Articles | Volume 16, issue 2
https://doi.org/10.5194/tc-16-689-2022
https://doi.org/10.5194/tc-16-689-2022
Research article
 | 
25 Feb 2022
Research article |  | 25 Feb 2022

A comparison of the stability and performance of depth-integrated ice-dynamics solvers

Alexander Robinson, Daniel Goldberg, and William H. Lipscomb

Related authors

Physics-constrained generative machine learning-based high-resolution downscaling of Greenland's surface mass balance and surface temperature
Nils Bochow, Philipp Hess, and Alexander Robinson
EGUsphere, https://doi.org/https://doi.org/10.48550/arXiv.2507.22485,https://doi.org/https://doi.org/10.48550/arXiv.2507.22485, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Hysteresis of the Greenland ice sheet from the Last Glacial Maximum to the future
Lucía Gutiérrez-González, Alexander Robinson, Jorge Alvarez-Solas, Ilaria Tabone, Jan Swierczek-Jereczek, Daniel Moreno-Parada, and Marisa Montoya
EGUsphere, https://doi.org/10.5194/egusphere-2025-2616,https://doi.org/10.5194/egusphere-2025-2616, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Description and validation of the ice-sheet model Nix v1.0
Daniel Moreno-Parada, Alexander Robinson, Marisa Montoya, and Jorge Alvarez-Solas
Geosci. Model Dev., 18, 3895–3919, https://doi.org/10.5194/gmd-18-3895-2025,https://doi.org/10.5194/gmd-18-3895-2025, 2025
Short summary
A simple physical model for glacial cycles
Sergio Pérez-Montero, Jorge Alvarez-Solas, Jan Swierczek-Jereczek, Daniel Moreno-Parada, Alexander Robinson, and Marisa Montoya
Earth Syst. Dynam., 16, 915–937, https://doi.org/10.5194/esd-16-915-2025,https://doi.org/10.5194/esd-16-915-2025, 2025
Short summary
The Tipping Points Modelling Intercomparison Project (TIPMIP): Assessing tipping point risks in the Earth system
Ricarda Winkelmann, Donovan P. Dennis, Jonathan F. Donges, Sina Loriani, Ann Kristin Klose, Jesse F. Abrams, Jorge Alvarez-Solas, Torsten Albrecht, David Armstrong McKay, Sebastian Bathiany, Javier Blasco Navarro, Victor Brovkin, Eleanor Burke, Gokhan Danabasoglu, Reik V. Donner, Markus Drüke, Goran Georgievski, Heiko Goelzer, Anna B. Harper, Gabriele Hegerl, Marina Hirota, Aixue Hu, Laura C. Jackson, Colin Jones, Hyungjun Kim, Torben Koenigk, Peter Lawrence, Timothy M. Lenton, Hannah Liddy, José Licón-Saláiz, Maxence Menthon, Marisa Montoya, Jan Nitzbon, Sophie Nowicki, Bette Otto-Bliesner, Francesco Pausata, Stefan Rahmstorf, Karoline Ramin, Alexander Robinson, Johan Rockström, Anastasia Romanou, Boris Sakschewski, Christina Schädel, Steven Sherwood, Robin S. Smith, Norman J. Steinert, Didier Swingedouw, Matteo Willeit, Wilbert Weijer, Richard Wood, Klaus Wyser, and Shuting Yang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1899,https://doi.org/10.5194/egusphere-2025-1899, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary

Cited articles

Arthern, R. J. and Williams, C. R.: The sensitivity of West Antarctica to the submarine melting feedback, Geophys. Res. Lett., 44, 2352–2359, https://doi.org/10.1002/2017GL072514, 2017. a
Arthern, R. J., Hindmarsh, R. C. A., and Williams, C. R.: Flow speed within the Antarctic ice sheet and its controls inferred from satellite observations, J. Geophys. Res.-Earth, 120, 1171–1188, https://doi.org/10.1002/2014JF003239, 2015. a, b
Blatter, H.: Velocity and stress fields in grounded glaciers – a simple algorithm for including deviatoric stress gradients, J. Glaciol., 41, 333–344, 1995. a
Bueler, E.: Lectures at Karthaus: Numerical modelling of ice sheets and ice shelves, https://glaciers.gi.alaska.edu/sites/default/files/Notes_icesheetmod_Bueler2014.pdf (last access: 23 February 2022), 2009. a
Bueler, E. and Brown, J.: Shallow shelf approximation as a “sliding law” in a thermodynamically coupled ice sheet model, J. Geophys. Res., 114, F03008, https://doi.org/10.1029/2008JF001179, 2009. a
Download
Short summary
Here we investigate the numerical stability of several commonly used methods in order to determine which of them are capable of resolving the complex physics of the ice flow and are also computationally efficient. We find that the so-called DIVA solver outperforms the others. Its representation of the physics is consistent with more complex methods, while it remains computationally efficient at high resolution.
Share