Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 4.713
IF4.713
IF 5-year value: 4.927
IF 5-year
4.927
CiteScore value: 8.0
CiteScore
8.0
SNIP value: 1.425
SNIP1.425
IPP value: 4.65
IPP4.65
SJR value: 2.353
SJR2.353
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 53
h5-index53
Download
Short summary
To reduce uncertainties associated with sea level rise projections, an accurate representation of ice flow is paramount. Most ice sheet models rely on simplified versions of the underlying ice flow equations. Due to the high computational costs, ice sheet models based on the complete ice flow equations have been restricted to < 1000 years. Here, we present a new model setup that extends the applicability of such models by an order of magnitude, permitting simulations of 40 000 years.
TC | Articles | Volume 14, issue 11
The Cryosphere, 14, 3917–3934, 2020
https://doi.org/10.5194/tc-14-3917-2020
The Cryosphere, 14, 3917–3934, 2020
https://doi.org/10.5194/tc-14-3917-2020

Research article 11 Nov 2020

Research article | 11 Nov 2020

Quantifying the effect of ocean bed properties on ice sheet geometry over 40 000 years with a full-Stokes model

Clemens Schannwell et al.

Related authors

Analysis of the Surface Mass Balance for Deglacial Climate Simulations
Marie-Luise Kapsch, Uwe Mikolajewicz, Florian Andreas Ziemen, Christian B. Rodehacke, and Clemens Schannwell
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-173,https://doi.org/10.5194/tc-2020-173, 2020
Preprint under review for TC
Kinematic response of ice-rise divides to changes in ocean and atmosphere forcing
Clemens Schannwell, Reinhard Drews, Todd A. Ehlers, Olaf Eisen, Christoph Mayer, and Fabien Gillet-Chaulet
The Cryosphere, 13, 2673–2691, https://doi.org/10.5194/tc-13-2673-2019,https://doi.org/10.5194/tc-13-2673-2019, 2019
Short summary
Dynamic response of Antarctic Peninsula Ice Sheet to potential collapse of Larsen C and George VI ice shelves
Clemens Schannwell, Stephen Cornford, David Pollard, and Nicholas E. Barrand
The Cryosphere, 12, 2307–2326, https://doi.org/10.5194/tc-12-2307-2018,https://doi.org/10.5194/tc-12-2307-2018, 2018
Short summary

Related subject area

Discipline: Ice sheets | Subject: Numerical Modelling
Bayesian calibration of firn densification models
Vincent Verjans, Amber A. Leeson, Christopher Nemeth, C. Max Stevens, Peter Kuipers Munneke, Brice Noël, and Jan Melchior van Wessem
The Cryosphere, 14, 3017–3032, https://doi.org/10.5194/tc-14-3017-2020,https://doi.org/10.5194/tc-14-3017-2020, 2020
Short summary
A kinematic formalism for tracking ice–ocean mass exchange on the Earth's surface and estimating sea-level change
Surendra Adhikari, Erik R. Ivins, Eric Larour, Lambert Caron, and Helene Seroussi
The Cryosphere, 14, 2819–2833, https://doi.org/10.5194/tc-14-2819-2020,https://doi.org/10.5194/tc-14-2819-2020, 2020
Short summary
Results of the third Marine Ice Sheet Model Intercomparison Project (MISMIP+)
Stephen L. Cornford, Helene Seroussi, Xylar S. Asay-Davis, G. Hilmar Gudmundsson, Rob Arthern, Chris Borstad, Julia Christmann, Thiago Dias dos Santos, Johannes Feldmann, Daniel Goldberg, Matthew J. Hoffman, Angelika Humbert, Thomas Kleiner, Gunter Leguy, William H. Lipscomb, Nacho Merino, Gaël Durand, Mathieu Morlighem, David Pollard, Martin Rückamp, C. Rosie Williams, and Hongju Yu
The Cryosphere, 14, 2283–2301, https://doi.org/10.5194/tc-14-2283-2020,https://doi.org/10.5194/tc-14-2283-2020, 2020
Short summary
Sensitivity of ice sheet surface velocity and elevation to variations in basal friction and topography in the Full Stokes and Shallow Shelf Approximation frameworks
Gong Cheng, Nina Kirchner, and Per Lötstedt
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-108,https://doi.org/10.5194/tc-2020-108, 2020
Revised manuscript accepted for TC
Short summary
Ocean-forced evolution of the Amundsen Sea catchment, West Antarctica, by 2100
Alanna V. Alevropoulos-Borrill, Isabel J. Nias, Antony J. Payne, Nicholas R. Golledge, and Rory J. Bingham
The Cryosphere, 14, 1245–1258, https://doi.org/10.5194/tc-14-1245-2020,https://doi.org/10.5194/tc-14-1245-2020, 2020

Cited articles

Ahlkrona, J., Lötstedt, P., Kirchner, N., and Zwinger, T.: Dynamically coupling the non-linear Stokes equations with the shallow ice approximation in glaciology: Description and first applications of the ISCAL method, J. Comput. Phys., 308, 1–19, https://doi.org/10.1016/j.jcp.2015.12.025, 2016. a
Albrecht, T., Winkelmann, R., and Levermann, A.: Glacial-cycle simulations of the Antarctic Ice Sheet with the Parallel Ice Sheet Model (PISM) – Part 2: Parameter ensemble analysis, The Cryosphere, 14, 633–656, https://doi.org/10.5194/tc-14-633-2020, 2020. a, b, c, d, e, f
Alley, R. B., Cuffey, K. M., and Zoet, L. K.: Glacial erosion: status and outlook, Ann. Glaciol., 60, 1–13, https://doi.org/10.1017/aog.2019.38, 2019. a, b
Barletta, V. R., Bevis, M., Smith, B. E., Wilson, T., Brown, A., Bordoni, A., Willis, M., Khan, S. A., Rovira-Navarro, M., Dalziel, I., Smalley, R., Kendrick, E., Konfal, S., Caccamise, D. J., Aster, R. C., Nyblade, A., and Wiens, D. A.: Observed rapid bedrock uplift in Amundsen Sea Embayment promotes ice-sheet stability, Science, 360, 1335–1339, https://doi.org/10.1126/science.aao1447, 2018. a
Beckmann, A. and Goosse, H.: A parameterization of ice shelf-ocean interaction for climate models, Ocean Model., 5, 157–170, 2003. a, b
Publications Copernicus
Download
Short summary
To reduce uncertainties associated with sea level rise projections, an accurate representation of ice flow is paramount. Most ice sheet models rely on simplified versions of the underlying ice flow equations. Due to the high computational costs, ice sheet models based on the complete ice flow equations have been restricted to < 1000 years. Here, we present a new model setup that extends the applicability of such models by an order of magnitude, permitting simulations of 40 000 years.
Citation