Articles | Volume 15, issue 4
The Cryosphere, 15, 1975–2000, 2021
https://doi.org/10.5194/tc-15-1975-2021
The Cryosphere, 15, 1975–2000, 2021
https://doi.org/10.5194/tc-15-1975-2021

Research article 23 Apr 2021

Research article | 23 Apr 2021

The transferability of adjoint inversion products between different ice flow models

Jowan M. Barnes et al.

Related authors

Quantifying the potential future contribution to global mean sea level from the Filchner–Ronne basin, Antarctica
Emily A. Hill, Sebastian H. R. Rosier, G. Hilmar Gudmundsson, and Matthew Collins
The Cryosphere, 15, 4675–4702, https://doi.org/10.5194/tc-15-4675-2021,https://doi.org/10.5194/tc-15-4675-2021, 2021
Short summary
fenics_ice 1.0: a framework for quantifying initialization uncertainty for time-dependent ice sheet models
Conrad P. Koziol, Joe A. Todd, Daniel N. Goldberg, and James R. Maddison
Geosci. Model Dev., 14, 5843–5861, https://doi.org/10.5194/gmd-14-5843-2021,https://doi.org/10.5194/gmd-14-5843-2021, 2021
Short summary
Inverting ice surface elevation and velocity for bed topography and slipperiness beneath Thwaites Glacier
Helen Ockenden, Robert G. Bingham, Andrew Curtis, and Daniel Goldberg
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-287,https://doi.org/10.5194/tc-2021-287, 2021
Preprint under review for TC
Short summary
A comparison of the performance of depth-integrated ice-dynamics solvers
Alexander Robinson, Daniel Goldberg, and William H. Lipscomb
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-239,https://doi.org/10.5194/tc-2021-239, 2021
Preprint under review for TC
Short summary
A new vertically integrated, MOno-Layer Higher-Order ice flow model (MOLHO)
Thiago Dias dos Santos, Mathieu Morlighem, and Douglas Brinkerhoff
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-280,https://doi.org/10.5194/tc-2021-280, 2021
Preprint under review for TC
Short summary

Related subject area

Discipline: Ice sheets | Subject: Numerical Modelling
Marine ice sheet experiments with the Community Ice Sheet Model
Gunter R. Leguy, William H. Lipscomb, and Xylar S. Asay-Davis
The Cryosphere, 15, 3229–3253, https://doi.org/10.5194/tc-15-3229-2021,https://doi.org/10.5194/tc-15-3229-2021, 2021
Short summary
Inferring the basal sliding coefficient field for the Stokes ice sheet model under rheological uncertainty
Olalekan Babaniyi, Ruanui Nicholson, Umberto Villa, and Noémi Petra
The Cryosphere, 15, 1731–1750, https://doi.org/10.5194/tc-15-1731-2021,https://doi.org/10.5194/tc-15-1731-2021, 2021
Short summary
The tipping points and early warning indicators for Pine Island Glacier, West Antarctica
Sebastian H. R. Rosier, Ronja Reese, Jonathan F. Donges, Jan De Rydt, G. Hilmar Gudmundsson, and Ricarda Winkelmann
The Cryosphere, 15, 1501–1516, https://doi.org/10.5194/tc-15-1501-2021,https://doi.org/10.5194/tc-15-1501-2021, 2021
Short summary
Sensitivity of ice sheet surface velocity and elevation to variations in basal friction and topography in the full Stokes and shallow-shelf approximation frameworks using adjoint equations
Gong Cheng, Nina Kirchner, and Per Lötstedt
The Cryosphere, 15, 715–742, https://doi.org/10.5194/tc-15-715-2021,https://doi.org/10.5194/tc-15-715-2021, 2021
Short summary
Quantifying the effect of ocean bed properties on ice sheet geometry over 40 000 years with a full-Stokes model
Clemens Schannwell, Reinhard Drews, Todd A. Ehlers, Olaf Eisen, Christoph Mayer, Mika Malinen, Emma C. Smith, and Hannes Eisermann
The Cryosphere, 14, 3917–3934, https://doi.org/10.5194/tc-14-3917-2020,https://doi.org/10.5194/tc-14-3917-2020, 2020
Short summary

Cited articles

Alevropoulos-Borrill, A. V., Nias, I. J., Payne, A. J., Golledge, N. R., and Bingham, R. J.: Ocean-forced evolution of the Amundsen Sea catchment, West Antarctica, by 2100, The Cryosphere, 14, 1245–1258, https://doi.org/10.5194/tc-14-1245-2020, 2020. a
Arthern, R. J. and Gudmundsson, G. H.: Initialization of ice-sheet forecasts viewed as an inverse Robin problem, J. Glaciol., 56, 527–533, 2010. a
Asay-Davis, X. S., Cornford, S. L., Durand, G., Galton-Fenzi, B. K., Gladstone, R. M., Gudmundsson, G. H., Hattermann, T., Holland, D. M., Holland, D., Holland, P. R., Martin, D. F., Mathiot, P., Pattyn, F., and Seroussi, H.: Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP+), ISOMIP v. 2 (ISOMIP+) and MISOMIP v. 1 (MISOMIP1), Geosci. Model Dev., 9, 2471–2497, https://doi.org/10.5194/gmd-9-2471-2016, 2016. a, b
Barnes, J. M., Dias dos Santos, T., Goldberg, D., Gudmundsson, G. H., Morlighem, M., and De Rydt, J.: Model data for “The transferability of adjoint inversion products between different ice flow models”, Zenodo [Data set], https://doi.org/10.5281/zenodo.4701343, 2021. 
Bindschadler, R. A., Nowicki, S., Abe-Ouchi, A., et al.: Ice-sheet model sensitivities to environmental forcing and their use in projecting future sea level (the SeaRISE project), J. Glaciol., 59, 195–224, 2013. a, b, c
Download
Short summary
Some properties of ice flow models must be initialised using observed data before they can be used to produce reliable predictions of the future. Different models have different ways of doing this, and the process is generally seen as being specific to an individual model. We compare the methods used by three different models and show that they produce similar outputs. We also demonstrate that the outputs from one model can be used in other models without introducing large uncertainties.