Articles | Volume 10, issue 5
The Cryosphere, 10, 1933–1946, 2016
https://doi.org/10.5194/tc-10-1933-2016

Special issue: Mass balance of the Greenland Ice Sheet

The Cryosphere, 10, 1933–1946, 2016
https://doi.org/10.5194/tc-10-1933-2016

Research article 06 Sep 2016

Research article | 06 Sep 2016

On the recent contribution of the Greenland ice sheet to sea level change

Michiel R. van den Broeke et al.

Related authors

Mapping the aerodynamic roughness of the Greenland Ice Sheet surface using ICESat-2: evaluation over the K-transect
Maurice van Tiggelen, Paul C. J. P. Smeets, Carleen H. Reijmer, Bert Wouters, Jakob F. Steiner, Emile J. Nieuwstraten, Walter W. Immerzeel, and Michiel R. van den Broeke
The Cryosphere, 15, 2601–2621, https://doi.org/10.5194/tc-15-2601-2021,https://doi.org/10.5194/tc-15-2601-2021, 2021
Short summary
Greenland ice sheet mass balance from 1840 through next week
Kenneth D. Mankoff, Xavier Fettweis, Peter L. Langen, Martin Stendel, Kristian K. Kjledsen, Nanna B. Karlsson, Brice Noël, Michiel R. van den Broeke, Wiliam Colgan, Sebastian B. Simonsen, Jason E. Box, Anne Solgaard, Andreas P. Ahlstrøm, Signe Bech Andersen, and Robert S. Fausto
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-131,https://doi.org/10.5194/essd-2021-131, 2021
Preprint under review for ESSD
Short summary
Improving Surface Melt Estimation over Antarctica Using Deep Learning: A Proof-of-Concept over the Larsen Ice Shelf
Zhongyang Hu, Peter Kuipers Munneke, Stef Lhermitte, Maaike Izeboud, and Michiel van den Broeke
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-102,https://doi.org/10.5194/tc-2021-102, 2021
Preprint under review for TC
Short summary
Impact of updated radiative transfer scheme in snow and ice in RACMO2.3p3 on the surface mass and energy budget of the Greenland ice sheet
Christiaan T. van Dalum, Willem Jan van de Berg, and Michiel R. van den Broeke
The Cryosphere, 15, 1823–1844, https://doi.org/10.5194/tc-15-1823-2021,https://doi.org/10.5194/tc-15-1823-2021, 2021
Short summary
An exploratory modelling study of perennial firn aquifers in the Antarctic Peninsula for the period 1979–2016
J. Melchior van Wessem, Christian R. Steger, Nander Wever, and Michiel R. van den Broeke
The Cryosphere, 15, 695–714, https://doi.org/10.5194/tc-15-695-2021,https://doi.org/10.5194/tc-15-695-2021, 2021
Short summary

Related subject area

Greenland
Indication of high basal melting at the EastGRIP drill site on the Northeast Greenland Ice Stream
Ole Zeising and Angelika Humbert
The Cryosphere, 15, 3119–3128, https://doi.org/10.5194/tc-15-3119-2021,https://doi.org/10.5194/tc-15-3119-2021, 2021
Short summary
Brief communication: Reduction in the future Greenland ice sheet surface melt with the help of solar geoengineering
Xavier Fettweis, Stefan Hofer, Roland Séférian, Charles Amory, Alison Delhasse, Sébastien Doutreloup, Christoph Kittel, Charlotte Lang, Joris Van Bever, Florent Veillon, and Peter Irvine
The Cryosphere, 15, 3013–3019, https://doi.org/10.5194/tc-15-3013-2021,https://doi.org/10.5194/tc-15-3013-2021, 2021
Short summary
Contrasting regional variability of buried meltwater extent over 2 years across the Greenland Ice Sheet
Devon Dunmire, Alison F. Banwell, Nander Wever, Jan T. M. Lenaerts, and Rajashree Tri Datta
The Cryosphere, 15, 2983–3005, https://doi.org/10.5194/tc-15-2983-2021,https://doi.org/10.5194/tc-15-2983-2021, 2021
Short summary
Sensitivity of the Greenland surface mass and energy balance to uncertainties in key model parameters
Tobias Zolles and Andreas Born
The Cryosphere, 15, 2917–2938, https://doi.org/10.5194/tc-15-2917-2021,https://doi.org/10.5194/tc-15-2917-2021, 2021
Short summary
Surface melting over the Greenland ice sheet derived from enhanced resolution passive microwave brightness temperatures (1979–2019)
Paolo Colosio, Marco Tedesco, Roberto Ranzi, and Xavier Fettweis
The Cryosphere, 15, 2623–2646, https://doi.org/10.5194/tc-15-2623-2021,https://doi.org/10.5194/tc-15-2623-2021, 2021
Short summary

Cited articles

A, G., Wahr, J., and Zhong, S.: Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: an application to Glacial Isostatic Adjustment in Antarctica and Canada, Geophys. J. Int., 192, 557–572, 2013.
Bartholomew, I. D., Nienow, P., Sole, A., Mair, D., Cowton, T., King, M. A., and Palmer, S.: Seasonal variations in Greenland ice sheet motion: Inland extent and behaviour at higher elevations, Earth Planet. Sc. Lett., 307, 271–278, 2011.
Bennartz, R., Shupe, M. D., Turner, D. D., Walden, V. P., Steffen, K., Cox, C. J., Kulie, M. S., Miller, N. B., and Pettersen, C.: July 2012 Greenland melt extent enhanced by low-level liquid clouds, Nature, 496, 83–86, 2013.
Bøggild, C. E., Brandt, R. E., Brown, K. J., and Warren, S. G.: The ablation zone in northeast Greenland: ice types, albedos and impurities, J. Glaciol., 56, 101–113, 2010.
Download
Short summary
We present recent (1958–2015) mass balance time series for the Greenland ice sheet. We show that recent mass loss is caused by a combination of increased surface meltwater runoff and solid ice discharge. Most meltwater above 2000 m a.s.l. refreezes in the cold firn and does not leave the ice sheet, but this goes at the expense of firn heating and densifying. In spite of a temporary rebound in 2013, it appears that the ice sheet remains in a state of persistent mass loss.