Articles | Volume 14, issue 11
The Cryosphere, 14, 3917–3934, 2020
https://doi.org/10.5194/tc-14-3917-2020
The Cryosphere, 14, 3917–3934, 2020
https://doi.org/10.5194/tc-14-3917-2020
Research article
11 Nov 2020
Research article | 11 Nov 2020

Quantifying the effect of ocean bed properties on ice sheet geometry over 40 000 years with a full-Stokes model

Clemens Schannwell et al.

Related authors

Sensitivity of Heinrich-type ice-sheet surge characteristics to boundary forcing perturbations
Clemens Schannwell, Uwe Mikolajewicz, Florian Ziemen, and Marie-Luise Kapsch
EGUsphere, https://doi.org/10.5194/egusphere-2022-332,https://doi.org/10.5194/egusphere-2022-332, 2022
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Hysteretic evolution of ice rises and ice rumples in response to variations in sea level
A. Clara J. Henry, Reinhard Drews, Clemens Schannwell, and Vjeran Višnjević
EGUsphere, https://doi.org/10.5194/egusphere-2022-128,https://doi.org/10.5194/egusphere-2022-128, 2022
Short summary
Predicting the steady-state isochronal stratigraphy of ice shelves using observations and modeling
Vjeran Višnjević, Reinhard Drews, Clemens Schannwell, Inka Koch, Steven Franke, Daniela Jansen, and Olaf Eisen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-23,https://doi.org/10.5194/tc-2022-23, 2022
Preprint under review for TC
Short summary
Analysis of the surface mass balance for deglacial climate simulations
Marie-Luise Kapsch, Uwe Mikolajewicz, Florian A. Ziemen, Christian B. Rodehacke, and Clemens Schannwell
The Cryosphere, 15, 1131–1156, https://doi.org/10.5194/tc-15-1131-2021,https://doi.org/10.5194/tc-15-1131-2021, 2021
Kinematic response of ice-rise divides to changes in ocean and atmosphere forcing
Clemens Schannwell, Reinhard Drews, Todd A. Ehlers, Olaf Eisen, Christoph Mayer, and Fabien Gillet-Chaulet
The Cryosphere, 13, 2673–2691, https://doi.org/10.5194/tc-13-2673-2019,https://doi.org/10.5194/tc-13-2673-2019, 2019
Short summary

Related subject area

Discipline: Ice sheets | Subject: Numerical Modelling
Impact of runoff temporal distribution on ice dynamics
Basile de Fleurian, Richard Davy, and Petra M. Langebroek
The Cryosphere, 16, 2265–2283, https://doi.org/10.5194/tc-16-2265-2022,https://doi.org/10.5194/tc-16-2265-2022, 2022
Short summary
Can changes in deformation regimes be inferred from crystallographic preferred orientations in polar ice?
Maria-Gema Llorens, Albert Griera, Paul D. Bons, Ilka Weikusat, David J. Prior, Enrique Gomez-Rivas, Tamara de Riese, Ivone Jimenez-Munt, Daniel García-Castellanos, and Ricardo A. Lebensohn
The Cryosphere, 16, 2009–2024, https://doi.org/10.5194/tc-16-2009-2022,https://doi.org/10.5194/tc-16-2009-2022, 2022
Short summary
Stabilizing effect of mélange buttressing on the marine ice-cliff instability of the West Antarctic Ice Sheet
Tanja Schlemm, Johannes Feldmann, Ricarda Winkelmann, and Anders Levermann
The Cryosphere, 16, 1979–1996, https://doi.org/10.5194/tc-16-1979-2022,https://doi.org/10.5194/tc-16-1979-2022, 2022
Short summary
Effective coefficient of diffusion and permeability of firn at Dome C and Lock In, Antarctica, and of various snow types – estimates over the 100–850 kg m−3 density range
Neige Calonne, Alexis Burr, Armelle Philip, Frédéric Flin, and Christian Geindreau
The Cryosphere, 16, 967–980, https://doi.org/10.5194/tc-16-967-2022,https://doi.org/10.5194/tc-16-967-2022, 2022
Short summary
The instantaneous impact of calving and thinning on the Larsen C Ice Shelf
Tom Mitcham, G. Hilmar Gudmundsson, and Jonathan L. Bamber
The Cryosphere, 16, 883–901, https://doi.org/10.5194/tc-16-883-2022,https://doi.org/10.5194/tc-16-883-2022, 2022
Short summary

Cited articles

Ahlkrona, J., Lötstedt, P., Kirchner, N., and Zwinger, T.: Dynamically coupling the non-linear Stokes equations with the shallow ice approximation in glaciology: Description and first applications of the ISCAL method, J. Comput. Phys., 308, 1–19, https://doi.org/10.1016/j.jcp.2015.12.025, 2016. a
Albrecht, T., Winkelmann, R., and Levermann, A.: Glacial-cycle simulations of the Antarctic Ice Sheet with the Parallel Ice Sheet Model (PISM) – Part 2: Parameter ensemble analysis, The Cryosphere, 14, 633–656, https://doi.org/10.5194/tc-14-633-2020, 2020. a, b, c, d, e, f
Alley, R. B., Cuffey, K. M., and Zoet, L. K.: Glacial erosion: status and outlook, Ann. Glaciol., 60, 1–13, https://doi.org/10.1017/aog.2019.38, 2019. a, b
Barletta, V. R., Bevis, M., Smith, B. E., Wilson, T., Brown, A., Bordoni, A., Willis, M., Khan, S. A., Rovira-Navarro, M., Dalziel, I., Smalley, R., Kendrick, E., Konfal, S., Caccamise, D. J., Aster, R. C., Nyblade, A., and Wiens, D. A.: Observed rapid bedrock uplift in Amundsen Sea Embayment promotes ice-sheet stability, Science, 360, 1335–1339, https://doi.org/10.1126/science.aao1447, 2018. a
Beckmann, A. and Goosse, H.: A parameterization of ice shelf-ocean interaction for climate models, Ocean Model., 5, 157–170, 2003. a, b
Download
Short summary
To reduce uncertainties associated with sea level rise projections, an accurate representation of ice flow is paramount. Most ice sheet models rely on simplified versions of the underlying ice flow equations. Due to the high computational costs, ice sheet models based on the complete ice flow equations have been restricted to < 1000 years. Here, we present a new model setup that extends the applicability of such models by an order of magnitude, permitting simulations of 40 000 years.