However, in this study we show that an equally important role is played by the changing geometry of the ice sheet, which affects the strength of the ocean currents and thereby the melt rates.
Edmund J. Lea, Stewart S. R. Jamieson, and Michael J. Bentley
The Cryosphere, 18, 1733–1751, https://doi.org/10.5194/tc-18-1733-2024, https://doi.org/10.5194/tc-18-1733-2024, 2024
Short summary
Short summary
We use the ice surface expression of the Gamburtsev Subglacial Mountains in East Antarctica to map the horizontal pattern of valleys and ridges in finer detail than possible from previous methods. In upland areas, valleys are spaced much less than 5 km apart, with consequences for the distribution of melting at the bed and hence the likelihood of ancient ice being preserved. Automated mapping techniques were tested alongside manual approaches, with a hybrid approach recommended for future work.
Elise Kazmierczak, Thomas Gregov, Violaine Coulon, and Frank Pattyn
EGUsphere, https://doi.org/10.5194/egusphere-2024-466, https://doi.org/10.5194/egusphere-2024-466, 2024
Short summary
Short summary
We introduce a new fast model for the water flow beneath the ice sheet capable of handling in a unified way various hydrological and bed conditions. Applying this model to Thwaites Glacier, we show that accounting for this water flow in ice-sheet model projections has the potential to greatly increase the contribution to future sea-level rise. We also demonstrate that the sensitivity of the ice sheet in response to external changes depends on both the efficiency of the drainage and the bed type.
In-Woo Park, Emilia Kyung Jin, Mathieu Morlighem, and Kang-Kun Lee
The Cryosphere, 18, 1139–1155, https://doi.org/10.5194/tc-18-1139-2024, https://doi.org/10.5194/tc-18-1139-2024, 2024
Short summary
Short summary
This study conducted 3D thermodynamic ice sheet model experiments, and modeled temperatures were compared with 15 observed borehole temperature profiles. We found that using incompressibility of ice without sliding agrees well with observed temperature profiles in slow-flow regions, while incorporating sliding in fast-flow regions captures observed temperature profiles. Also, the choice of vertical velocity scheme has a greater impact on the shape of the modeled temperature profile.
Matthew A. Danielson and Philip J. Bart
The Cryosphere, 18, 1125–1138, https://doi.org/10.5194/tc-18-1125-2024, https://doi.org/10.5194/tc-18-1125-2024, 2024
Short summary
Short summary
The post-Last Glacial Maximum (LGM) retreat of the West Antarctic Ice Sheet in the Ross Sea was more significant than for any other Antarctic sector. Here we combined the available dates of retreat with new mapping of sediment deposited by the ice sheet during overall retreat. Our work shows that the post-LGM retreat through the Ross Sea was not uniform. This uneven retreat can cause instability in the present-day Antarctic ice sheet configuration and lead to future runaway retreat.
Trystan Surawy-Stepney, Anna E. Hogg, Stephen L. Cornford, Benjamin J. Wallis, Benjamin J. Davison, Heather L. Selley, Ross A. W. Slater, Elise K. Lie, Livia Jakob, Andrew Ridout, Noel Gourmelen, Bryony I. D. Freer, Sally F. Wilson, and Andrew Shepherd
The Cryosphere, 18, 977–993, https://doi.org/10.5194/tc-18-977-2024, https://doi.org/10.5194/tc-18-977-2024, 2024
Short summary
Short summary
Here, we use satellite observations and an ice flow model to quantify the impact of sea ice buttressing on ice streams on the Antarctic Peninsula. The evacuation of 11-year-old landfast sea ice in the Larsen B embayment on the East Antarctic Peninsula in January 2022 was closely followed by major changes in the calving behaviour and acceleration (30 %) of the ocean-terminating glaciers. Our results show that sea ice buttressing had a negligible direct role in the observed dynamic changes.
James F. O'Neill, Tamsin L. Edwards, Daniel F. Martin, Courtney Shafer, Stephen L. Cornford, Helene L. Seroussi, Sophie Nowicki, and Mira Adhikari
EGUsphere, https://doi.org/10.5194/egusphere-2024-441, https://doi.org/10.5194/egusphere-2024-441, 2024
Short summary
Short summary
We use an ice sheet model to simulate the Antarctic contribution to sea level over the 21st century, under a range of future climates, varying how sensitive the ice sheet is to different processes. We find that, under stronger warming scenarios, ocean temperatures increases and more snow falls on the ice sheet. When the ice sheet is sensitive to ocean warming, ocean melting driven loss exceeds snowfall driven gains, so that the sea level contribution is greater with more climate warming.
Andrew N. Hennig, David A. Mucciarone, Stanley S. Jacobs, Richard A. Mortlock, and Robert B. Dunbar
The Cryosphere, 18, 791–818, https://doi.org/10.5194/tc-18-791-2024, https://doi.org/10.5194/tc-18-791-2024, 2024
Short summary
Short summary
A total of 937 seawater paired oxygen isotope (δ18O)–salinity samples collected during seven cruises on the SE Amundsen Sea between 1994 and 2020 reveal a deep freshwater source with δ18O − 29.4±1.0‰, consistent with the signature of local ice shelf melt. Local mean meteoric water content – comprised primarily of glacial meltwater – increased between 1994 and 2020 but exhibited greater interannual variability than increasing trend.
Qinggang Gao, Louise C. Sime, Alison J. McLaren, Thomas J. Bracegirdle, Emilie Capron, Rachael H. Rhodes, Hans Christian Steen-Larsen, Xiaoxu Shi, and Martin Werner
The Cryosphere, 18, 683–703, https://doi.org/10.5194/tc-18-683-2024, https://doi.org/10.5194/tc-18-683-2024, 2024
Short summary
Short summary
Antarctic precipitation is a crucial component of the climate system. Its spatio-temporal variability impacts sea level changes and the interpretation of water isotope measurements in ice cores. To better understand its climatic drivers, we developed water tracers in an atmospheric model to identify moisture source conditions from which precipitation originates. We find that mid-latitude surface winds exert an important control on moisture availability for Antarctic precipitation.
Violaine Coulon, Ann Kristin Klose, Christoph Kittel, Tamsin Edwards, Fiona Turner, Ricarda Winkelmann, and Frank Pattyn
The Cryosphere, 18, 653–681, https://doi.org/10.5194/tc-18-653-2024, https://doi.org/10.5194/tc-18-653-2024, 2024
Short summary
Short summary
We present new projections of the evolution of the Antarctic ice sheet until the end of the millennium, calibrated with observations. We show that the ocean will be the main trigger of future ice loss. As temperatures continue to rise, the atmosphere's role may shift from mitigating to amplifying Antarctic mass loss already by the end of the century. For high-emission scenarios, this may lead to substantial sea-level rise. Adopting sustainable practices would however reduce the rate of ice loss.
Francesca Baldacchino, Nicholas R. Golledge, Huw Horgan, Mathieu Morlighem, Alanna V. Alevropoulos-Borrill, Alena Malyarenko, Alexandra Gossart, Daniel P. Lowry, and Laurine van Haastrecht
EGUsphere, https://doi.org/10.5194/egusphere-2023-2793, https://doi.org/10.5194/egusphere-2023-2793, 2023
Short summary
Short summary
Understanding how the Ross Ice Shelf flow is changing in a warming world is important for monitoring mass changes. The flow displays an intra-annual variation; however, it is unclear what mechanisms drive this variability. Sensitivity maps are modelled showing areas of the ice shelf where changes in basal melt most influence the ice flow. We suggest that basal melting partly drives the flow variability along the calving front of the ice shelf and will continue to do so in a warming world.
Hélène Seroussi, Vincent Verjans, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Peter Van Katwyk, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 17, 5197–5217, https://doi.org/10.5194/tc-17-5197-2023, https://doi.org/10.5194/tc-17-5197-2023, 2023
Short summary
Short summary
Mass loss from Antarctica is a key contributor to sea level rise over the 21st century, and the associated uncertainty dominates sea level projections. We highlight here the Antarctic glaciers showing the largest changes and quantify the main sources of uncertainty in their future evolution using an ensemble of ice flow models. We show that on top of Pine Island and Thwaites glaciers, Totten and Moscow University glaciers show rapid changes and a strong sensitivity to warmer ocean conditions.
Joel A. Wilner, Mathieu Morlighem, and Gong Cheng
The Cryosphere, 17, 4889–4901, https://doi.org/10.5194/tc-17-4889-2023, https://doi.org/10.5194/tc-17-4889-2023, 2023
Short summary
Short summary
We use numerical modeling to study iceberg calving off of ice shelves in Antarctica. We examine four widely used mathematical descriptions of calving (
calving laws), under the assumption that Antarctic ice shelf front positions should be in steady state under the current climate forcing. We quantify how well each of these calving laws replicates the observed front positions. Our results suggest that the eigencalving and von Mises laws are most suitable for Antarctic ice shelves.
Moritz Kreuzer, Torsten Albrecht, Lena Nicola, Ronja Reese, and Ricarda Winkelmann
EGUsphere, https://doi.org/10.5194/egusphere-2023-2737, https://doi.org/10.5194/egusphere-2023-2737, 2023
Short summary
Short summary
The study investigates how changing sea levels around Antarctica can potentially affect the floating ice shelves. It utilizes numerical models for both the Antarctic Ice Sheet and the solid Earth, investigating features like troughs and sills that control the flow of ocean water onto the continental shelf. The research finds that variations in sea level alone can significantly impact the melting rates of ice shelves.
Rebecca J. Sanderson, Kate Winter, S. Louise Callard, Felipe Napoleoni, Neil Ross, Tom A. Jordan, and Robert G. Bingham
The Cryosphere, 17, 4853–4871, https://doi.org/10.5194/tc-17-4853-2023, https://doi.org/10.5194/tc-17-4853-2023, 2023
Short summary
Short summary
Ice-penetrating radar allows us to explore the internal structure of glaciers and ice sheets to constrain past and present ice-flow conditions. In this paper, we examine englacial layers within the Lambert Glacier in East Antarctica using a quantitative layer tracing tool. Analysis reveals that the ice flow here has been relatively stable, but evidence for former fast flow along a tributary suggests that changes have occurred in the past and could change again in the future.
Thorsten Seehaus, Christian Sommer, Thomas Dethinne, and Philipp Malz
The Cryosphere, 17, 4629–4644, https://doi.org/10.5194/tc-17-4629-2023, https://doi.org/10.5194/tc-17-4629-2023, 2023
Short summary
Short summary
Existing mass budget estimates for the northern Antarctic Peninsula (>70° S) are affected by considerable limitations. We carried out the first region-wide analysis of geodetic mass balances throughout this region (coverage of 96.4 %) for the period 2013–2017 based on repeat pass bi-static TanDEM-X acquisitions. A total mass budget of −24.1±2.8 Gt/a is revealed. Imbalanced high ice discharge, particularly at former ice shelf tributaries, is the main driver of overall ice loss.
Julius Garbe, Maria Zeitz, Uta Krebs-Kanzow, and Ricarda Winkelmann
The Cryosphere, 17, 4571–4599, https://doi.org/10.5194/tc-17-4571-2023, https://doi.org/10.5194/tc-17-4571-2023, 2023
Short summary
Short summary
We adopt the novel surface module dEBM-simple in the Parallel Ice Sheet Model (PISM) to investigate the impact of atmospheric warming on Antarctic surface melt and long-term ice sheet dynamics. As an enhancement compared to traditional temperature-based melt schemes, the module accounts for changes in ice surface albedo and thus the melt–albedo feedback. Our results underscore the critical role of ice–atmosphere feedbacks in the future sea-level contribution of Antarctica on long timescales.
Gemma K. O'Connor, Paul R. Holland, Eric J. Steig, Pierre Dutrieux, and Gregory J. Hakim
The Cryosphere, 17, 4399–4420, https://doi.org/10.5194/tc-17-4399-2023, https://doi.org/10.5194/tc-17-4399-2023, 2023
Short summary
Short summary
Glaciers in West Antarctica are rapidly melting, but the causes are unknown due to limited observations. A leading hypothesis is that an unusually large wind event in the 1940s initiated the ocean-driven melting. Using proxy reconstructions (e.g., using ice cores) and climate model simulations, we find that wind events similar to the 1940s event are relatively common on millennial timescales, implying that ocean variability or climate trends are also necessary to explain the start of ice loss.
Thomas Dethinne, Quentin Glaude, Ghislain Picard, Christoph Kittel, Patrick Alexander, Anne Orban, and Xavier Fettweis
The Cryosphere, 17, 4267–4288, https://doi.org/10.5194/tc-17-4267-2023, https://doi.org/10.5194/tc-17-4267-2023, 2023
Short summary
Short summary
We investigate the sensitivity of the regional climate model
Modèle Atmosphérique Régional(MAR) to the assimilation of wet-snow occurrence estimated by remote sensing datasets. The assimilation is performed by nudging the MAR snowpack temperature. The data assimilation is performed over the Antarctic Peninsula for the 2019–2021 period. The results show an increase in the melt production (+66.7 %) and a decrease in surface mass balance (−4.5 %) of the model for the 2019–2020 melt season.
Nora Hirsch, Alexandra Zuhr, Thomas Münch, Maria Hörhold, Johannes Freitag, Remi Dallmayr, and Thomas Laepple
The Cryosphere, 17, 4207–4221, https://doi.org/10.5194/tc-17-4207-2023, https://doi.org/10.5194/tc-17-4207-2023, 2023
Short summary
Short summary
Stable water isotopes from firn cores provide valuable information on past climates, yet their utility is hampered by stratigraphic noise, i.e. the irregular deposition and wind-driven redistribution of snow. We found stratigraphic noise on the Antarctic Plateau to be related to the local accumulation rate, snow surface roughness and slope inclination, which can guide future decisions on sampling locations and thus increase the resolution of climate reconstructions from low-accumulation areas.
Bryony I. D. Freer, Oliver J. Marsh, Anna E. Hogg, Helen Amanda Fricker, and Laurie Padman
The Cryosphere, 17, 4079–4101, https://doi.org/10.5194/tc-17-4079-2023, https://doi.org/10.5194/tc-17-4079-2023, 2023
Short summary
Short summary
We develop a method using ICESat-2 data to measure how Antarctic grounding lines (GLs) migrate across the tide cycle. At an ice plain on the Ronne Ice Shelf we observe 15 km of tidal GL migration, the largest reported distance in Antarctica, dominating any signal of long-term migration. We identify four distinct migration modes, which provide both observational support for models of tidal ice flexure and GL migration and insights into ice shelf–ocean–subglacial interactions in grounding zones.
Rajashree Tri Datta, Adam Herrington, Jan T. M. Lenaerts, David P. Schneider, Luke Trusel, Ziqi Yin, and Devon Dunmire
The Cryosphere, 17, 3847–3866, https://doi.org/10.5194/tc-17-3847-2023, https://doi.org/10.5194/tc-17-3847-2023, 2023
Short summary
Short summary
Precipitation over Antarctica is one of the greatest sources of uncertainty in sea level rise estimates. Earth system models (ESMs) are a valuable tool for these estimates but typically run at coarse spatial resolutions. Here, we present an evaluation of the variable-resolution CESM2 (VR-CESM2) for the first time with a grid designed for enhanced spatial resolution over Antarctica to achieve the high resolution of regional climate models while preserving the two-way interactions of ESMs.
Yaowen Zheng, Nicholas R. Golledge, Alexandra Gossart, Ghislain Picard, and Marion Leduc-Leballeur
The Cryosphere, 17, 3667–3694, https://doi.org/10.5194/tc-17-3667-2023, https://doi.org/10.5194/tc-17-3667-2023, 2023
Short summary
Short summary
Positive degree-day (PDD) schemes are widely used in many Antarctic numerical ice sheet models. However, the PDD approach has not been systematically explored for its application in Antarctica. We have constructed a novel grid-cell-level spatially distributed PDD (dist-PDD) model and assessed its accuracy. We suggest that an appropriately parameterized dist-PDD model can be a valuable tool for exploring Antarctic surface melt beyond the satellite era.
Fernando S. Paolo, Alex S. Gardner, Chad A. Greene, Johan Nilsson, Michael P. Schodlok, Nicole-Jeanne Schlegel, and Helen A. Fricker
The Cryosphere, 17, 3409–3433, https://doi.org/10.5194/tc-17-3409-2023, https://doi.org/10.5194/tc-17-3409-2023, 2023
Short summary
Short summary
We report on a slowdown in the rate of thinning and melting of West Antarctic ice shelves. We present a comprehensive assessment of the Antarctic ice shelves, where we analyze at a continental scale the changes in thickness, flow, and basal melt over the past 26 years. We also present a novel method to estimate ice shelf change from satellite altimetry and a time-dependent data set of ice shelf thickness and basal melt rates at an unprecedented resolution.
Cyrille Mosbeux, Laurie Padman, Emilie Klein, Peter D. Bromirski, and Helen A. Fricker
The Cryosphere, 17, 2585–2606, https://doi.org/10.5194/tc-17-2585-2023, https://doi.org/10.5194/tc-17-2585-2023, 2023
Short summary
Short summary
Antarctica's ice shelves (the floating extension of the ice sheet) help regulate ice flow. As ice shelves thin or lose contact with the bedrock, the upstream ice tends to accelerate, resulting in increased mass loss. Here, we use an ice sheet model to simulate the effect of seasonal sea surface height variations and see if we can reproduce observed seasonal variability of ice velocity on the ice shelf. When correctly parameterised, the model fits the observations well.
Lena Nicola, Dirk Notz, and Ricarda Winkelmann
The Cryosphere, 17, 2563–2583, https://doi.org/10.5194/tc-17-2563-2023, https://doi.org/10.5194/tc-17-2563-2023, 2023
Short summary
Short summary
For future sea-level projections, approximating Antarctic precipitation increases through temperature-scaling approaches will remain important, as coupled ice-sheet simulations with regional climate models remain computationally expensive, especially on multi-centennial timescales. We here revisit the relationship between Antarctic temperature and precipitation using different scaling approaches, identifying and explaining regional differences.
Anna Ruth W. Halberstadt, Greg Balco, Hannah Buchband, and Perry Spector
The Cryosphere, 17, 1623–1643, https://doi.org/10.5194/tc-17-1623-2023, https://doi.org/10.5194/tc-17-1623-2023, 2023
Short summary
Short summary
This paper explores the use of multimillion-year exposure ages from Antarctic bedrock outcrops to benchmark ice sheet model predictions and thereby infer ice sheet sensitivity to warm climates. We describe a new approach for model–data comparison, highlight an example where observational data are used to distinguish end-member models, and provide guidance for targeted sampling around Antarctica that can improve understanding of ice sheet response to climate warming in the past and future.
Mira Berdahl, Gunter Leguy, William H. Lipscomb, Nathan M. Urban, and Matthew J. Hoffman
The Cryosphere, 17, 1513–1543, https://doi.org/10.5194/tc-17-1513-2023, https://doi.org/10.5194/tc-17-1513-2023, 2023
Short summary
Short summary
Contributions to future sea level from the Antarctic Ice Sheet remain poorly constrained. One reason is that ice sheet model initialization methods can have significant impacts on how the ice sheet responds to future forcings. We investigate the impacts of two key parameters used during model initialization. We find that these parameter choices alone can impact multi-century sea level rise by up to 2 m, emphasizing the need to carefully consider these choices for sea level rise predictions.
Julien A. Bodart, Robert G. Bingham, Duncan A. Young, Joseph A. MacGregor, David W. Ashmore, Enrica Quartini, Andrew S. Hein, David G. Vaughan, and Donald D. Blankenship
The Cryosphere, 17, 1497–1512, https://doi.org/10.5194/tc-17-1497-2023, https://doi.org/10.5194/tc-17-1497-2023, 2023
Short summary
Short summary
Estimating how West Antarctica will change in response to future climatic change depends on our understanding of past ice processes. Here, we use a reflector widely visible on airborne radar data across West Antarctica to estimate accumulation rates over the past 4700 years. By comparing our estimates with current atmospheric data, we find that accumulation rates were 18 % greater than modern rates. This has implications for our understanding of past ice processes in the region.
Na Li, Ruibo Lei, Petra Heil, Bin Cheng, Minghu Ding, Zhongxiang Tian, and Bingrui Li
The Cryosphere, 17, 917–937, https://doi.org/10.5194/tc-17-917-2023, https://doi.org/10.5194/tc-17-917-2023, 2023
Short summary
Short summary
The observed annual maximum landfast ice (LFI) thickness off Zhongshan (Davis) was 1.59±0.17 m (1.64±0.08 m). Larger interannual and local spatial variabilities for the seasonality of LFI were identified at Zhongshan, with the dominant influencing factors of air temperature anomaly, snow atop, local topography and wind regime, and oceanic heat flux. The variability of LFI properties across the study domain prevailed at interannual timescales, over any trend during the recent decades.
Giacomo Traversa, Davide Fugazza, and Massimo Frezzotti
The Cryosphere, 17, 427–444, https://doi.org/10.5194/tc-17-427-2023, https://doi.org/10.5194/tc-17-427-2023, 2023
Short summary
Short summary
Megadunes are fields of huge snow dunes present in Antarctica and on other planets, important as they present mass loss on the leeward side (glazed snow), on a continent characterized by mass gain. Here, we studied megadunes using remote data and measurements acquired during past field expeditions. We quantified their physical properties and migration and demonstrated that they migrate against slope and wind. We further proposed automatic detections of the glazed snow on their leeward side.
Bertie W. J. Miles, Chris R. Stokes, Adrian Jenkins, Jim R. Jordan, Stewart S. R. Jamieson, and G. Hilmar Gudmundsson
The Cryosphere, 17, 445–456, https://doi.org/10.5194/tc-17-445-2023, https://doi.org/10.5194/tc-17-445-2023, 2023
Short summary
Short summary
Satellite observations have shown that the Shirase Glacier catchment in East Antarctica has been gaining mass over the past 2 decades, a trend largely attributed to increased snowfall. Our multi-decadal observations of Shirase Glacier show that ocean forcing has also contributed to some of this recent mass gain. This has been caused by strengthening easterly winds reducing the inflow of warm water underneath the Shirase ice tongue, causing the glacier to slow down and thicken.
Cited articles
Agosta, C., Fettweis, X., and Datta, R.: Evaluation of the CMIP5 models in the aim of regional modelling of the Antarctic surface mass balance, The Cryosphere, 9, 2311–2321, https://doi.org/10.5194/tc-9-2311-2015, 2015. a
Agosta, C., Amory, C., Kittel, C., Orsi, A., Favier, V., Gallée, H., van den Broeke, M. R., Lenaerts, J. T. M., van Wessem, J. M., van de Berg, W. J., and Fettweis, X.: Estimation of the Antarctic surface mass balance using the regional climate model MAR (1979–2015) and identification of dominant processes, The Cryosphere, 13, 281–296, https://doi.org/10.5194/tc-13-281-2019, 2019. a, b, c, d, e
Amory, C., Kittel, C., Le Toumelin, L., Agosta, C., Delhasse, A., Favier, V., and Fettweis, X.: Performance of MAR (v3.11) in simulating the drifting-snow climate and surface mass balance of Adélie Land, East Antarctica, Geosci. Model Dev., 14, 3487–3510, https://doi.org/10.5194/gmd-14-3487-2021, 2021. a
Barrett, A. I., Hogan, R. J., and Forbes, R. M.: Why are mixed-phase
altocumulus clouds poorly predicted by large-scale models? Part 1. Physical
processes, J. Geophys. Res.-Atmos., 122, 9903–9926,
https://doi.org/10.1002/2016JD026322, 2017. a
Barthel, A., Agosta, C., Little, C. M., Hattermann, T., Jourdain, N. C., Goelzer, H., Nowicki, S., Seroussi, H., Straneo, F., and Bracegirdle, T. J.: CMIP5 model selection for ISMIP6 ice sheet model forcing: Greenland and Antarctica, The Cryosphere, 14, 855–879, https://doi.org/10.5194/tc-14-855-2020, 2020. a
Bennartz, R., Shupe, M., Turner, D., Walden, V., Steffen, K., Cox, C., Kulie,
M., Miller, N., and Pettersen, C.: July 2012 Greenland melt extent enhanced
by low-level liquid clouds, Nature, 496, 83–86, https://doi.org/10.1038/nature12002,
2013. a, b
Bintanja, R. and van den Broeke, M. R.: The influence of clouds on the
radiation budget of ice and snow surfaces in Antartica and Greenland in
summer, Int. J. Climatol., 16, 1281–1296,
https://doi.org/10.1002/(SICI)1097-0088(199611)16:11<1281::AID-JOC83>3.0.CO;2-A,
1996. a, b, c
Bjordal, J., Storelvmo, T., Alterskjær, K., and Carlsen, T.: Equilibrium
climate sensitivity above 5 ∘C plausible due to state-dependent cloud
feedback, Nat. Geosci., 13, 718–721, https://doi.org/10.1038/s41561-020-00649-1,
2020. a
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster,
P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S. K., Sherwood, S., Stevens, B., and Zhang, X. Y.: Clouds and Aerosols, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 571–657, 2013. a
Bromwich, D. H., Nicolas, J. P., Hines, K. M., Kay, J. E., Key, E. L., Lazzara,
M. A., Lubin, D., McFarquhar, G. M., Gorodetskaya, I. V., Grosvenor, D. P.,
Lachlan-Cope, T., and van Lipzig, N. P. M.: Tropospheric clouds in Antarctica, Rev. Geophys., 50, 2011RG000363,
https://doi.org/10.1029/2011RG000363, 2012. a
Brun, E., David, P., Sudul, M., and Brunot, G.: A numerical model to simulate
snow-cover stratigraphy for operational avalanche forecasting, J.
Glaciol., 38, 13–22, https://doi.org/10.3189/S0022143000009552, 1992. a
Datta, R. T., Tedesco, M., Agosta, C., Fettweis, X., Kuipers Munneke, P., and van den Broeke, M. R.: Melting over the northeast Antarctic Peninsula (1999–2009): evaluation of a high-resolution regional climate model, The Cryosphere, 12, 2901–2922, https://doi.org/10.5194/tc-12-2901-2018, 2018. a, b
Datta, R. T., Tedesco, M., Fettweis, X., Agosta, C., Lhermitte, S., Lenaerts,
J. T., and Wever, N.: The effect of Foehn-induced surface melt on firn
evolution over the northeast Antarctic peninsula, Geophys. Res.
Lett., 46, 3822–3831, https://doi.org/10.1029/2018GL080845, 2019. a
De Ridder, K.: Radiative transfer in the IAGL land surface model, J.
Appl. Meteorol., 36, 12–21,
https://doi.org/10.1175/1520-0450(1997)036<0012:RTITIL>2.0.CO;2, 1997. a
De Ridder, K. and Schayes, G.: The IAGL land surface model, J. Appl.
Meteorol., 36, 167–182,
https://doi.org/10.1175/1520-0450(1997)036<0167:TILSM>2.0.CO;2, 1997. a
Donat-Magnin, M., Jourdain, N. C., Gallée, H., Amory, C., Kittel, C., Fettweis, X., Wille, J. D., Favier, V., Drira, A., and Agosta, C.: Interannual variability of summer surface mass balance and surface melting in the Amundsen sector, West Antarctica, The Cryosphere, 14, 229–249, https://doi.org/10.5194/tc-14-229-2020, 2020. a, b
Donat-Magnin, M., Jourdain, N. C., Kittel, C., Agosta, C., Amory, C., Gallée, H., Krinner, G., and Chekki, M.: Future surface mass balance and surface melt in the Amundsen sector of the West Antarctic Ice Sheet, The Cryosphere, 15, 571–593, https://doi.org/10.5194/tc-15-571-2021, 2021. a
Emde, K. D. and Kahlig, P.: Comparison of the observed 19th July 1981, Montana
thunderstorm with results of a one-dimensional cloud model using Kessler
parameterized microphysics, in: Annales geophysicae. Atmospheres,
hydrospheres and space sciences, vol. 7, pp. 405–414, 1989. a
Fettweis, X., Hofer, S., Krebs-Kanzow, U., Amory, C., Aoki, T., Berends, C. J., Born, A., Box, J. E., Delhasse, A., Fujita, K., Gierz, P., Goelzer, H., Hanna, E., Hashimoto, A., Huybrechts, P., Kapsch, M.-L., King, M. D., Kittel, C., Lang, C., Langen, P. L., Lenaerts, J. T. M., Liston, G. E., Lohmann, G., Mernild, S. H., Mikolajewicz, U., Modali, K., Mottram, R. H., Niwano, M., Noël, B., Ryan, J. C., Smith, A., Streffing, J., Tedesco, M., van de Berg, W. J., van den Broeke, M., van de Wal, R. S. W., van Kampenhout, L., Wilton, D., Wouters, B., Ziemen, F., and Zolles, T.: GrSMBMIP: intercomparison of the modelled 1980–2012 surface mass balance over the Greenland Ice Sheet, The Cryosphere, 14, 3935–3958, https://doi.org/10.5194/tc-14-3935-2020, 2020. a
Fu, Q.: An accurate parameterization of the solar radiative properties of
cirrus clouds for climate models, J. Climate, 9, 2058–2082, 1996. a
Fu, Q., Yang, P., and Sun, W.: An accurate parameterization of the infrared
radiative properties of cirrus clouds for climate models, J. Climate,
11, 2223–2237, https://doi.org/10.1175/1520-0442(1998)011<2223:AAPOTI>2.0.CO;2, 1998. a
Gallée, H.: Simulation of the mesocyclonic activity in the Ross Sea,
Antarctica, Mon. Weather Rev., 123, 2051–2069,
https://doi.org/10.1175/1520-0493(1995)123<2051:SOTMAI>2.0.CO;2, 1995. a
Gallée, H. and Duynkerke, P. G.: Air-snow interactions and the surface
energy and mass balance over the melting zone of west Greenland during the
Greenland Ice Margin Experiment, J. Geophys. Res.-Atmos., 102, 13813–13824, https://doi.org/10.1029/96JD03358, 1997. a, b
Gallée, H. and Gorodetskaya, I. V.: Validation of a limited area model over
Dome C, Antarctic Plateau, during winter, Clim. Dynam., 34, 61–72,
https://doi.org/10.1007/s00382-008-0499-y, 2010. a, b
Gallée, H. and Schayes, G.: Development of a three-dimensional
meso-γ primitive equation model: katabatic winds simulation in the
area of Terra Nova Bay, Antarctica, Mon. Weather Rev., 122, 671–685,
https://doi.org/10.1175/1520-0493(1994)122<0671:DOATDM>2.0.CO;2, 1994. a, b
Gallée, H., Guyomarc'h, G., and Brun, E.: Impact of snow drift on the
antarctic ice sheet surface mass balance: Possible sensitivity to
snow-surface properties, Bound.-Lay. Meteorol., 99, 1–19,
https://doi.org/10.1023/A:1018776422809, 2001. a
Ghiz, M. L., Scott, R. C., Vogelmann, A. M., Lenaerts, J. T. M., Lazzara, M., and Lubin, D.: Energetics of surface melt in West Antarctica, The Cryosphere, 15, 3459–3494, https://doi.org/10.5194/tc-15-3459-2021, 2021. a
Gilbert, E. and Kittel, C.: Surface Melt and Runoff on Antarctic Ice Shelves at
1.5 ∘C, 2 ∘C, and 4 ∘C of Future Warming, Geophys. Res. Lett.,
48, e2020GL091733, https://doi.org/10.1029/2020GL091733, 2021. a, b, c, d
Gilbert, E., Orr, A., King, J. C., Renfrew, I., Lachlan-Cope, T., Field, P.,
and Boutle, I.: Summertime cloud phase strongly influences surface melting on
the Larsen C ice shelf, Antarctica, Q. J. Roy.
Meteor. Soc., 146, 1575–1589, https://doi.org/10.1002/qj.3753, 2020. a, b
Gorodetskaya, I. V., Kneifel, S., Maahn, M., Van Tricht, K., Thiery, W., Schween, J. H., Mangold, A., Crewell, S., and Van Lipzig, N. P. M.: Cloud and precipitation properties from ground-based remote-sensing instruments in East Antarctica, The Cryosphere, 9, 285–304, https://doi.org/10.5194/tc-9-285-2015, 2015. a
Hines, K. M., Bromwich, D. H., Wang, S.-H., Silber, I., Verlinde, J., and Lubin, D.: Microphysics of summer clouds in central West Antarctica simulated by the Polar Weather Research and Forecasting Model (WRF) and the Antarctic Mesoscale Prediction System (AMPS), Atmos. Chem. Phys., 19, 12431–12454, https://doi.org/10.5194/acp-19-12431-2019, 2019. a
Hofer, S., Tedstone, A. J., Fettweis, X., and Bamber, J. L.: Decreasing cloud
cover drives the recent mass loss on the Greenland Ice Sheet, Science
Advances, 3, e1700584, https://doi.org/10.1126/sciadv.1700584, 2017. a, b
Hofer, S., Tedstone, A. J., Fettweis, X., and Bamber, J. L.: Cloud microphysics
and circulation anomalies control differences in future Greenland melt,
Nat. Clim. Change, 9, 523–528, https://doi.org/10.1038/s41558-019-0507-8, 2019. a
Hofer, S., Lang, C., Amory, C., Kittel, C., Delhasse, A., Tedstone, A., and
Fettweis, X.: Greater Greenland Ice Sheet contribution to global sea level
rise in CMIP6, Nat. Commun., 11, 6289,
https://doi.org/10.1038/s41467-020-20011-8, 2020. a
Hofer, S., Amory, C., Kittel, C., Carlsen, T., Le Toumelin, L., and Storelvmo,
T.: The contribution of drifting snow to cloud properties and the atmospheric
radiative budget over Antarctica, Geophys. Res. Lett., 48,
e2021GL094967, https://doi.org/10.1029/2021GL094967, 2021. a, b, c, d
Kittel, C.: Data: Clouds drive differences in future surface melt over the
Antarctic ice shelves (Kittel et al., 2022), Zenodo [data set],
https://doi.org/10.5281/zenodo.6406158, 2022. a
Kittel, C., Amory, C., Agosta, C., Delhasse, A., Doutreloup, S., Huot, P.-V., Wyard, C., Fichefet, T., and Fettweis, X.: Sensitivity of the current Antarctic surface mass balance to sea surface conditions using MAR, The Cryosphere, 12, 3827–3839, https://doi.org/10.5194/tc-12-3827-2018, 2018. a
Kittel, C., Amory, C., Agosta, C., Jourdain, N. C., Hofer, S., Delhasse, A., Doutreloup, S., Huot, P.-V., Lang, C., Fichefet, T., and Fettweis, X.: Diverging future surface mass balance between the Antarctic ice shelves and grounded ice sheet, The Cryosphere, 15, 1215–1236, https://doi.org/10.5194/tc-15-1215-2021, 2021. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q
Kuipers Munneke, P., van den Broeke, M. R., King, J. C., Gray, T., and Reijmer, C. H.: Near-surface climate and surface energy budget of Larsen C ice shelf, Antarctic Peninsula, The Cryosphere, 6, 353–363, https://doi.org/10.5194/tc-6-353-2012, 2012. a
Kuipers Munneke, P., Luckman, A., Bevan, S., Smeets, C., Gilbert, E., Van den
Broeke, M., Wang, W., Zender, C., Hubbard, B., Ashmore, D., Orr, A., King,
J., and Kulessa, B.: Intense winter surface melt on an Antarctic ice shelf,
Geophys. Res. Lett., 45, 7615–7623, https://doi.org/10.1029/2018GL077899,
2018a. a
Kuipers Munneke, P., Luckman, A., Bevan, S., Smeets, C., Gilbert, E., Van den
Broeke, M., Wang, W., Zender, C., Hubbard, B., Ashmore, D., Orr, A., King, J. C., and Kulessa, B.: Intense
winter surface melt on an Antarctic ice shelf, Geophys. Res. Lett.,
45, 7615–7623, https://doi.org/10.1029/2018GL077899, 2018b. a
Lachlan-Cope, T.: Antarctic clouds, Polar Res., 29, 150–158, 2010. a
Lefebre, F., Gallée, H., van Ypersele, J.-P., and Greuell, W.: Modeling of
snow and ice melt at ETH Camp (West Greenland): A study of surface albedo,
J. Geophys. Res.-Atmos., 108, 4231,
https://doi.org/10.1029/2001JD001160, 2003. a
Lenaerts, J. T., Van Tricht, K., Lhermitte, S., and L'Ecuyer, T. S.: Polar
clouds and radiation in satellite observations, reanalyses, and climate
models, Geophys. Res. Lett., 44, 3355–3364,
https://doi.org/10.1002/2016GL072242, 2017. a
Le Toumelin, L., Amory, C., Favier, V., Kittel, C., Hofer, S., Fettweis, X., Gallée, H., and Kayetha, V.: Sensitivity of the surface energy budget to drifting snow as simulated by MAR in coastal Adelie Land, Antarctica, The Cryosphere, 15, 3595–3614, https://doi.org/10.5194/tc-15-3595-2021, 2021. a, b
Lindner, T. and Li, J.: Parameterization of the optical properties for water
clouds in the infrared, J. Climate, 13, 1797–1805,
https://doi.org/10.1175/1520-0442(2000)013<1797:POTOPF>2.0.CO;2, 2000. a
Listowski, C. and Lachlan-Cope, T.: The microphysics of clouds over the Antarctic Peninsula – Part 2: modelling aspects within Polar WRF, Atmos. Chem. Phys., 17, 10195–10221, https://doi.org/10.5194/acp-17-10195-2017, 2017. a
MAR Model: Homepage, https://www.mar.cnrs.fr (last access: 29 May 2022), 2021. a
MARTeam: MARv3.11, GitLab [data set], https://gitlab.com/Mar-Group/MARv3# (last access: 28 May 2022), 2021. a
Mattingly, K. S., Mote, T. L., Fettweis, X., Van As, D., Van Tricht, K.,
Lhermitte, S., Pettersen, C., and Fausto, R. S.: Strong summer atmospheric
rivers trigger Greenland Ice Sheet melt through spatially varying surface
energy balance and cloud regimes, J. Climate, 33, 6809–6832,
https://doi.org/10.1175/JCLI-D-19-0835.1, 2020. a
Meehl, G. A., Senior, C. A., Eyring, V., Flato, G., Lamarque, J.-F., Stouffer,
R. J., Taylor, K. E., and Schlund, M.: Context for interpreting equilibrium
climate sensitivity and transient climate response from the CMIP6 Earth
system models, Science Advances, 6, eaba1981, https://doi.org/10.1126/sciadv.aba1981,
2020. a
Messager, C., Gallée, H., and Brasseur, O.: Precipitation sensitivity to
regional SST in a regional climate simulation during the West African monsoon
for two dry years, Clim. Dynam., 22, 249–266,
https://doi.org/10.1007/s00382-003-0381-x, 2004. a
Morcrette, J.-J.: The Surface Downward Longwave Radiation in the ECMWF Forecast
System, J. Climate, 15, 1875–1892,
https://doi.org/10.1175/1520-0442(2002)015<1875:TSDLRI>2.0.CO;2, 2002. a
Mottram, R., Hansen, N., Kittel, C., van Wessem, J. M., Agosta, C., Amory, C., Boberg, F., van de Berg, W. J., Fettweis, X., Gossart, A., van Lipzig, N. P. M., van Meijgaard, E., Orr, A., Phillips, T., Webster, S., Simonsen, S. B., and Souverijns, N.: What is the surface mass balance of Antarctica? An intercomparison of regional climate model estimates, The Cryosphere, 15, 3751–3784, https://doi.org/10.5194/tc-15-3751-2021, 2021. a, b
Nicolas, J. P., Vogelmann, A. M., Scott, R. C., Wilson, A. B., Cadeddu, M. P.,
Bromwich, D. H., Verlinde, J., Lubin, D., Russell, L. M., Jenkinson, C.,
Powers, H. H., Ryczek, M., Stone, G., and Wille, J. D.: January 2016 extensive summer melt in West Antarctica favoured by
strong El Niño, Nat. Commun., 8, 15799,
https://doi.org/10.1038/ncomms15799, 2017. a
O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and Sanderson, B. M.: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6, Geosci. Model Dev., 9, 3461–3482, https://doi.org/10.5194/gmd-9-3461-2016, 2016. a
Pattyn, F., Ritz, C., Hanna, E., Asay-Davis, X., DeConto, R., Durand, G.,
Favier, L., Fettweis, X., Goelzer, H., Golledge, N. R., Kuipers Munneke, P.,
Lenaerts, J. T. M., Nowicki, S., Payne, A. K., Robinson, A., Seroussi, H.,
Trusel, L. D., and van den Broeke, M.: The Greenland and Antarctic ice sheets
under 1.5 ∘C global warming, Nat. Clim. Change, 8, 1053–1061,
https://doi.org/10.1038/s41558-018-0305-8, 2018. a
Pavolonis, M. J. and Key, J. R.: Antarctic cloud radiative forcing at the
surface estimated from the AVHRR Polar Pathfinder and ISCCP D1 datasets,
1985–93, J. Appl. Meteorol., 42, 827–840,
https://doi.org/10.1175/1520-0450(2003)042<0827:ACRFAT>2.0.CO;2, 2003. a
Scambos, T. A., Berthier, E., Haran, T., Shuman, C. A., Cook, A. J., Ligtenberg, S. R. M., and Bohlander, J.: Detailed ice loss pattern in the northern Antarctic Peninsula: widespread decline driven by ice front retreats, The Cryosphere, 8, 2135–2145, https://doi.org/10.5194/tc-8-2135-2014, 2014. a
Scott, R. C., Nicolas, J. P., Bromwich, D. H., Norris, J. R., and Lubin, D.:
Meteorological drivers and large-scale climate forcing of West Antarctic
surface melt, J. Climate, 32, 665–684,
https://doi.org/10.1175/JCLI-D-18-0233.1, 2019. a
Seroussi, H., Nowicki, S., Payne, A. J., Goelzer, H., Lipscomb, W. H., Abe-Ouchi, A., Agosta, C., Albrecht, T., Asay-Davis, X., Barthel, A., Calov, R., Cullather, R., Dumas, C., Galton-Fenzi, B. K., Gladstone, R., Golledge, N. R., Gregory, J. M., Greve, R., Hattermann, T., Hoffman, M. J., Humbert, A., Huybrechts, P., Jourdain, N. C., Kleiner, T., Larour, E., Leguy, G. R., Lowry, D. P., Little, C. M., Morlighem, M., Pattyn, F., Pelle, T., Price, S. F., Quiquet, A., Reese, R., Schlegel, N.-J., Shepherd, A., Simon, E., Smith, R. S., Straneo, F., Sun, S., Trusel, L. D., Van Breedam, J., van de Wal, R. S. W., Winkelmann, R., Zhao, C., Zhang, T., and Zwinger, T.: ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century, The Cryosphere, 14, 3033–3070, https://doi.org/10.5194/tc-14-3033-2020, 2020. a
Sherwood, S. C., Webb, M. J., Annan, J. D., Armour, K. C., Forster, P. M.,
Hargreaves, J. C., Hegerl, G., Klein, S. A., Marvel, K. D., Rohling, E. J.,
Watanabe, M., Andrews, T., Braconnot, P., Bretherton, C. S., Foster, G. L.,
Hausfather, Z., von der Heydt, A. S., Knutti, R., Mauritsen, T., Norris,
J. R., Proistosescu, C., Rugenstein, M., Schmidt, G. A., Tokarska, K. B., and
Zelinka, M. D.: An Assessment of Earth's Climate Sensitivity Using Multiple
Lines of Evidence, Rev. Geophys., 58, e2019RG000678,
https://doi.org/10.1029/2019RG000678, 2020. a
Slingo, A.: A GCM parameterization for the shortwave radiative properties of
water clouds, J. Atmos. Sci., 46, 1419–1427,
https://doi.org/10.1175/1520-0469(1989)046<1419:AGPFTS>2.0.CO;2, 1989. a
Stephens, G. L.: The parameterization of radiation for numerical weather
prediction and climate models, Mon. Weather Rev., 112, 826–867,
https://doi.org/10.1175/1520-0493(1984)112<0826:TPORFN>2.0.CO;2, 1984. a, b, c
Sun, S., Cornford, S. L., Gwyther, D. E., Gladstone, R. M., Galton-Fenzi,
B. K., Zhao, L., and Moore, J. C.: Impact of ocean forcing on the Aurora
Basin in the 21st and 22nd centuries, Ann. Glaciol., 57, 79–86,
https://doi.org/10.1017/aog.2016.27, 2016. a
Trusel, L. D., Frey, K. E., Das, S. B., Munneke, P. K., and Van Den Broeke,
M. R.: Satellite-based estimates of Antarctic surface meltwater fluxes,
Geophys. Res. Lett., 40, 6148–6153, https://doi.org/10.1002/2013GL058138,
2013. a
Trusel, L. D., Frey, K. E., Das, S. B., Karnauskas, K. B., Kuipers Munneke, P.,
Van Meijgaard, E., and Van Den Broeke, M. R.: Divergent trajectories of
Antarctic surface melt under two twenty-first-century climate scenarios,
Nat. Geosci., 8, 927–932, https://doi.org/10.1038/ngeo2563, 2015. a, b, c
Van As, D., Van Den Broeke, M., Reijmer, C., and Van De Wal, R.: The summer
surface energy balance of the high Antarctic plateau, Bound.-Lay.
Meteorol., 115, 289–317, https://doi.org/10.1007/s10546-004-4631-1, 2005. a
van den Broeke, M.: Strong surface melting preceded collapse of Antarctic
Peninsula ice shelf, Geophys. Res. Lett., 32, L12815,
https://doi.org/10.1029/2005GL023247, 2005. a
Van Den Broeke, M., Reijmer, C., Van As, D., and Boot, W.: Daily cycle of the
surface energy balance in Antarctica and the influence of clouds,
Int. J. Climatol., 26, 1587–1605, https://doi.org/10.1002/joc.1323, 2006. a, b
Van Tricht, K., Lhermitte, S., Lenaerts, J. T., Gorodetskaya, I. V.,
L’Ecuyer, T. S., Noël, B., van den Broeke, M. R., Turner, D. D., and
van Lipzig, N. P.: Clouds enhance Greenland ice sheet meltwater runoff,
Nat. Commun., 7, 10266, https://doi.org/10.1038/ncomms10266, 2016. a, b, c
van Wessem, J. M., Reijmer, C. H., Lenaerts, J. T. M., van de Berg, W. J., van den Broeke, M. R., and van Meijgaard, E.: Updated cloud physics in a regional atmospheric climate model improves the modelled surface energy balance of Antarctica, The Cryosphere, 8, 125–135, https://doi.org/10.5194/tc-8-125-2014, 2014. a
van Wessem, J. M., van de Berg, W. J., Noël, B. P. Y., van Meijgaard, E., Amory, C., Birnbaum, G., Jakobs, C. L., Krüger, K., Lenaerts, J. T. M., Lhermitte, S., Ligtenberg, S. R. M., Medley, B., Reijmer, C. H., van Tricht, K., Trusel, L. D., van Ulft, L. H., Wouters, B., Wuite, J., and van den Broeke, M. R.: Modelling the climate and surface mass balance of polar ice sheets using RACMO2 – Part 2: Antarctica (1979–2016), The Cryosphere, 12, 1479–1498, https://doi.org/10.5194/tc-12-1479-2018, 2018. a
Vignon, É., Alexander, S., DeMott, P., Sotiropoulou, G., Gerber, F., Hill,
T., Marchand, R., Nenes, A., and Berne, A.: Challenging and improving the
simulation of mid-level mixed-phase clouds over the high-latitude Southern
Ocean, J. Geophys. Res.-Atmos., 126, e2020JD033490,
https://doi.org/10.1029/2020JD033490, 2021.
a
Wang, C., Soden, B. J., Yang, W., and Vecchi, G. A.: Compensation Between Cloud
Feedback and Aerosol-Cloud Interaction in CMIP6 Models, Geophys. Res.
Lett., 48, e2020GL091024, https://doi.org/10.1029/2020GL091024, 2021. a
Wang, W., Zender, C. S., van As, D., and Miller, N. B.: Spatial distribution of
melt season cloud radiative effects over Greenland: Evaluating satellite
observations, reanalyses, and model simulations against in situ measurements,
J. Geophys. Res.-Atmos., 124, 57–71,
https://doi.org/10.1029/2018JD028919, 2019. a
Wille, J. D., Favier, V., Dufour, A., Gorodetskaya, I. V., Turner, J., Agosta,
C., and Codron, F.: West Antarctic surface melt triggered by atmospheric
rivers, Nat. Geosci., 12, 911–916, https://doi.org/10.1038/s41561-019-0460-1,
2019. a, b
Wyser, K., van Noije, T., Yang, S., von Hardenberg, J., O'Donnell, D., and Döscher, R.: On the increased climate sensitivity in the EC-Earth model from CMIP5 to CMIP6, Geosci. Model Dev., 13, 3465–3474, https://doi.org/10.5194/gmd-13-3465-2020, 2020. a
Zelinka, M. D., Myers, T. A., McCoy, D. T., Po-Chedley, S., Caldwell, P. M.,
Ceppi, P., Klein, S. A., and Taylor, K. E.: Causes of higher climate
sensitivity in CMIP6 models, Geophys. Res. Lett., 47,
e2019GL085782, https://doi.org/10.1029/2019GL085782, 2020. a, b
Zhang, T., Stamnes, K., and Bowling, S.: Impact of clouds on surface radiative
fluxes and snowmelt in the Arctic and subarctic, J. Climate, 9,
2110–2123, https://doi.org/10.1175/1520-0442(1996)009<2110:IOCOSR>2.0.CO;2, 1996. a
Zhu, J., Poulsen, C. J., and Otto-Bliesner, B. L.: High climate sensitivity in
CMIP6 model not supported by paleoclimate, Nat. Clim. Change, 10,
378–379, https://doi.org/10.1038/s41558-020-0764-6, 2020. a
Short summary
Model projections suggest large differences in future Antarctic surface melting even for similar greenhouse gas scenarios and warming rates. We show that clouds containing a larger amount of liquid water lead to stronger melt. As surface melt can trigger the collapse of the ice shelves (the safety band of the Antarctic Ice Sheet), clouds could be a major source of uncertainties in projections of sea level rise.
Model projections suggest large differences in future Antarctic surface melting even for similar...