Articles | Volume 12, issue 9
https://doi.org/10.5194/tc-12-2901-2018
https://doi.org/10.5194/tc-12-2901-2018
Research article
 | 
10 Sep 2018
Research article |  | 10 Sep 2018

Melting over the northeast Antarctic Peninsula (1999–2009): evaluation of a high-resolution regional climate model

Rajashree Tri Datta, Marco Tedesco, Cecile Agosta, Xavier Fettweis, Peter Kuipers Munneke, and Michiel R. van den Broeke

Related authors

Evaluating the impact of enhanced horizontal resolution over the Antarctic domain using a variable-resolution Earth system model
Rajashree Tri Datta, Adam Herrington, Jan T. M. Lenaerts, David P. Schneider, Luke Trusel, Ziqi Yin, and Devon Dunmire
The Cryosphere, 17, 3847–3866, https://doi.org/10.5194/tc-17-3847-2023,https://doi.org/10.5194/tc-17-3847-2023, 2023
Short summary
Antarctic surface climate and surface mass balance in the Community Earth System Model version 2 during the satellite era and into the future (1979–2100)
Devon Dunmire, Jan T. M. Lenaerts, Rajashree Tri Datta, and Tessa Gorte
The Cryosphere, 16, 4163–4184, https://doi.org/10.5194/tc-16-4163-2022,https://doi.org/10.5194/tc-16-4163-2022, 2022
Short summary
Supraglacial lake bathymetry automatically derived from ICESat-2 constraining lake depth estimates from multi-source satellite imagery
Rajashree Tri Datta and Bert Wouters
The Cryosphere, 15, 5115–5132, https://doi.org/10.5194/tc-15-5115-2021,https://doi.org/10.5194/tc-15-5115-2021, 2021
Short summary
Contrasting regional variability of buried meltwater extent over 2 years across the Greenland Ice Sheet
Devon Dunmire, Alison F. Banwell, Nander Wever, Jan T. M. Lenaerts, and Rajashree Tri Datta
The Cryosphere, 15, 2983–3005, https://doi.org/10.5194/tc-15-2983-2021,https://doi.org/10.5194/tc-15-2983-2021, 2021
Short summary
The 32-year record-high surface melt in 2019/2020 on the northern George VI Ice Shelf, Antarctic Peninsula
Alison F. Banwell, Rajashree Tri Datta, Rebecca L. Dell, Mahsa Moussavi, Ludovic Brucker, Ghislain Picard, Christopher A. Shuman, and Laura A. Stevens
The Cryosphere, 15, 909–925, https://doi.org/10.5194/tc-15-909-2021,https://doi.org/10.5194/tc-15-909-2021, 2021
Short summary

Related subject area

Discipline: Ice sheets | Subject: Atmospheric Interactions
Extending the Center for Western Weather and Water Extremes (CW3E) atmospheric river scale to the polar regions
Zhenhai Zhang, F. Martin Ralph, Xun Zou, Brian Kawzenuk, Minghua Zheng, Irina V. Gorodetskaya, Penny M. Rowe, and David H. Bromwich
The Cryosphere, 18, 5239–5258, https://doi.org/10.5194/tc-18-5239-2024,https://doi.org/10.5194/tc-18-5239-2024, 2024
Short summary
Understanding the drivers of near-surface winds in Adélie Land, East Antarctica
Cécile Davrinche, Anaïs Orsi, Cécile Agosta, Charles Amory, and Christoph Kittel
The Cryosphere, 18, 2239–2256, https://doi.org/10.5194/tc-18-2239-2024,https://doi.org/10.5194/tc-18-2239-2024, 2024
Short summary
Control of the temperature signal in Antarctic proxies by snowfall dynamics
Aymeric P. M. Servettaz, Cécile Agosta, Christoph Kittel, and Anaïs J. Orsi
The Cryosphere, 17, 5373–5389, https://doi.org/10.5194/tc-17-5373-2023,https://doi.org/10.5194/tc-17-5373-2023, 2023
Short summary
Atmospheric drivers of melt-related ice speed-up events on the Russell Glacier in southwest Greenland
Timo Schmid, Valentina Radić, Andrew Tedstone, James M. Lea, Stephen Brough, and Mauro Hermann
The Cryosphere, 17, 3933–3954, https://doi.org/10.5194/tc-17-3933-2023,https://doi.org/10.5194/tc-17-3933-2023, 2023
Short summary
Amundsen Sea Embayment accumulation variability measured with GNSS-IR
Andrew O. Hoffman, Michelle Maclennan, Jan Lenaerts, Kristine M. Larson, and Knut Chrsitianson
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-114,https://doi.org/10.5194/tc-2023-114, 2023
Revised manuscript accepted for TC
Short summary

Cited articles

Abdalati, W. and Steffen, K.: Passive Microwave-Derived Snow Melt Regions on the Greenland Ice Sheet, Geophys. Res. Lett., 22, 787–790, https://doi.org/10.1029/95GL00433, 1995. 
Agosta, C., Amory, C., Kittel, C., Orsi, A., Favier, V., Gallée, H., van den Broeke, M. R., Lenaerts, J. T. M., van Wessem, J. M., and Fettweis, X.: Estimation of the Antarctic surface mass balance using MAR (1979–2015) and identification of dominant processes, The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-76, in review, 2018. 
Ashcraft, I. S. and Long, D. G.: SeaWinds Views Greenland, in: Geoscience and Remote Sensing Symposium, 2000, Proceedings IGARSS 2000, IEEE 2000 International, 3, 1131–1133, 2000. 
Ashcraft, I. S. and Long, D. G.: Comparison of Methods for Melt Detection over Greenland Using Active and Passive Microwave Measurements, Int. J. Remote Sens., 27, 2469–2488, https://doi.org/10.1080/01431160500534465, 2006. 
Barrand, N. E., Vaughan, D. G., Steiner, N., Tedesco, M., Kuipers-Munneke, P., Van den Broeke, M. R., and Hosking, J. S.: Trends in Antarctic Peninsula Surface Melting Conditions from Observations and Regional Climate Modeling, J. Geophys. Res.-Earth, 118, 315–330, https://doi.org/10.1029/2012JF002559, 2013. 
Download
Short summary
Surface melting on the East Antarctic Peninsula (East AP) has been linked to ice shelf collapse, including the Larsen A (1995) and Larsen B (2002) ice shelves. Regional climate models (RCMs) are a valuable tool to understand how wind patterns and general warming can impact the stability of ice shelves through surface melt. Here, we evaluate one such RCM (Modèle Atmosphérique Régionale) over the East AP, including the remaining Larsen C ice shelf, by comparing it to satellite and ground data.