Articles | Volume 12, issue 6
The Cryosphere, 12, 1969–1985, 2018
The Cryosphere, 12, 1969–1985, 2018

Research article 12 Jun 2018

Research article | 12 Jun 2018

Antarctic sub-shelf melt rates via PICO

Ronja Reese et al.

Related authors

Impact of the melt–albedo feedback on the future evolution of the Greenland Ice Sheet with PISM-dEBM-simple
Maria Zeitz, Ronja Reese, Johanna Beckmann, Uta Krebs-Kanzow, and Ricarda Winkelmann
The Cryosphere, 15, 5739–5764,,, 2021
Short summary
Shear-margin melting causes stronger transient ice discharge than ice-stream melting according to idealized simulations
Johannes Feldmann, Ronja Reese, Ricarda Winkelmann, and Anders Levermann
The Cryosphere Discuss.,,, 2021
Preprint under review for TC
Short summary
Coupling framework (1.0) for the PISM (1.1.4) ice sheet model and the MOM5 (5.1.0) ocean model via the PICO ice shelf cavity model in an Antarctic domain
Moritz Kreuzer, Ronja Reese, Willem Nicholas Huiskamp, Stefan Petri, Torsten Albrecht, Georg Feulner, and Ricarda Winkelmann
Geosci. Model Dev., 14, 3697–3714,,, 2021
Short summary
The tipping points and early warning indicators for Pine Island Glacier, West Antarctica
Sebastian H. R. Rosier, Ronja Reese, Jonathan F. Donges, Jan De Rydt, G. Hilmar Gudmundsson, and Ricarda Winkelmann
The Cryosphere, 15, 1501–1516,,, 2021
Short summary
Drivers of Pine Island Glacier speed-up between 1996 and 2016
Jan De Rydt, Ronja Reese, Fernando S. Paolo, and G. Hilmar Gudmundsson
The Cryosphere, 15, 113–132,,, 2021
Short summary

Related subject area

Ocean Interactions
Layered seawater intrusion and melt under grounded ice
Alexander A. Robel, Earle Wilson, and Helene Seroussi
The Cryosphere Discuss.,,, 2021
Revised manuscript accepted for TC
Short summary
The Antarctic Coastal Current in the Bellingshausen Sea
Ryan Schubert, Andrew F. Thompson, Kevin Speer, Lena Schulze Chretien, and Yana Bebieva
The Cryosphere, 15, 4179–4199,,, 2021
Short summary
Modeling intensive ocean–cryosphere interactions in Lützow-Holm Bay, East Antarctica
Kazuya Kusahara, Daisuke Hirano, Masakazu Fujii, Alexander D. Fraser, and Takeshi Tamura
The Cryosphere, 15, 1697–1717,,, 2021
Short summary
Wave–sea-ice interactions in a brittle rheological framework
Guillaume Boutin, Timothy Williams, Pierre Rampal, Einar Olason, and Camille Lique
The Cryosphere, 15, 431–457,,, 2021
Short summary
Experimental evidence for a universal threshold characterizing wave-induced sea ice break-up
Joey J. Voermans, Jean Rabault, Kirill Filchuk, Ivan Ryzhov, Petra Heil, Aleksey Marchenko, Clarence O. Collins III, Mohammed Dabboor, Graig Sutherland, and Alexander V. Babanin
The Cryosphere, 14, 4265–4278,,, 2020
Short summary

Cited articles

Asay-Davis, X. S., Cornford, S. L., Durand, G., Galton-Fenzi, B. K., Gladstone, R. M., Gudmundsson, G. H., Hattermann, T., Holland, D. M., Holland, D., Holland, P. R., Martin, D. F., Mathiot, P., Pattyn, F., and Seroussi, H.: Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP +), ISOMIP v. 2 (ISOMIP +) and MISOMIP v. 1 (MISOMIP1), Geosci. Model Dev., 9, 2471–2497,, 2016.  a
Beckmann, A. and Goosse, H.: A parameterization of ice shelf-ocean interaction for climate models, Ocean Model., 5, 157–170,, 2003. a
Beckmann, J., Perrette, M., and Ganopolski, A.: Simple models for the simulation of submarine melt for a Greenland glacial system model, The Cryosphere, 12, 301–323,, 2018. a
Bueler, E. and Brown, J.: Shallow shelf approximation as a “sliding law” in a thermomechanically coupled ice sheet model, J. Geophys. Res., 114, F03008,, 2009. a, b
Carroll, D., Sutherland, D. A., Shroyer, E. L., Nash, J. D., Catania, G. A., and Stearns, L. A.: Modeling Turbulent Subglacial Meltwater Plumes: Implications for Fjord-Scale Buoyancy-Driven Circulation, J. Phys. Oceanogr., 45, 2169–2185,, 2015. a
Short summary
Floating ice shelves surround most of Antarctica and ocean-driven melting at their bases is a major reason for its current sea-level contribution. We developed a simple model based on a box model approach that captures the vertical ocean circulation generally present in ice-shelf cavities and allows simulating melt rates in accordance with physical processes beneath the ice. We test the model for all Antarctic ice shelves and find that melt rates and melt patterns agree well with observations.