Articles | Volume 10, issue 5
https://doi.org/10.5194/tc-10-1933-2016
https://doi.org/10.5194/tc-10-1933-2016
Research article
 | 
06 Sep 2016
Research article |  | 06 Sep 2016

On the recent contribution of the Greenland ice sheet to sea level change

Michiel R. van den Broeke, Ellyn M. Enderlin, Ian M. Howat, Peter Kuipers Munneke, Brice P. Y. Noël, Willem Jan van de Berg, Erik van Meijgaard, and Bert Wouters

Related authors

IMAU Antarctic automatic weather station data, including surface radiation balance (1995–2022)
Maurice van Tiggelen, Paul C. J. P. Smeets, Carleen H. Reijmer, Peter Kuipers Munneke, and Michiel R. van den Broeke
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-88,https://doi.org/10.5194/essd-2025-88, 2025
Preprint under review for ESSD
Short summary
On the accuracy of the measured and modelled surface latent and sensible heat flux in the interior of the Greenland Ice Sheet
Ida Haven, Hans Christian Steen-Larsen, Laura J. Dietrich, Sonja Wahl, Jason E. Box, Michiel R. Van den Broeke, Alun Hubbard, Stephan T. Kral, Joachim Reuder, and Maurice Van Tiggelen
EGUsphere, https://doi.org/10.5194/egusphere-2025-711,https://doi.org/10.5194/egusphere-2025-711, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Seasonal and interannual variability of freshwater sources for Greenland's fjords
Anneke Louise Vries, Willem Jan van de Berg, Brice Noël, Lorenz Meire, and Michiel R. van den Broeke
EGUsphere, https://doi.org/10.5194/egusphere-2024-3735,https://doi.org/10.5194/egusphere-2024-3735, 2025
Short summary
The surface mass balance and near-surface climate of the Antarctic ice sheet in RACMO2.4p1
Christiaan T. van Dalum, Willem Jan van de Berg, Michiel R. van den Broeke, and Maurice van Tiggelen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3728,https://doi.org/10.5194/egusphere-2024-3728, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Smoothed monthly Greenland ice sheet elevation changes during 2003–2023
Shfaqat A. Khan, Helene Seroussi, Mathieu Morlighem, William Colgan, Veit Helm, Gong Cheng, Danjal Berg, Valentina R. Barletta, Nicolaj K. Larsen, William Kochtitzky, Michiel van den Broeke, Kurt H. Kjær, Andy Aschwanden, Brice Noël, Jason E. Box, Joseph A. MacGregor, Robert S. Fausto, Kenneth D. Mankoff, Ian M. Howat, Kuba Oniszk, Dominik Fahrner, Anja Løkkegaard, Eigil Y. H. Lippert, and Javed Hassan
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-348,https://doi.org/10.5194/essd-2024-348, 2024
Revised manuscript accepted for ESSD
Short summary

Related subject area

Greenland
Historically consistent mass loss projections of the Greenland ice sheet
Charlotte Rahlves, Heiko Goelzer, Andreas Born, and Petra M. Langebroek
The Cryosphere, 19, 1205–1220, https://doi.org/10.5194/tc-19-1205-2025,https://doi.org/10.5194/tc-19-1205-2025, 2025
Short summary
A comparison of supraglacial meltwater features throughout contrasting melt seasons: southwest Greenland
Emily Glen, Amber Leeson, Alison F. Banwell, Jennifer Maddalena, Diarmuid Corr, Olivia Atkins, Brice Noël, and Malcolm McMillan
The Cryosphere, 19, 1047–1066, https://doi.org/10.5194/tc-19-1047-2025,https://doi.org/10.5194/tc-19-1047-2025, 2025
Short summary
Ice speed of a Greenlandic tidewater glacier modulated by tide, melt, and rain
Shin Sugiyama, Shun Tsutaki, Daiki Sakakibara, Izumi Asaji, Ken Kondo, Yefan Wang, Evgeny Podolskiy, Guillaume Jouvet, and Martin Funk
The Cryosphere, 19, 525–540, https://doi.org/10.5194/tc-19-525-2025,https://doi.org/10.5194/tc-19-525-2025, 2025
Short summary
A topographically controlled tipping point for complete Greenland ice sheet melt
Michele Petrini, Meike D. W. Scherrenberg, Laura Muntjewerf, Miren Vizcaino, Raymond Sellevold, Gunter R. Leguy, William H. Lipscomb, and Heiko Goelzer
The Cryosphere, 19, 63–81, https://doi.org/10.5194/tc-19-63-2025,https://doi.org/10.5194/tc-19-63-2025, 2025
Short summary
Projections of precipitation and temperatures in Greenland and the impact of spatially uniform anomalies on the evolution of the ice sheet
Nils Bochow, Anna Poltronieri, and Niklas Boers
The Cryosphere, 18, 5825–5863, https://doi.org/10.5194/tc-18-5825-2024,https://doi.org/10.5194/tc-18-5825-2024, 2024
Short summary

Cited articles

A, G., Wahr, J., and Zhong, S.: Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: an application to Glacial Isostatic Adjustment in Antarctica and Canada, Geophys. J. Int., 192, 557–572, 2013.
Bartholomew, I. D., Nienow, P., Sole, A., Mair, D., Cowton, T., King, M. A., and Palmer, S.: Seasonal variations in Greenland ice sheet motion: Inland extent and behaviour at higher elevations, Earth Planet. Sc. Lett., 307, 271–278, 2011.
Bennartz, R., Shupe, M. D., Turner, D. D., Walden, V. P., Steffen, K., Cox, C. J., Kulie, M. S., Miller, N. B., and Pettersen, C.: July 2012 Greenland melt extent enhanced by low-level liquid clouds, Nature, 496, 83–86, 2013.
Bøggild, C. E., Brandt, R. E., Brown, K. J., and Warren, S. G.: The ablation zone in northeast Greenland: ice types, albedos and impurities, J. Glaciol., 56, 101–113, 2010.
Download
Short summary
We present recent (1958–2015) mass balance time series for the Greenland ice sheet. We show that recent mass loss is caused by a combination of increased surface meltwater runoff and solid ice discharge. Most meltwater above 2000 m a.s.l. refreezes in the cold firn and does not leave the ice sheet, but this goes at the expense of firn heating and densifying. In spite of a temporary rebound in 2013, it appears that the ice sheet remains in a state of persistent mass loss.
Share