Articles | Volume 13, issue 12
The Cryosphere, 13, 3383–3403, 2019
https://doi.org/10.5194/tc-13-3383-2019
The Cryosphere, 13, 3383–3403, 2019
https://doi.org/10.5194/tc-13-3383-2019

Research article 17 Dec 2019

Research article | 17 Dec 2019

Multi-tracer study of gas trapping in an East Antarctic ice core

Kévin Fourteau et al.

Related authors

Impact of water vapor diffusion and latent heat on the effective thermal conductivity of snow
Kévin Fourteau, Florent Domine, and Pascal Hagenmuller
The Cryosphere, 15, 2739–2755, https://doi.org/10.5194/tc-15-2739-2021,https://doi.org/10.5194/tc-15-2739-2021, 2021
Short summary
Northern Hemisphere atmospheric history of carbon monoxide since preindustrial times reconstructed from multiple Greenland ice cores
Xavier Faïn, Rachael H. Rhodes, Place Philip, Vasilii V. Petrenko, Kévin Fourteau, Nathan Chellman, Edward Crosier, Joseph R. McConnell, Edward J. Brook, Thomas Blunier, Michel Legrand, and Jérôme Chappellaz
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-28,https://doi.org/10.5194/cp-2021-28, 2021
Revised manuscript under review for CP
Short summary
Macroscopic water vapor diffusion is not enhanced in snow
Kévin Fourteau, Florent Domine, and Pascal Hagenmuller
The Cryosphere, 15, 389–406, https://doi.org/10.5194/tc-15-389-2021,https://doi.org/10.5194/tc-15-389-2021, 2021
Short summary
Historical porosity data in polar firn
Kévin Fourteau, Laurent Arnaud, Xavier Faïn, Patricia Martinerie, David M. Etheridge, Vladimir Lipenkov, and Jean-Marc Barnola
Earth Syst. Sci. Data, 12, 1171–1177, https://doi.org/10.5194/essd-12-1171-2020,https://doi.org/10.5194/essd-12-1171-2020, 2020
Short summary
Estimation of gas record alteration in very low-accumulation ice cores
Kévin Fourteau, Patricia Martinerie, Xavier Faïn, Alexey A. Ekaykin, Jérôme Chappellaz, and Vladimir Lipenkov
Clim. Past, 16, 503–522, https://doi.org/10.5194/cp-16-503-2020,https://doi.org/10.5194/cp-16-503-2020, 2020
Short summary

Related subject area

Discipline: Ice sheets | Subject: Ice Cores
Two-dimensional impurity imaging in deep Antarctic ice cores: snapshots of three climatic periods and implications for high-resolution signal interpretation
Pascal Bohleber, Marco Roman, Martin Šala, Barbara Delmonte, Barbara Stenni, and Carlo Barbante
The Cryosphere, 15, 3523–3538, https://doi.org/10.5194/tc-15-3523-2021,https://doi.org/10.5194/tc-15-3523-2021, 2021
Short summary
Brief communication: New radar constraints support presence of ice older than 1.5 Myr at Little Dome C
David A. Lilien, Daniel Steinhage, Drew Taylor, Frédéric Parrenin, Catherine Ritz, Robert Mulvaney, Carlos Martín, Jie-Bang Yan, Charles O'Neill, Massimo Frezzotti, Heinrich Miller, Prasad Gogineni, Dorthe Dahl-Jensen, and Olaf Eisen
The Cryosphere, 15, 1881–1888, https://doi.org/10.5194/tc-15-1881-2021,https://doi.org/10.5194/tc-15-1881-2021, 2021
Short summary
Pervasive diffusion of climate signals recorded in ice-vein ionic impurities
Felix S. L. Ng
The Cryosphere, 15, 1787–1810, https://doi.org/10.5194/tc-15-1787-2021,https://doi.org/10.5194/tc-15-1787-2021, 2021
Short summary
Very old firn air linked to strong density layering at Styx Glacier, coastal Victoria Land, East Antarctica
Youngjoon Jang, Sang Bum Hong, Christo Buizert, Hun-Gyu Lee, Sang-Young Han, Ji-Woong Yang, Yoshinori Iizuka, Akira Hori, Yeongcheol Han, Seong Joon Jun, Pieter Tans, Taejin Choi, Seong-Joong Kim, Soon Do Hur, and Jinho Ahn
The Cryosphere, 13, 2407–2419, https://doi.org/10.5194/tc-13-2407-2019,https://doi.org/10.5194/tc-13-2407-2019, 2019
Short summary
Glaciological characteristics in the Dome Fuji region and new assessment for “Oldest Ice”
Nanna B. Karlsson, Tobias Binder, Graeme Eagles, Veit Helm, Frank Pattyn, Brice Van Liefferinge, and Olaf Eisen
The Cryosphere, 12, 2413–2424, https://doi.org/10.5194/tc-12-2413-2018,https://doi.org/10.5194/tc-12-2413-2018, 2018
Short summary

Cited articles

Arnaud, L., Barnola, J.-M., and Duval, P.: Physical modeling of the densification of snow/firn and ice in the upper part of polar ice sheets, Phys. Ice Core Rec., 285–305, available at: http://hdl.handle.net/2115/32472 (last access: 9 December 2019), 2000. a
Bader, H.: Density of ice as a function of temperature and stress, Cold Regions Research and Engineering Laboratory, US Army Material Command, 1964. a, b
Barnola, J. M., Pierritz, R., Goujon, C., Duval, P., and Boller, E.: 3D reconstruction of the Vostok firn structure by X-ray tomography, Data Glaciol. Stud., 97, 80–84, 2004. a, b
Bereiter, B., Eggleston, S., Schmitt, J., Nehrbass-Ahles, C., Stocker, T. F., Fischer, H., Kipfstuhl, S., and Chappellaz, J.: Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present, Geophys. Res. Lett., 42, 542–549, https://doi.org/10.1002/2014GL061957, 2014. a
Boulos, V., Fristot, V., Houzet, D., Salvo, L., and Lhuissier, P.: Investigating performance variations of an optimized GPU-ported granulometry algorithm, in: Proceedings of the 2012 Conference on Design and Architectures for Signal and Image Processing, 1–6, available at: https://hal.archives-ouvertes.fr/hal-00787861 (last access: 9 December 2019), 2012. a
Download
Short summary
Understanding gas trapping in polar ice is essential to study the relationship between greenhouse gases and past climates. New data of bubble closure, used in a simple gas-trapping model, show inconsistency with the final air content in ice. This suggests gas trapping is not fully understood. We also use a combination of high-resolution measurements to investigate the effect of polar snow stratification on gas trapping and find that all strata have similar pores, but that some close in advance.