Articles | Volume 12, issue 11
https://doi.org/10.5194/tc-12-3511-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-12-3511-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Exploration of Antarctic Ice Sheet 100-year contribution to sea level rise and associated model uncertainties using the ISSM framework
Nicole-Jeanne Schlegel
CORRESPONDING AUTHOR
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Helene Seroussi
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Michael P. Schodlok
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Eric Y. Larour
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Carmen Boening
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Daniel Limonadi
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Michael M. Watkins
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Mathieu Morlighem
University of California, Irvine, Department of Earth System Science, Irvine, CA, USA
Michiel R. van den Broeke
Institute for Marine and Atmospheric research Utrecht (IMAU), Utrecht University, Utrecht, the Netherlands
Related authors
Alamgir Hossan, Andreas Colliander, Baptiste Vandecrux, Nicole-Jeanne Schlegel, Joel Harper, Shawn Marshall, and Julie Z. Miller
EGUsphere, https://doi.org/10.5194/egusphere-2024-2563, https://doi.org/10.5194/egusphere-2024-2563, 2024
Short summary
Short summary
We used L-band observations from the SMAP mission to quantify the surface and subsurface liquid water amounts (LWA) in the percolation zone of the Greenland ice sheet. The algorithm is described, and the validation results are provided. The results demonstrate the potential for creating an LWA data product across GrIS, which will advance our understanding of ice sheet physical processes for better projection of Greenland’s contribution to global sea level rise.
Youngmin Choi, Helene Seroussi, Mathieu Morlighem, Nicole-Jeanne Schlegel, and Alex Gardner
The Cryosphere, 17, 5499–5517, https://doi.org/10.5194/tc-17-5499-2023, https://doi.org/10.5194/tc-17-5499-2023, 2023
Short summary
Short summary
Ice sheet models are often initialized using snapshot observations of present-day conditions, but this approach has limitations in capturing the transient evolution of the system. To more accurately represent the accelerating changes in glaciers, we employed time-dependent data assimilation. We found that models calibrated with the transient data better capture past trends and more accurately reproduce changes after the calibration period, even with limited observations.
Hélène Seroussi, Vincent Verjans, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Peter Van Katwyk, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 17, 5197–5217, https://doi.org/10.5194/tc-17-5197-2023, https://doi.org/10.5194/tc-17-5197-2023, 2023
Short summary
Short summary
Mass loss from Antarctica is a key contributor to sea level rise over the 21st century, and the associated uncertainty dominates sea level projections. We highlight here the Antarctic glaciers showing the largest changes and quantify the main sources of uncertainty in their future evolution using an ensemble of ice flow models. We show that on top of Pine Island and Thwaites glaciers, Totten and Moscow University glaciers show rapid changes and a strong sensitivity to warmer ocean conditions.
Fernando S. Paolo, Alex S. Gardner, Chad A. Greene, Johan Nilsson, Michael P. Schodlok, Nicole-Jeanne Schlegel, and Helen A. Fricker
The Cryosphere, 17, 3409–3433, https://doi.org/10.5194/tc-17-3409-2023, https://doi.org/10.5194/tc-17-3409-2023, 2023
Short summary
Short summary
We report on a slowdown in the rate of thinning and melting of West Antarctic ice shelves. We present a comprehensive assessment of the Antarctic ice shelves, where we analyze at a continental scale the changes in thickness, flow, and basal melt over the past 26 years. We also present a novel method to estimate ice shelf change from satellite altimetry and a time-dependent data set of ice shelf thickness and basal melt rates at an unprecedented resolution.
Alex S. Gardner, Nicole-Jeanne Schlegel, and Eric Larour
Geosci. Model Dev., 16, 2277–2302, https://doi.org/10.5194/gmd-16-2277-2023, https://doi.org/10.5194/gmd-16-2277-2023, 2023
Short summary
Short summary
This is the first description of the open-source Glacier Energy and Mass Balance (GEMB) model. GEMB models the ice sheet and glacier surface–atmospheric energy and mass exchange, as well as the firn state. The model is evaluated against the current state of the art and in situ observations and is shown to perform well.
Inès N. Otosaka, Andrew Shepherd, Erik R. Ivins, Nicole-Jeanne Schlegel, Charles Amory, Michiel R. van den Broeke, Martin Horwath, Ian Joughin, Michalea D. King, Gerhard Krinner, Sophie Nowicki, Anthony J. Payne, Eric Rignot, Ted Scambos, Karen M. Simon, Benjamin E. Smith, Louise S. Sørensen, Isabella Velicogna, Pippa L. Whitehouse, Geruo A, Cécile Agosta, Andreas P. Ahlstrøm, Alejandro Blazquez, William Colgan, Marcus E. Engdahl, Xavier Fettweis, Rene Forsberg, Hubert Gallée, Alex Gardner, Lin Gilbert, Noel Gourmelen, Andreas Groh, Brian C. Gunter, Christopher Harig, Veit Helm, Shfaqat Abbas Khan, Christoph Kittel, Hannes Konrad, Peter L. Langen, Benoit S. Lecavalier, Chia-Chun Liang, Bryant D. Loomis, Malcolm McMillan, Daniele Melini, Sebastian H. Mernild, Ruth Mottram, Jeremie Mouginot, Johan Nilsson, Brice Noël, Mark E. Pattle, William R. Peltier, Nadege Pie, Mònica Roca, Ingo Sasgen, Himanshu V. Save, Ki-Weon Seo, Bernd Scheuchl, Ernst J. O. Schrama, Ludwig Schröder, Sebastian B. Simonsen, Thomas Slater, Giorgio Spada, Tyler C. Sutterley, Bramha Dutt Vishwakarma, Jan Melchior van Wessem, David Wiese, Wouter van der Wal, and Bert Wouters
Earth Syst. Sci. Data, 15, 1597–1616, https://doi.org/10.5194/essd-15-1597-2023, https://doi.org/10.5194/essd-15-1597-2023, 2023
Short summary
Short summary
By measuring changes in the volume, gravitational attraction, and ice flow of Greenland and Antarctica from space, we can monitor their mass gain and loss over time. Here, we present a new record of the Earth’s polar ice sheet mass balance produced by aggregating 50 satellite-based estimates of ice sheet mass change. This new assessment shows that the ice sheets have lost (7.5 x 1012) t of ice between 1992 and 2020, contributing 21 mm to sea level rise.
Joshua K. Cuzzone, Nicolás E. Young, Mathieu Morlighem, Jason P. Briner, and Nicole-Jeanne Schlegel
The Cryosphere, 16, 2355–2372, https://doi.org/10.5194/tc-16-2355-2022, https://doi.org/10.5194/tc-16-2355-2022, 2022
Short summary
Short summary
We use an ice sheet model to determine what influenced the Greenland Ice Sheet to retreat across a portion of southwestern Greenland during the Holocene (about the last 12 000 years). Our simulations, constrained by observations from geologic markers, show that atmospheric warming and ice melt primarily caused the ice sheet to retreat rapidly across this domain. We find, however, that iceberg calving at the interface where the ice meets the ocean significantly influenced ice mass change.
Blake A. Castleman, Nicole-Jeanne Schlegel, Lambert Caron, Eric Larour, and Ala Khazendar
The Cryosphere, 16, 761–778, https://doi.org/10.5194/tc-16-761-2022, https://doi.org/10.5194/tc-16-761-2022, 2022
Short summary
Short summary
In the described study, we derive an uncertainty range for global mean sea level rise (SLR) contribution from Thwaites Glacier in a 200-year period under an extreme ocean warming scenario. We derive the spatial and vertical resolutions needed for bedrock data acquisition missions in order to limit global mean SLR contribution from Thwaites Glacier to ±2 cm in a 200-year period. We conduct sensitivity experiments in order to present the locations of critical regions in need of accurate mapping.
Eric Larour, Lambert Caron, Mathieu Morlighem, Surendra Adhikari, Thomas Frederikse, Nicole-Jeanne Schlegel, Erik Ivins, Benjamin Hamlington, Robert Kopp, and Sophie Nowicki
Geosci. Model Dev., 13, 4925–4941, https://doi.org/10.5194/gmd-13-4925-2020, https://doi.org/10.5194/gmd-13-4925-2020, 2020
Short summary
Short summary
ISSM-SLPS is a new projection system for future sea level that increases the resolution and accuracy of current projection systems and improves the way uncertainty is treated in such projections. This will pave the way for better inclusion of state-of-the-art results from existing intercomparison efforts carried out by the scientific community, such as GlacierMIP2 or ISMIP6, into sea-level projections.
Heiko Goelzer, Sophie Nowicki, Anthony Payne, Eric Larour, Helene Seroussi, William H. Lipscomb, Jonathan Gregory, Ayako Abe-Ouchi, Andrew Shepherd, Erika Simon, Cécile Agosta, Patrick Alexander, Andy Aschwanden, Alice Barthel, Reinhard Calov, Christopher Chambers, Youngmin Choi, Joshua Cuzzone, Christophe Dumas, Tamsin Edwards, Denis Felikson, Xavier Fettweis, Nicholas R. Golledge, Ralf Greve, Angelika Humbert, Philippe Huybrechts, Sebastien Le clec'h, Victoria Lee, Gunter Leguy, Chris Little, Daniel P. Lowry, Mathieu Morlighem, Isabel Nias, Aurelien Quiquet, Martin Rückamp, Nicole-Jeanne Schlegel, Donald A. Slater, Robin S. Smith, Fiamma Straneo, Lev Tarasov, Roderik van de Wal, and Michiel van den Broeke
The Cryosphere, 14, 3071–3096, https://doi.org/10.5194/tc-14-3071-2020, https://doi.org/10.5194/tc-14-3071-2020, 2020
Short summary
Short summary
In this paper we use a large ensemble of Greenland ice sheet models forced by six different global climate models to project ice sheet changes and sea-level rise contributions over the 21st century.
The results for two different greenhouse gas concentration scenarios indicate that the Greenland ice sheet will continue to lose mass until 2100, with contributions to sea-level rise of 90 ± 50 mm and 32 ± 17 mm for the high (RCP8.5) and low (RCP2.6) scenario, respectively.
Hélène Seroussi, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 14, 3033–3070, https://doi.org/10.5194/tc-14-3033-2020, https://doi.org/10.5194/tc-14-3033-2020, 2020
Short summary
Short summary
The Antarctic ice sheet has been losing mass over at least the past 3 decades in response to changes in atmospheric and oceanic conditions. This study presents an ensemble of model simulations of the Antarctic evolution over the 2015–2100 period based on various ice sheet models, climate forcings and emission scenarios. Results suggest that the West Antarctic ice sheet will continue losing a large amount of ice, while the East Antarctic ice sheet could experience increased snow accumulation.
Silje Smith-Johnsen, Basile de Fleurian, Nicole Schlegel, Helene Seroussi, and Kerim Nisancioglu
The Cryosphere, 14, 841–854, https://doi.org/10.5194/tc-14-841-2020, https://doi.org/10.5194/tc-14-841-2020, 2020
Short summary
Short summary
The Northeast Greenland Ice Stream (NEGIS) drains a large part of Greenland and displays fast flow far inland. However, the flow pattern is not well represented in ice sheet models. The fast flow has been explained by abnormally high geothermal heat flux. The heat melts the base of the ice sheet and the water produced may lubricate the bed and induce fast flow. By including high geothermal heat flux and a hydrology model, we successfully reproduce NEGIS flow pattern in an ice sheet model.
Anders Levermann, Ricarda Winkelmann, Torsten Albrecht, Heiko Goelzer, Nicholas R. Golledge, Ralf Greve, Philippe Huybrechts, Jim Jordan, Gunter Leguy, Daniel Martin, Mathieu Morlighem, Frank Pattyn, David Pollard, Aurelien Quiquet, Christian Rodehacke, Helene Seroussi, Johannes Sutter, Tong Zhang, Jonas Van Breedam, Reinhard Calov, Robert DeConto, Christophe Dumas, Julius Garbe, G. Hilmar Gudmundsson, Matthew J. Hoffman, Angelika Humbert, Thomas Kleiner, William H. Lipscomb, Malte Meinshausen, Esmond Ng, Sophie M. J. Nowicki, Mauro Perego, Stephen F. Price, Fuyuki Saito, Nicole-Jeanne Schlegel, Sainan Sun, and Roderik S. W. van de Wal
Earth Syst. Dynam., 11, 35–76, https://doi.org/10.5194/esd-11-35-2020, https://doi.org/10.5194/esd-11-35-2020, 2020
Short summary
Short summary
We provide an estimate of the future sea level contribution of Antarctica from basal ice shelf melting up to the year 2100. The full uncertainty range in the warming-related forcing of basal melt is estimated and applied to 16 state-of-the-art ice sheet models using a linear response theory approach. The sea level contribution we obtain is very likely below 61 cm under unmitigated climate change until 2100 (RCP8.5) and very likely below 40 cm if the Paris Climate Agreement is kept.
Hélène Seroussi, Sophie Nowicki, Erika Simon, Ayako Abe-Ouchi, Torsten Albrecht, Julien Brondex, Stephen Cornford, Christophe Dumas, Fabien Gillet-Chaulet, Heiko Goelzer, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Thomas Kleiner, Eric Larour, Gunter Leguy, William H. Lipscomb, Daniel Lowry, Matthias Mengel, Mathieu Morlighem, Frank Pattyn, Anthony J. Payne, David Pollard, Stephen F. Price, Aurélien Quiquet, Thomas J. Reerink, Ronja Reese, Christian B. Rodehacke, Nicole-Jeanne Schlegel, Andrew Shepherd, Sainan Sun, Johannes Sutter, Jonas Van Breedam, Roderik S. W. van de Wal, Ricarda Winkelmann, and Tong Zhang
The Cryosphere, 13, 1441–1471, https://doi.org/10.5194/tc-13-1441-2019, https://doi.org/10.5194/tc-13-1441-2019, 2019
Short summary
Short summary
We compare a wide range of Antarctic ice sheet simulations with varying initialization techniques and model parameters to understand the role they play on the projected evolution of this ice sheet under simple scenarios. Results are improved compared to previous assessments and show that continued improvements in the representation of the floating ice around Antarctica are critical to reduce the uncertainty in the future ice sheet contribution to sea level rise.
Joshua K. Cuzzone, Nicole-Jeanne Schlegel, Mathieu Morlighem, Eric Larour, Jason P. Briner, Helene Seroussi, and Lambert Caron
The Cryosphere, 13, 879–893, https://doi.org/10.5194/tc-13-879-2019, https://doi.org/10.5194/tc-13-879-2019, 2019
Short summary
Short summary
We present ice sheet modeling results of ice retreat over southwestern Greenland during the last 12 000 years, and we also test the impact that model horizontal resolution has on differences in the simulated spatial retreat and its associated rate. Results indicate that model resolution plays a minor role in simulated retreat in areas where bed topography is not complex but plays an important role in areas where bed topography is complex (such as fjords).
Joshua K. Cuzzone, Mathieu Morlighem, Eric Larour, Nicole Schlegel, and Helene Seroussi
Geosci. Model Dev., 11, 1683–1694, https://doi.org/10.5194/gmd-11-1683-2018, https://doi.org/10.5194/gmd-11-1683-2018, 2018
Short summary
Short summary
This paper details the implementation of higher-order vertical finite elements in the Ice Sheet System Model (ISSM). When using higher-order vertical finite elements, fewer vertical layers are needed to accurately capture the thermal structure in an ice sheet versus a conventional linear vertical interpolation, therefore greatly improving model runtime speeds, particularly in higher-order stress balance ice sheet models. The implications for paleoclimate ice sheet simulations are discussed.
Konstanze Haubner, Jason E. Box, Nicole J. Schlegel, Eric Y. Larour, Mathieu Morlighem, Anne M. Solgaard, Kristian K. Kjeldsen, Signe H. Larsen, Eric Rignot, Todd K. Dupont, and Kurt H. Kjær
The Cryosphere, 12, 1511–1522, https://doi.org/10.5194/tc-12-1511-2018, https://doi.org/10.5194/tc-12-1511-2018, 2018
Short summary
Short summary
We investigate the effect of neglecting calving on Upernavik Isstrøm, West Greenland, between 1849 and 2012.
Our simulation is forced with observed terminus positions in discrete time steps and is responsive to the prescribed ice front changes.
Simulated frontal retreat is needed to obtain a realistic ice surface elevation and velocity evolution of Upernavik.
Using the prescribed terminus position change we gain insight to mass loss partitioning during different time periods.
Heiko Goelzer, Sophie Nowicki, Tamsin Edwards, Matthew Beckley, Ayako Abe-Ouchi, Andy Aschwanden, Reinhard Calov, Olivier Gagliardini, Fabien Gillet-Chaulet, Nicholas R. Golledge, Jonathan Gregory, Ralf Greve, Angelika Humbert, Philippe Huybrechts, Joseph H. Kennedy, Eric Larour, William H. Lipscomb, Sébastien Le clec'h, Victoria Lee, Mathieu Morlighem, Frank Pattyn, Antony J. Payne, Christian Rodehacke, Martin Rückamp, Fuyuki Saito, Nicole Schlegel, Helene Seroussi, Andrew Shepherd, Sainan Sun, Roderik van de Wal, and Florian A. Ziemen
The Cryosphere, 12, 1433–1460, https://doi.org/10.5194/tc-12-1433-2018, https://doi.org/10.5194/tc-12-1433-2018, 2018
Short summary
Short summary
We have compared a wide spectrum of different initialisation techniques used in the ice sheet modelling community to define the modelled present-day Greenland ice sheet state as a starting point for physically based future-sea-level-change projections. Compared to earlier community-wide comparisons, we find better agreement across different models, which implies overall improvement of our understanding of what is needed to produce such initial states.
Nicole-Jeanne Schlegel, David N. Wiese, Eric Y. Larour, Michael M. Watkins, Jason E. Box, Xavier Fettweis, and Michiel R. van den Broeke
The Cryosphere, 10, 1965–1989, https://doi.org/10.5194/tc-10-1965-2016, https://doi.org/10.5194/tc-10-1965-2016, 2016
Short summary
Short summary
We investigate Greenland Ice Sheet mass change from 2003–2012 by comparing observations from GRACE with state-of-the-art atmospheric and ice sheet model simulations. We find that the largest discrepancies (in the northwest and southeast) are likely controlled by errors in modeled surface climate as well as ice–ocean interaction and hydrological processes (not included in the models). Models should consider such processes at monthly to seasonal resolutions in order to improve future projections.
Patrick M. Alexander, Marco Tedesco, Nicole-Jeanne Schlegel, Scott B. Luthcke, Xavier Fettweis, and Eric Larour
The Cryosphere, 10, 1259–1277, https://doi.org/10.5194/tc-10-1259-2016, https://doi.org/10.5194/tc-10-1259-2016, 2016
Short summary
Short summary
We compared satellite-derived estimates of spatial and seasonal variations in Greenland Ice Sheet mass with a set of model simulations, revealing an agreement between models and satellite estimates for the ice-sheet-wide seasonal fluctuations in mass, but disagreement at finer spatial scales. The model simulations underestimate low-elevation mass loss. Improving the ability of models to capture variations and trends in Greenland Ice Sheet mass is important for estimating future sea level rise.
E. Larour, J. Utke, B. Csatho, A. Schenk, H. Seroussi, M. Morlighem, E. Rignot, N. Schlegel, and A. Khazendar
The Cryosphere, 8, 2335–2351, https://doi.org/10.5194/tc-8-2335-2014, https://doi.org/10.5194/tc-8-2335-2014, 2014
Short summary
Short summary
We present a temporal inversion of surface mass balance and basal friction for the Northeast Greenland Ice Sheet between 2003 and 2009, using the altimetry record from ICESat. The inversion relies on automatic differentiation of ISSM and demonstrates the feasibility of assimilating altimetry records into reconstructions of the Greenland Ice Sheet. The boundary conditions provide a snapshot of the state of the ice for this period and can be used for further process studies.
Alamgir Hossan, Andreas Colliander, Baptiste Vandecrux, Nicole-Jeanne Schlegel, Joel Harper, Shawn Marshall, and Julie Z. Miller
EGUsphere, https://doi.org/10.5194/egusphere-2024-2563, https://doi.org/10.5194/egusphere-2024-2563, 2024
Short summary
Short summary
We used L-band observations from the SMAP mission to quantify the surface and subsurface liquid water amounts (LWA) in the percolation zone of the Greenland ice sheet. The algorithm is described, and the validation results are provided. The results demonstrate the potential for creating an LWA data product across GrIS, which will advance our understanding of ice sheet physical processes for better projection of Greenland’s contribution to global sea level rise.
Sanne B. M. Veldhuijsen, Willem Jan van de Berg, Peter Kuipers Munneke, Nicolaj Hansen, Fredrik Boberg, Christoph Kittel, Charles Amory, and Michiel R. van den Broeke
EGUsphere, https://doi.org/10.5194/egusphere-2024-2855, https://doi.org/10.5194/egusphere-2024-2855, 2024
Short summary
Short summary
Perennial firn aquifers (PFAs), year-round bodies of liquid water within firn, can potentially impact ice-shelf and ice-sheet stability. We developed a fast XGBoost firn emulator to predict 21st-century distribution of PFAs in Antarctica for 12 climatic forcings datasets. Our findings suggest that under low emission scenarios, PFAs remain confined to the Antarctic Peninsula. However, under a high-emission scenario, PFAs are projected to expand to a region in West Antarctica and East Antarctica.
Jan De Rydt, Nicolas C. Jourdain, Yoshihiro Nakayama, Mathias van Caspel, Ralph Timmermann, Pierre Mathiot, Xylar S. Asay-Davis, Hélène Seroussi, Pierre Dutrieux, Ben Galton-Fenzi, David Holland, and Ronja Reese
Geosci. Model Dev., 17, 7105–7139, https://doi.org/10.5194/gmd-17-7105-2024, https://doi.org/10.5194/gmd-17-7105-2024, 2024
Short summary
Short summary
Global climate models do not reliably simulate sea-level change due to ice-sheet–ocean interactions. We propose a community modelling effort to conduct a series of well-defined experiments to compare models with observations and study how models respond to a range of perturbations in climate and ice-sheet geometry. The second Marine Ice Sheet–Ocean Model Intercomparison Project will continue to lay the groundwork for including ice-sheet–ocean interactions in global-scale IPCC-class models.
Maria T. Kappelsberger, Martin Horwath, Eric Buchta, Matthias O. Willen, Ludwig Schröder, Sanne B. M. Veldhuijsen, Peter Kuipers Munneke, and Michiel R. van den Broeke
The Cryosphere, 18, 4355–4378, https://doi.org/10.5194/tc-18-4355-2024, https://doi.org/10.5194/tc-18-4355-2024, 2024
Short summary
Short summary
The interannual variations in the height of the Antarctic Ice Sheet (AIS) are mainly due to natural variations in snowfall. Precise knowledge of these variations is important for the detection of any long-term climatic trends in AIS surface elevation. We present a new product that spatially resolves these height variations over the period 1992–2017. The product combines the strengths of atmospheric modeling results and satellite altimetry measurements.
Horst Machguth, Andrew Tedstone, Peter Kuipers Munneke, Max Brils, Brice Noël, Nicole Clerx, Nicolas Jullien, Xavier Fettweis, and Michiel van den Broeke
EGUsphere, https://doi.org/10.5194/egusphere-2024-2750, https://doi.org/10.5194/egusphere-2024-2750, 2024
Short summary
Short summary
Due to increasing air temperatures, surface melt expands to higher elevations on the Greenland ice sheet. This is visible on satellite imagery in the form of rivers of meltwater running across the surface of the ice sheet. We compare model results of meltwater at high elevations on the ice sheet to satellite observations. We find that each of the models shows strengths and weaknesses. A detailed look into the model results reveals potential reasons for the differences between models.
Christiaan T. van Dalum, Willem Jan van de Berg, Srinidhi N. Gadde, Maurice van Tiggelen, Tijmen van der Drift, Erik van Meijgaard, Lambertus H. van Ulft, and Michiel R. van den Broeke
The Cryosphere, 18, 4065–4088, https://doi.org/10.5194/tc-18-4065-2024, https://doi.org/10.5194/tc-18-4065-2024, 2024
Short summary
Short summary
We present a new version of the polar Regional Atmospheric Climate Model (RACMO), version 2.4p1, and show first results for Greenland, Antarctica and the Arctic. We provide an overview of all changes and investigate the impact that they have on the climate of polar regions. By comparing the results with observations and the output from the previous model version, we show that the model performs well regarding the surface mass balance of the ice sheets and near-surface climate.
Gong Cheng, Mathieu Morlighem, and G. Hilmar Gudmundsson
Geosci. Model Dev., 17, 6227–6247, https://doi.org/10.5194/gmd-17-6227-2024, https://doi.org/10.5194/gmd-17-6227-2024, 2024
Short summary
Short summary
We conducted a comprehensive analysis of the stabilization and reinitialization techniques currently employed in ISSM and Úa for solving level-set equations, specifically those related to the dynamic representation of moving ice fronts within numerical ice sheet models. Our results demonstrate that the streamline upwind Petrov–Galerkin (SUPG) method outperforms the other approaches. We found that excessively frequent reinitialization can lead to exceptionally high errors in simulations.
Joshua Cuzzone, Aaron Barth, Kelsey Barker, and Mathieu Morlighem
EGUsphere, https://doi.org/10.5194/egusphere-2024-2091, https://doi.org/10.5194/egusphere-2024-2091, 2024
Short summary
Short summary
We use an ice sheet model to simulate the Last Glacial Maximum conditions of the Laurentide Ice Sheet (LIS) across the Northeast United States. A complex thermal history existed for the (LIS), that allowed for high erosion across most of the NE USA, but prevented erosion across high elevation mountain peaks and areas where ice flow was slow. This has implications for geologic studies which rely on the erosional nature of the LIS to reconstruct its glacial history and landscape evolution.
Younghyun Koo, Gong Cheng, Mathieu Morlighem, and Maryam Rahnemoonfar
EGUsphere, https://doi.org/10.5194/egusphere-2024-1620, https://doi.org/10.5194/egusphere-2024-1620, 2024
Short summary
Short summary
Calving, the breaking of ice bodies from the terminus of a glacier, plays an important role in the mass losses of Greenland ice sheets. However, calving parameters have been poorly understood because of the intensive computational demands of traditional numerical models. To address this issue and find the optimal calving parameter that best represents real observations, we develop deep-learning emulators based on graph neural network architectures.
Ziad Rashed, Alexander Robel, and Helene Seroussi
EGUsphere, https://doi.org/10.5194/egusphere-2024-1435, https://doi.org/10.5194/egusphere-2024-1435, 2024
Short summary
Short summary
Sermeq Kujalleq, Greenland's largest glacier, has significantly retreated since the late 1990s in response to warming ocean temperatures. Using a large ensemble approach, our simulations show that the retreat is mainly initiated by the arrival of warm water but sustained and accelerated by the glacier's position over deeper bed troughs and vigorous calving. We highlight the need for models of ice mélange to project glacier behavior under rapid calving regimes.
Sanne B. M. Veldhuijsen, Willem Jan van de Berg, Peter Kuipers Munneke, and Michiel R. van den Broeke
The Cryosphere, 18, 1983–1999, https://doi.org/10.5194/tc-18-1983-2024, https://doi.org/10.5194/tc-18-1983-2024, 2024
Short summary
Short summary
We use the IMAU firn densification model to simulate the 21st-century evolution of Antarctic firn air content. Ice shelves on the Antarctic Peninsula and the Roi Baudouin Ice Shelf in Dronning Maud Land are particularly vulnerable to total firn air content (FAC) depletion. Our results also underline the potentially large vulnerability of low-accumulation ice shelves to firn air depletion through ice slab formation.
In-Woo Park, Emilia Kyung Jin, Mathieu Morlighem, and Kang-Kun Lee
The Cryosphere, 18, 1139–1155, https://doi.org/10.5194/tc-18-1139-2024, https://doi.org/10.5194/tc-18-1139-2024, 2024
Short summary
Short summary
This study conducted 3D thermodynamic ice sheet model experiments, and modeled temperatures were compared with 15 observed borehole temperature profiles. We found that using incompressibility of ice without sliding agrees well with observed temperature profiles in slow-flow regions, while incorporating sliding in fast-flow regions captures observed temperature profiles. Also, the choice of vertical velocity scheme has a greater impact on the shape of the modeled temperature profile.
James F. O'Neill, Tamsin L. Edwards, Daniel F. Martin, Courtney Shafer, Stephen L. Cornford, Helene L. Seroussi, Sophie Nowicki, and Mira Adhikari
EGUsphere, https://doi.org/10.5194/egusphere-2024-441, https://doi.org/10.5194/egusphere-2024-441, 2024
Short summary
Short summary
We use an ice sheet model to simulate the Antarctic contribution to sea level over the 21st century, under a range of future climates, varying how sensitive the ice sheet is to different processes. We find that, under stronger warming scenarios, ocean temperatures increases and more snow falls on the ice sheet. When the ice sheet is sensitive to ocean warming, ocean melting driven loss exceeds snowfall driven gains, so that the sea level contribution is greater with more climate warming.
Baptiste Vandecrux, Robert S. Fausto, Jason E. Box, Federico Covi, Regine Hock, Åsa K. Rennermalm, Achim Heilig, Jakob Abermann, Dirk van As, Elisa Bjerre, Xavier Fettweis, Paul C. J. P. Smeets, Peter Kuipers Munneke, Michiel R. van den Broeke, Max Brils, Peter L. Langen, Ruth Mottram, and Andreas P. Ahlstrøm
The Cryosphere, 18, 609–631, https://doi.org/10.5194/tc-18-609-2024, https://doi.org/10.5194/tc-18-609-2024, 2024
Short summary
Short summary
How fast is the Greenland ice sheet warming? In this study, we compiled 4500+ temperature measurements at 10 m below the ice sheet surface (T10m) from 1912 to 2022. We trained a machine learning model on these data and reconstructed T10m for the ice sheet during 1950–2022. After a slight cooling during 1950–1985, the ice sheet warmed at a rate of 0.7 °C per decade until 2022. Climate models showed mixed results compared to our observations and underestimated the warming in key regions.
Anjali Sandip, Ludovic Räss, and Mathieu Morlighem
Geosci. Model Dev., 17, 899–909, https://doi.org/10.5194/gmd-17-899-2024, https://doi.org/10.5194/gmd-17-899-2024, 2024
Short summary
Short summary
We solve momentum balance for unstructured meshes to predict ice flow for real glaciers using a pseudo-transient method on graphics processing units (GPUs) and compare it to a standard central processing unit (CPU) implementation. We justify the GPU implementation by applying the price-to-performance metric for up to million-grid-point spatial resolutions. This study represents a first step toward leveraging GPU processing power, enabling more accurate polar ice discharge predictions.
Youngmin Choi, Helene Seroussi, Mathieu Morlighem, Nicole-Jeanne Schlegel, and Alex Gardner
The Cryosphere, 17, 5499–5517, https://doi.org/10.5194/tc-17-5499-2023, https://doi.org/10.5194/tc-17-5499-2023, 2023
Short summary
Short summary
Ice sheet models are often initialized using snapshot observations of present-day conditions, but this approach has limitations in capturing the transient evolution of the system. To more accurately represent the accelerating changes in glaciers, we employed time-dependent data assimilation. We found that models calibrated with the transient data better capture past trends and more accurately reproduce changes after the calibration period, even with limited observations.
Francesca Baldacchino, Nicholas R. Golledge, Huw Horgan, Mathieu Morlighem, Alanna V. Alevropoulos-Borrill, Alena Malyarenko, Alexandra Gossart, Daniel P. Lowry, and Laurine van Haastrecht
EGUsphere, https://doi.org/10.5194/egusphere-2023-2793, https://doi.org/10.5194/egusphere-2023-2793, 2023
Short summary
Short summary
Understanding how the Ross Ice Shelf flow is changing in a warming world is important for monitoring mass changes. The flow displays an intra-annual variation; however, it is unclear what mechanisms drive this variability. Sensitivity maps are modelled showing areas of the ice shelf where changes in basal melt most influence the ice flow. We suggest that basal melting partly drives the flow variability along the calving front of the ice shelf and will continue to do so in a warming world.
Hélène Seroussi, Vincent Verjans, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Peter Van Katwyk, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 17, 5197–5217, https://doi.org/10.5194/tc-17-5197-2023, https://doi.org/10.5194/tc-17-5197-2023, 2023
Short summary
Short summary
Mass loss from Antarctica is a key contributor to sea level rise over the 21st century, and the associated uncertainty dominates sea level projections. We highlight here the Antarctic glaciers showing the largest changes and quantify the main sources of uncertainty in their future evolution using an ensemble of ice flow models. We show that on top of Pine Island and Thwaites glaciers, Totten and Moscow University glaciers show rapid changes and a strong sensitivity to warmer ocean conditions.
Joel A. Wilner, Mathieu Morlighem, and Gong Cheng
The Cryosphere, 17, 4889–4901, https://doi.org/10.5194/tc-17-4889-2023, https://doi.org/10.5194/tc-17-4889-2023, 2023
Short summary
Short summary
We use numerical modeling to study iceberg calving off of ice shelves in Antarctica. We examine four widely used mathematical descriptions of calving (
calving laws), under the assumption that Antarctic ice shelf front positions should be in steady state under the current climate forcing. We quantify how well each of these calving laws replicates the observed front positions. Our results suggest that the eigencalving and von Mises laws are most suitable for Antarctic ice shelves.
Lena G. Buth, Valeria Di Biase, Peter Kuipers Munneke, Stef Lhermitte, Sanne B. M. Veldhuijsen, Sophie de Roda Husman, Michiel R. van den Broeke, and Bert Wouters
EGUsphere, https://doi.org/10.5194/egusphere-2023-2000, https://doi.org/10.5194/egusphere-2023-2000, 2023
Preprint archived
Short summary
Short summary
Liquid meltwater which is stored in air bubbles in the compacted snow near the surface of Antarctica can affect ice shelf stability. In order to detect the presence of such firn aquifers over large scales, satellite remote sensing is needed. In this paper, we present our new detection method using radar satellite data as well as the results for the whole Antarctic Peninsula. Firn aquifers are found in the north and northwest of the peninsula, in agreement with locations predicted by models.
Fernando S. Paolo, Alex S. Gardner, Chad A. Greene, Johan Nilsson, Michael P. Schodlok, Nicole-Jeanne Schlegel, and Helen A. Fricker
The Cryosphere, 17, 3409–3433, https://doi.org/10.5194/tc-17-3409-2023, https://doi.org/10.5194/tc-17-3409-2023, 2023
Short summary
Short summary
We report on a slowdown in the rate of thinning and melting of West Antarctic ice shelves. We present a comprehensive assessment of the Antarctic ice shelves, where we analyze at a continental scale the changes in thickness, flow, and basal melt over the past 26 years. We also present a novel method to estimate ice shelf change from satellite altimetry and a time-dependent data set of ice shelf thickness and basal melt rates at an unprecedented resolution.
Alice C. Frémand, Peter Fretwell, Julien A. Bodart, Hamish D. Pritchard, Alan Aitken, Jonathan L. Bamber, Robin Bell, Cesidio Bianchi, Robert G. Bingham, Donald D. Blankenship, Gino Casassa, Ginny Catania, Knut Christianson, Howard Conway, Hugh F. J. Corr, Xiangbin Cui, Detlef Damaske, Volkmar Damm, Reinhard Drews, Graeme Eagles, Olaf Eisen, Hannes Eisermann, Fausto Ferraccioli, Elena Field, René Forsberg, Steven Franke, Shuji Fujita, Yonggyu Gim, Vikram Goel, Siva Prasad Gogineni, Jamin Greenbaum, Benjamin Hills, Richard C. A. Hindmarsh, Andrew O. Hoffman, Per Holmlund, Nicholas Holschuh, John W. Holt, Annika N. Horlings, Angelika Humbert, Robert W. Jacobel, Daniela Jansen, Adrian Jenkins, Wilfried Jokat, Tom Jordan, Edward King, Jack Kohler, William Krabill, Mette Kusk Gillespie, Kirsty Langley, Joohan Lee, German Leitchenkov, Carlton Leuschen, Bruce Luyendyk, Joseph MacGregor, Emma MacKie, Kenichi Matsuoka, Mathieu Morlighem, Jérémie Mouginot, Frank O. Nitsche, Yoshifumi Nogi, Ole A. Nost, John Paden, Frank Pattyn, Sergey V. Popov, Eric Rignot, David M. Rippin, Andrés Rivera, Jason Roberts, Neil Ross, Anotonia Ruppel, Dustin M. Schroeder, Martin J. Siegert, Andrew M. Smith, Daniel Steinhage, Michael Studinger, Bo Sun, Ignazio Tabacco, Kirsty Tinto, Stefano Urbini, David Vaughan, Brian C. Welch, Douglas S. Wilson, Duncan A. Young, and Achille Zirizzotti
Earth Syst. Sci. Data, 15, 2695–2710, https://doi.org/10.5194/essd-15-2695-2023, https://doi.org/10.5194/essd-15-2695-2023, 2023
Short summary
Short summary
This paper presents the release of over 60 years of ice thickness, bed elevation, and surface elevation data acquired over Antarctica by the international community. These data are a crucial component of the Antarctic Bedmap initiative which aims to produce a new map and datasets of Antarctic ice thickness and bed topography for the international glaciology and geophysical community.
Mattia Poinelli, Michael Schodlok, Eric Larour, Miren Vizcaino, and Riccardo Riva
The Cryosphere, 17, 2261–2283, https://doi.org/10.5194/tc-17-2261-2023, https://doi.org/10.5194/tc-17-2261-2023, 2023
Short summary
Short summary
Rifts are fractures on ice shelves that connect the ice on top to the ocean below. The impact of rifts on ocean circulation below Antarctic ice shelves has been largely unexplored as ocean models are commonly run at resolutions that are too coarse to resolve the presence of rifts. Our model simulations show that a kilometer-wide rift near the ice-shelf front modulates heat intrusion beneath the ice and inhibits basal melt. These processes are therefore worthy of further investigation.
Alex S. Gardner, Nicole-Jeanne Schlegel, and Eric Larour
Geosci. Model Dev., 16, 2277–2302, https://doi.org/10.5194/gmd-16-2277-2023, https://doi.org/10.5194/gmd-16-2277-2023, 2023
Short summary
Short summary
This is the first description of the open-source Glacier Energy and Mass Balance (GEMB) model. GEMB models the ice sheet and glacier surface–atmospheric energy and mass exchange, as well as the firn state. The model is evaluated against the current state of the art and in situ observations and is shown to perform well.
Inès N. Otosaka, Andrew Shepherd, Erik R. Ivins, Nicole-Jeanne Schlegel, Charles Amory, Michiel R. van den Broeke, Martin Horwath, Ian Joughin, Michalea D. King, Gerhard Krinner, Sophie Nowicki, Anthony J. Payne, Eric Rignot, Ted Scambos, Karen M. Simon, Benjamin E. Smith, Louise S. Sørensen, Isabella Velicogna, Pippa L. Whitehouse, Geruo A, Cécile Agosta, Andreas P. Ahlstrøm, Alejandro Blazquez, William Colgan, Marcus E. Engdahl, Xavier Fettweis, Rene Forsberg, Hubert Gallée, Alex Gardner, Lin Gilbert, Noel Gourmelen, Andreas Groh, Brian C. Gunter, Christopher Harig, Veit Helm, Shfaqat Abbas Khan, Christoph Kittel, Hannes Konrad, Peter L. Langen, Benoit S. Lecavalier, Chia-Chun Liang, Bryant D. Loomis, Malcolm McMillan, Daniele Melini, Sebastian H. Mernild, Ruth Mottram, Jeremie Mouginot, Johan Nilsson, Brice Noël, Mark E. Pattle, William R. Peltier, Nadege Pie, Mònica Roca, Ingo Sasgen, Himanshu V. Save, Ki-Weon Seo, Bernd Scheuchl, Ernst J. O. Schrama, Ludwig Schröder, Sebastian B. Simonsen, Thomas Slater, Giorgio Spada, Tyler C. Sutterley, Bramha Dutt Vishwakarma, Jan Melchior van Wessem, David Wiese, Wouter van der Wal, and Bert Wouters
Earth Syst. Sci. Data, 15, 1597–1616, https://doi.org/10.5194/essd-15-1597-2023, https://doi.org/10.5194/essd-15-1597-2023, 2023
Short summary
Short summary
By measuring changes in the volume, gravitational attraction, and ice flow of Greenland and Antarctica from space, we can monitor their mass gain and loss over time. Here, we present a new record of the Earth’s polar ice sheet mass balance produced by aggregating 50 satellite-based estimates of ice sheet mass change. This new assessment shows that the ice sheets have lost (7.5 x 1012) t of ice between 1992 and 2020, contributing 21 mm to sea level rise.
Sanne B. M. Veldhuijsen, Willem Jan van de Berg, Max Brils, Peter Kuipers Munneke, and Michiel R. van den Broeke
The Cryosphere, 17, 1675–1696, https://doi.org/10.5194/tc-17-1675-2023, https://doi.org/10.5194/tc-17-1675-2023, 2023
Short summary
Short summary
Firn is the transition of snow to glacier ice and covers 99 % of the Antarctic ice sheet. Knowledge about the firn layer and its variability is important, as it impacts satellite-based estimates of ice sheet mass change. Also, firn contains pores in which nearly all of the surface melt is retained. Here, we improve a semi-empirical firn model and simulate the firn characteristics for the period 1979–2020. We evaluate the performance with field and satellite measures and test its sensitivity.
Marte G. Hofsteenge, Nicolas J. Cullen, Carleen H. Reijmer, Michiel van den Broeke, Marwan Katurji, and John F. Orwin
The Cryosphere, 16, 5041–5059, https://doi.org/10.5194/tc-16-5041-2022, https://doi.org/10.5194/tc-16-5041-2022, 2022
Short summary
Short summary
In the McMurdo Dry Valleys (MDV), foehn winds can impact glacial meltwater production and the fragile ecosystem that depends on it. We study these dry and warm winds at Joyce Glacier and show they are caused by a different mechanism than that found for nearby valleys, demonstrating the complex interaction of large-scale winds with the mountains in the MDV. We find that foehn winds increase sublimation of ice, increase heating from the atmosphere, and increase the occurrence and rates of melt.
Vincent Verjans, Alexander A. Robel, Helene Seroussi, Lizz Ultee, and Andrew F. Thompson
Geosci. Model Dev., 15, 8269–8293, https://doi.org/10.5194/gmd-15-8269-2022, https://doi.org/10.5194/gmd-15-8269-2022, 2022
Short summary
Short summary
We describe the development of the first large-scale ice sheet model that accounts for stochasticity in a range of processes. Stochasticity allows the impacts of inherently uncertain processes on ice sheets to be represented. This includes climatic uncertainty, as the climate is inherently chaotic. Furthermore, stochastic capabilities also encompass poorly constrained glaciological processes that display strong variability at fine spatiotemporal scales. We present the model and test experiments.
Lena G. Buth, Bert Wouters, Sanne B. M. Veldhuijsen, Stef Lhermitte, Peter Kuipers Munneke, and Michiel R. van den Broeke
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-127, https://doi.org/10.5194/tc-2022-127, 2022
Manuscript not accepted for further review
Short summary
Short summary
Liquid meltwater which is stored in air bubbles in the compacted snow near the surface of Antarctica can affect ice shelf stability. In order to detect the presence of such firn aquifers over large scales, satellite remote sensing is needed. In this paper, we present our new detection method using radar satellite data as well as the results for the whole Antarctic Peninsula. Firn aquifers are found in the north and northwest of the peninsula, in agreement with locations predicted by models.
Max Brils, Peter Kuipers Munneke, Willem Jan van de Berg, and Michiel van den Broeke
Geosci. Model Dev., 15, 7121–7138, https://doi.org/10.5194/gmd-15-7121-2022, https://doi.org/10.5194/gmd-15-7121-2022, 2022
Short summary
Short summary
Firn covers the Greenland ice sheet (GrIS) and can temporarily prevent mass loss. Here, we present the latest version of our firn model, IMAU-FDM, with an application to the GrIS. We improved the density of fallen snow, the firn densification rate and the firn's thermal conductivity. This leads to a higher air content and 10 m temperatures. Furthermore we investigate three case studies and find that the updated model shows greater variability and an increased sensitivity in surface elevation.
Francesca Baldacchino, Mathieu Morlighem, Nicholas R. Golledge, Huw Horgan, and Alena Malyarenko
The Cryosphere, 16, 3723–3738, https://doi.org/10.5194/tc-16-3723-2022, https://doi.org/10.5194/tc-16-3723-2022, 2022
Short summary
Short summary
Understanding how the Ross Ice Shelf will evolve in a warming world is important to the future stability of Antarctica. It remains unclear what changes could drive the largest mass loss in the future and where places are most likely to trigger larger mass losses. Sensitivity maps are modelled showing that the RIS is sensitive to changes in environmental and glaciological controls at regions which are currently experiencing changes. These regions need to be monitored in a warming world.
Joshua K. Cuzzone, Nicolás E. Young, Mathieu Morlighem, Jason P. Briner, and Nicole-Jeanne Schlegel
The Cryosphere, 16, 2355–2372, https://doi.org/10.5194/tc-16-2355-2022, https://doi.org/10.5194/tc-16-2355-2022, 2022
Short summary
Short summary
We use an ice sheet model to determine what influenced the Greenland Ice Sheet to retreat across a portion of southwestern Greenland during the Holocene (about the last 12 000 years). Our simulations, constrained by observations from geologic markers, show that atmospheric warming and ice melt primarily caused the ice sheet to retreat rapidly across this domain. We find, however, that iceberg calving at the interface where the ice meets the ocean significantly influenced ice mass change.
Yannic Fischler, Martin Rückamp, Christian Bischof, Vadym Aizinger, Mathieu Morlighem, and Angelika Humbert
Geosci. Model Dev., 15, 3753–3771, https://doi.org/10.5194/gmd-15-3753-2022, https://doi.org/10.5194/gmd-15-3753-2022, 2022
Short summary
Short summary
Ice sheet models are used to simulate the changes of ice sheets in future but are currently often run in coarse resolution and/or with neglecting important physics to make them affordable in terms of computational costs. We conducted a study simulating the Greenland Ice Sheet in high resolution and adequate physics to test where the ISSM ice sheet code is using most time and what could be done to improve its performance for future computer architectures that allow massive parallel computing.
Christiaan T. van Dalum, Willem Jan van de Berg, and Michiel R. van den Broeke
The Cryosphere, 16, 1071–1089, https://doi.org/10.5194/tc-16-1071-2022, https://doi.org/10.5194/tc-16-1071-2022, 2022
Short summary
Short summary
In this study, we improve the regional climate model RACMO2 and investigate the climate of Antarctica. We have implemented a new radiative transfer and snow albedo scheme and do several sensitivity experiments. When fully tuned, the results compare well with observations and snow temperature profiles improve. Moreover, small changes in the albedo and the investigated processes can lead to a strong overestimation of melt, locally leading to runoff and a reduced surface mass balance.
Blake A. Castleman, Nicole-Jeanne Schlegel, Lambert Caron, Eric Larour, and Ala Khazendar
The Cryosphere, 16, 761–778, https://doi.org/10.5194/tc-16-761-2022, https://doi.org/10.5194/tc-16-761-2022, 2022
Short summary
Short summary
In the described study, we derive an uncertainty range for global mean sea level rise (SLR) contribution from Thwaites Glacier in a 200-year period under an extreme ocean warming scenario. We derive the spatial and vertical resolutions needed for bedrock data acquisition missions in order to limit global mean SLR contribution from Thwaites Glacier to ±2 cm in a 200-year period. We conduct sensitivity experiments in order to present the locations of critical regions in need of accurate mapping.
Thomas Frank, Henning Åkesson, Basile de Fleurian, Mathieu Morlighem, and Kerim H. Nisancioglu
The Cryosphere, 16, 581–601, https://doi.org/10.5194/tc-16-581-2022, https://doi.org/10.5194/tc-16-581-2022, 2022
Short summary
Short summary
The shape of a fjord can promote or inhibit glacier retreat in response to climate change. We conduct experiments with a synthetic setup under idealized conditions in a numerical model to study and quantify the processes involved. We find that friction between ice and fjord is the most important factor and that it is possible to directly link ice discharge and grounding line retreat to fjord topography in a quantitative way.
Kevin Bulthuis and Eric Larour
Geosci. Model Dev., 15, 1195–1217, https://doi.org/10.5194/gmd-15-1195-2022, https://doi.org/10.5194/gmd-15-1195-2022, 2022
Short summary
Short summary
We present and implement a stochastic solver to sample spatially and temporal varying uncertain input parameters in the Ice-sheet and Sea-level System Model, such as ice thickness or surface mass balance. We represent these sources of uncertainty using Gaussian random fields with Matérn covariance function. We generate random samples of this random field using an efficient computational approach based on solving a stochastic partial differential equation.
Alexander A. Robel, Earle Wilson, and Helene Seroussi
The Cryosphere, 16, 451–469, https://doi.org/10.5194/tc-16-451-2022, https://doi.org/10.5194/tc-16-451-2022, 2022
Short summary
Short summary
Warm seawater may intrude as a thin layer below glaciers in contact with the ocean. Mathematical theory predicts that this intrusion may extend over distances of kilometers under realistic conditions. Computer models demonstrate that if this warm seawater causes melting of a glacier bottom, it can cause rates of glacier ice loss and sea level rise to be up to 2 times faster in response to potential future ocean warming.
Thiago Dias dos Santos, Mathieu Morlighem, and Douglas Brinkerhoff
The Cryosphere, 16, 179–195, https://doi.org/10.5194/tc-16-179-2022, https://doi.org/10.5194/tc-16-179-2022, 2022
Short summary
Short summary
Projecting the future evolution of Greenland and Antarctica and their potential contribution to sea level rise often relies on computer simulations carried out by numerical ice sheet models. Here we present a new vertically integrated ice sheet model and assess its performance using different benchmarks. The new model shows results comparable to a three-dimensional model at relatively lower computational cost, suggesting that it is an excellent alternative for long-term simulations.
Zhongyang Hu, Peter Kuipers Munneke, Stef Lhermitte, Maaike Izeboud, and Michiel van den Broeke
The Cryosphere, 15, 5639–5658, https://doi.org/10.5194/tc-15-5639-2021, https://doi.org/10.5194/tc-15-5639-2021, 2021
Short summary
Short summary
Antarctica is shrinking, and part of the mass loss is caused by higher temperatures leading to more snowmelt. We use computer models to estimate the amount of melt, but this can be inaccurate – specifically in the areas with the most melt. This is because the model cannot account for small, darker areas like rocks or darker ice. Thus, we trained a computer using artificial intelligence and satellite images that showed these darker areas. The model computed an improved estimate of melt.
Kenneth D. Mankoff, Xavier Fettweis, Peter L. Langen, Martin Stendel, Kristian K. Kjeldsen, Nanna B. Karlsson, Brice Noël, Michiel R. van den Broeke, Anne Solgaard, William Colgan, Jason E. Box, Sebastian B. Simonsen, Michalea D. King, Andreas P. Ahlstrøm, Signe Bech Andersen, and Robert S. Fausto
Earth Syst. Sci. Data, 13, 5001–5025, https://doi.org/10.5194/essd-13-5001-2021, https://doi.org/10.5194/essd-13-5001-2021, 2021
Short summary
Short summary
We estimate the daily mass balance and its components (surface, marine, and basal mass balance) for the Greenland ice sheet. Our time series begins in 1840 and has annual resolution through 1985 and then daily from 1986 through next week. Results are operational (updated daily) and provided for the entire ice sheet or by commonly used regions or sectors. This is the first input–output mass balance estimate to include the basal mass balance.
Matt O'Regan, Thomas M. Cronin, Brendan Reilly, Aage Kristian Olsen Alstrup, Laura Gemery, Anna Golub, Larry A. Mayer, Mathieu Morlighem, Matthias Moros, Ole L. Munk, Johan Nilsson, Christof Pearce, Henrieka Detlef, Christian Stranne, Flor Vermassen, Gabriel West, and Martin Jakobsson
The Cryosphere, 15, 4073–4097, https://doi.org/10.5194/tc-15-4073-2021, https://doi.org/10.5194/tc-15-4073-2021, 2021
Short summary
Short summary
Ryder Glacier is a marine-terminating glacier in north Greenland discharging ice into the Lincoln Sea. Here we use marine sediment cores to reconstruct its retreat and advance behavior through the Holocene. We show that while Sherard Osborn Fjord has a physiography conducive to glacier and ice tongue stability, Ryder still retreated more than 40 km inland from its current position by the Middle Holocene. This highlights the sensitivity of north Greenland's marine glaciers to climate change.
Maurice van Tiggelen, Paul C. J. P. Smeets, Carleen H. Reijmer, Bert Wouters, Jakob F. Steiner, Emile J. Nieuwstraten, Walter W. Immerzeel, and Michiel R. van den Broeke
The Cryosphere, 15, 2601–2621, https://doi.org/10.5194/tc-15-2601-2021, https://doi.org/10.5194/tc-15-2601-2021, 2021
Short summary
Short summary
We developed a method to estimate the aerodynamic properties of the Greenland Ice Sheet surface using either UAV or ICESat-2 elevation data. We show that this new method is able to reproduce the important spatiotemporal variability in surface aerodynamic roughness, measured by the field observations. The new maps of surface roughness can be used in atmospheric models to improve simulations of surface turbulent heat fluxes and therefore surface energy and mass balance over rough ice worldwide.
Thiago Dias dos Santos, Mathieu Morlighem, and Hélène Seroussi
Geosci. Model Dev., 14, 2545–2573, https://doi.org/10.5194/gmd-14-2545-2021, https://doi.org/10.5194/gmd-14-2545-2021, 2021
Short summary
Short summary
Numerical models are routinely used to understand the past and future behavior of ice sheets in response to climate evolution. As is always the case with numerical modeling, one needs to minimize biases and numerical artifacts due to the choice of numerical scheme employed in such models. Here, we assess different numerical schemes in time-dependent simulations of ice sheets. We also introduce a new parameterization for the driving stress, the force that drives the ice sheet flow.
Jowan M. Barnes, Thiago Dias dos Santos, Daniel Goldberg, G. Hilmar Gudmundsson, Mathieu Morlighem, and Jan De Rydt
The Cryosphere, 15, 1975–2000, https://doi.org/10.5194/tc-15-1975-2021, https://doi.org/10.5194/tc-15-1975-2021, 2021
Short summary
Short summary
Some properties of ice flow models must be initialised using observed data before they can be used to produce reliable predictions of the future. Different models have different ways of doing this, and the process is generally seen as being specific to an individual model. We compare the methods used by three different models and show that they produce similar outputs. We also demonstrate that the outputs from one model can be used in other models without introducing large uncertainties.
Christiaan T. van Dalum, Willem Jan van de Berg, and Michiel R. van den Broeke
The Cryosphere, 15, 1823–1844, https://doi.org/10.5194/tc-15-1823-2021, https://doi.org/10.5194/tc-15-1823-2021, 2021
Short summary
Short summary
Absorption of solar radiation is often limited to the surface in regional climate models. Therefore, we have implemented a new radiative transfer scheme in the model RACMO2, which allows for internal heating and improves the surface reflectivity. Here, we evaluate its impact on the surface mass and energy budget and (sub)surface temperature, by using observations and the previous model version for the Greenland ice sheet. New results match better with observations and introduce subsurface melt.
Daniel Cheng, Wayne Hayes, Eric Larour, Yara Mohajerani, Michael Wood, Isabella Velicogna, and Eric Rignot
The Cryosphere, 15, 1663–1675, https://doi.org/10.5194/tc-15-1663-2021, https://doi.org/10.5194/tc-15-1663-2021, 2021
Short summary
Short summary
Tracking changes in Greenland's glaciers is important for understanding Earth's climate, but it is time consuming to do so by hand. We train a program, called CALFIN, to automatically track these changes with human levels of accuracy. CALFIN is a special type of program called a neural network. This method can be applied to other glaciers and eventually other tracking tasks. This will enhance our understanding of the Greenland Ice Sheet and permit better models of Earth's climate.
J. Melchior van Wessem, Christian R. Steger, Nander Wever, and Michiel R. van den Broeke
The Cryosphere, 15, 695–714, https://doi.org/10.5194/tc-15-695-2021, https://doi.org/10.5194/tc-15-695-2021, 2021
Short summary
Short summary
This study presents the first modelled estimates of perennial firn aquifers (PFAs) in Antarctica. PFAs are subsurface meltwater bodies that do not refreeze in winter due to the isolating effects of the snow they are buried underneath. They were first identified in Greenland, but conditions for their existence are also present in the Antarctic Peninsula. These PFAs can have important effects on meltwater retention, ice shelf stability, and, consequently, sea level rise.
William H. Lipscomb, Gunter R. Leguy, Nicolas C. Jourdain, Xylar Asay-Davis, Hélène Seroussi, and Sophie Nowicki
The Cryosphere, 15, 633–661, https://doi.org/10.5194/tc-15-633-2021, https://doi.org/10.5194/tc-15-633-2021, 2021
Short summary
Short summary
This paper describes Antarctic climate change experiments in which the Community Ice Sheet Model is forced with ocean warming predicted by global climate models. Generally, ice loss begins slowly, accelerates by 2100, and then continues unabated, with widespread retreat of the West Antarctic Ice Sheet. The mass loss by 2500 varies from about 150 to 1300 mm of equivalent sea level rise, based on the predicted ocean warming and assumptions about how this warming drives melting beneath ice shelves.
Baojuan Huai, Michiel R. van den Broeke, and Carleen H. Reijmer
The Cryosphere, 14, 4181–4199, https://doi.org/10.5194/tc-14-4181-2020, https://doi.org/10.5194/tc-14-4181-2020, 2020
Short summary
Short summary
This study presents the surface energy balance (SEB) of the Greenland Ice Sheet (GrIS) using a SEB model forced with observations from automatic weather stations (AWSs). We correlate ERA5 with AWSs to show a significant positive correlation of GrIS summer surface temperature and melt with the Greenland Blocking Index and weaker and opposite correlations with the North Atlantic Oscillation. This analysis may help explain melting patterns in the GrIS with respect to circulation anomalies.
Xiangbin Cui, Hafeez Jeofry, Jamin S. Greenbaum, Jingxue Guo, Lin Li, Laura E. Lindzey, Feras A. Habbal, Wei Wei, Duncan A. Young, Neil Ross, Mathieu Morlighem, Lenneke M. Jong, Jason L. Roberts, Donald D. Blankenship, Sun Bo, and Martin J. Siegert
Earth Syst. Sci. Data, 12, 2765–2774, https://doi.org/10.5194/essd-12-2765-2020, https://doi.org/10.5194/essd-12-2765-2020, 2020
Short summary
Short summary
We present a topographic digital elevation model (DEM) for Princess Elizabeth Land (PEL), East Antarctica. The DEM covers an area of approximately 900 000 km2 and was built from radio-echo sounding data collected in four campaigns since 2015. Previously, to generate the Bedmap2 topographic product, PEL’s bed was characterised from low-resolution satellite gravity data across an otherwise large (>200 km wide) data-free zone.
Xavier Fettweis, Stefan Hofer, Uta Krebs-Kanzow, Charles Amory, Teruo Aoki, Constantijn J. Berends, Andreas Born, Jason E. Box, Alison Delhasse, Koji Fujita, Paul Gierz, Heiko Goelzer, Edward Hanna, Akihiro Hashimoto, Philippe Huybrechts, Marie-Luise Kapsch, Michalea D. King, Christoph Kittel, Charlotte Lang, Peter L. Langen, Jan T. M. Lenaerts, Glen E. Liston, Gerrit Lohmann, Sebastian H. Mernild, Uwe Mikolajewicz, Kameswarrao Modali, Ruth H. Mottram, Masashi Niwano, Brice Noël, Jonathan C. Ryan, Amy Smith, Jan Streffing, Marco Tedesco, Willem Jan van de Berg, Michiel van den Broeke, Roderik S. W. van de Wal, Leo van Kampenhout, David Wilton, Bert Wouters, Florian Ziemen, and Tobias Zolles
The Cryosphere, 14, 3935–3958, https://doi.org/10.5194/tc-14-3935-2020, https://doi.org/10.5194/tc-14-3935-2020, 2020
Short summary
Short summary
We evaluated simulated Greenland Ice Sheet surface mass balance from 5 kinds of models. While the most complex (but expensive to compute) models remain the best, the faster/simpler models also compare reliably with observations and have biases of the same order as the regional models. Discrepancies in the trend over 2000–2012, however, suggest that large uncertainties remain in the modelled future SMB changes as they are highly impacted by the meltwater runoff biases over the current climate.
Christiaan T. van Dalum, Willem Jan van de Berg, Stef Lhermitte, and Michiel R. van den Broeke
The Cryosphere, 14, 3645–3662, https://doi.org/10.5194/tc-14-3645-2020, https://doi.org/10.5194/tc-14-3645-2020, 2020
Short summary
Short summary
The reflectivity of sunlight, which is also known as albedo, is often inadequately modeled in regional climate models. Therefore, we have implemented a new snow and ice albedo scheme in the regional climate model RACMO2. In this study, we evaluate a new RACMO2 version for the Greenland ice sheet by using observations and the previous model version. RACMO2 output compares well with observations, and by including new processes we improve the ability of RACMO2 to make future climate projections.
Eric Larour, Lambert Caron, Mathieu Morlighem, Surendra Adhikari, Thomas Frederikse, Nicole-Jeanne Schlegel, Erik Ivins, Benjamin Hamlington, Robert Kopp, and Sophie Nowicki
Geosci. Model Dev., 13, 4925–4941, https://doi.org/10.5194/gmd-13-4925-2020, https://doi.org/10.5194/gmd-13-4925-2020, 2020
Short summary
Short summary
ISSM-SLPS is a new projection system for future sea level that increases the resolution and accuracy of current projection systems and improves the way uncertainty is treated in such projections. This will pave the way for better inclusion of state-of-the-art results from existing intercomparison efforts carried out by the scientific community, such as GlacierMIP2 or ISMIP6, into sea-level projections.
Martin Rückamp, Angelika Humbert, Thomas Kleiner, Mathieu Morlighem, and Helene Seroussi
Geosci. Model Dev., 13, 4491–4501, https://doi.org/10.5194/gmd-13-4491-2020, https://doi.org/10.5194/gmd-13-4491-2020, 2020
Short summary
Short summary
We present enthalpy formulations within the Ice-Sheet and Sea-Level System model that show better performance than earlier implementations. A first experiment indicates that the treatment of discontinuous conductivities of the solid–fluid system with a geometric mean produce accurate results when applied to coarse vertical resolutions. In a second experiment, we propose a novel stabilization formulation that avoids the problem of thin elements. This method provides accurate and stable results.
Nicolas C. Jourdain, Xylar Asay-Davis, Tore Hattermann, Fiammetta Straneo, Hélène Seroussi, Christopher M. Little, and Sophie Nowicki
The Cryosphere, 14, 3111–3134, https://doi.org/10.5194/tc-14-3111-2020, https://doi.org/10.5194/tc-14-3111-2020, 2020
Short summary
Short summary
To predict the future Antarctic contribution to sea level rise, we need to use ice sheet models. The Ice Sheet Model Intercomparison Project for AR6 (ISMIP6) builds an ensemble of ice sheet projections constrained by atmosphere and ocean projections from the 6th Coupled Model Intercomparison Project (CMIP6). In this work, we present and assess a method to derive ice shelf basal melting in ISMIP6 from the CMIP6 ocean outputs, and we give examples of projected melt rates.
Heiko Goelzer, Sophie Nowicki, Anthony Payne, Eric Larour, Helene Seroussi, William H. Lipscomb, Jonathan Gregory, Ayako Abe-Ouchi, Andrew Shepherd, Erika Simon, Cécile Agosta, Patrick Alexander, Andy Aschwanden, Alice Barthel, Reinhard Calov, Christopher Chambers, Youngmin Choi, Joshua Cuzzone, Christophe Dumas, Tamsin Edwards, Denis Felikson, Xavier Fettweis, Nicholas R. Golledge, Ralf Greve, Angelika Humbert, Philippe Huybrechts, Sebastien Le clec'h, Victoria Lee, Gunter Leguy, Chris Little, Daniel P. Lowry, Mathieu Morlighem, Isabel Nias, Aurelien Quiquet, Martin Rückamp, Nicole-Jeanne Schlegel, Donald A. Slater, Robin S. Smith, Fiamma Straneo, Lev Tarasov, Roderik van de Wal, and Michiel van den Broeke
The Cryosphere, 14, 3071–3096, https://doi.org/10.5194/tc-14-3071-2020, https://doi.org/10.5194/tc-14-3071-2020, 2020
Short summary
Short summary
In this paper we use a large ensemble of Greenland ice sheet models forced by six different global climate models to project ice sheet changes and sea-level rise contributions over the 21st century.
The results for two different greenhouse gas concentration scenarios indicate that the Greenland ice sheet will continue to lose mass until 2100, with contributions to sea-level rise of 90 ± 50 mm and 32 ± 17 mm for the high (RCP8.5) and low (RCP2.6) scenario, respectively.
Hélène Seroussi, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 14, 3033–3070, https://doi.org/10.5194/tc-14-3033-2020, https://doi.org/10.5194/tc-14-3033-2020, 2020
Short summary
Short summary
The Antarctic ice sheet has been losing mass over at least the past 3 decades in response to changes in atmospheric and oceanic conditions. This study presents an ensemble of model simulations of the Antarctic evolution over the 2015–2100 period based on various ice sheet models, climate forcings and emission scenarios. Results suggest that the West Antarctic ice sheet will continue losing a large amount of ice, while the East Antarctic ice sheet could experience increased snow accumulation.
Ronja Reese, Anders Levermann, Torsten Albrecht, Hélène Seroussi, and Ricarda Winkelmann
The Cryosphere, 14, 3097–3110, https://doi.org/10.5194/tc-14-3097-2020, https://doi.org/10.5194/tc-14-3097-2020, 2020
Short summary
Short summary
We compare 21st century projections of Antarctica's future sea-level contribution simulated with the Parallel Ice Sheet Model submitted to ISMIP6 with projections following the LARMIP-2 protocol based on the same model configuration. We find that (1) a preceding historic simulation increases mass loss by 5–50 % and that (2) the order of magnitude difference in the ice loss in our experiments following the two protocols can be explained by the translation of ocean forcing to sub-shelf melting.
Surendra Adhikari, Erik R. Ivins, Eric Larour, Lambert Caron, and Helene Seroussi
The Cryosphere, 14, 2819–2833, https://doi.org/10.5194/tc-14-2819-2020, https://doi.org/10.5194/tc-14-2819-2020, 2020
Short summary
Short summary
The mathematical formalism presented in this paper aims at simplifying computational strategies for tracking ice–ocean mass exchange in the Earth system. To this end, we define a set of generic, and quite simple, descriptions of evolving land, ocean and ice interfaces and present a unified method to compute the sea-level contribution of evolving ice sheets. The formalism can be applied to arbitrary geometries and at all timescales.
Sophie Nowicki, Heiko Goelzer, Hélène Seroussi, Anthony J. Payne, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Patrick Alexander, Xylar S. Asay-Davis, Alice Barthel, Thomas J. Bracegirdle, Richard Cullather, Denis Felikson, Xavier Fettweis, Jonathan M. Gregory, Tore Hattermann, Nicolas C. Jourdain, Peter Kuipers Munneke, Eric Larour, Christopher M. Little, Mathieu Morlighem, Isabel Nias, Andrew Shepherd, Erika Simon, Donald Slater, Robin S. Smith, Fiammetta Straneo, Luke D. Trusel, Michiel R. van den Broeke, and Roderik van de Wal
The Cryosphere, 14, 2331–2368, https://doi.org/10.5194/tc-14-2331-2020, https://doi.org/10.5194/tc-14-2331-2020, 2020
Short summary
Short summary
This paper describes the experimental protocol for ice sheet models taking part in the Ice Sheet Model Intercomparion Project for CMIP6 (ISMIP6) and presents an overview of the atmospheric and oceanic datasets to be used for the simulations. The ISMIP6 framework allows for exploring the uncertainty in 21st century sea level change from the Greenland and Antarctic ice sheets.
Stephen L. Cornford, Helene Seroussi, Xylar S. Asay-Davis, G. Hilmar Gudmundsson, Rob Arthern, Chris Borstad, Julia Christmann, Thiago Dias dos Santos, Johannes Feldmann, Daniel Goldberg, Matthew J. Hoffman, Angelika Humbert, Thomas Kleiner, Gunter Leguy, William H. Lipscomb, Nacho Merino, Gaël Durand, Mathieu Morlighem, David Pollard, Martin Rückamp, C. Rosie Williams, and Hongju Yu
The Cryosphere, 14, 2283–2301, https://doi.org/10.5194/tc-14-2283-2020, https://doi.org/10.5194/tc-14-2283-2020, 2020
Short summary
Short summary
We present the results of the third Marine Ice Sheet Intercomparison Project (MISMIP+). MISMIP+ is one in a series of exercises that test numerical models of ice sheet flow in simple situations. This particular exercise concentrates on the response of ice sheet models to the thinning of their floating ice shelves, which is of interest because numerical models are currently used to model the response to contemporary and near-future thinning in Antarctic ice shelves.
Michael Kern, Robert Cullen, Bruno Berruti, Jerome Bouffard, Tania Casal, Mark R. Drinkwater, Antonio Gabriele, Arnaud Lecuyot, Michael Ludwig, Rolv Midthassel, Ignacio Navas Traver, Tommaso Parrinello, Gerhard Ressler, Erik Andersson, Cristina Martin-Puig, Ole Andersen, Annett Bartsch, Sinead Farrell, Sara Fleury, Simon Gascoin, Amandine Guillot, Angelika Humbert, Eero Rinne, Andrew Shepherd, Michiel R. van den Broeke, and John Yackel
The Cryosphere, 14, 2235–2251, https://doi.org/10.5194/tc-14-2235-2020, https://doi.org/10.5194/tc-14-2235-2020, 2020
Short summary
Short summary
The Copernicus Polar Ice and Snow Topography Altimeter will provide high-resolution sea ice thickness and land ice elevation measurements and the capability to determine the properties of snow cover on ice to serve operational products and services of direct relevance to the polar regions. This paper describes the mission objectives, identifies the key contributions the CRISTAL mission will make, and presents a concept – as far as it is already defined – for the mission payload.
Heiko Goelzer, Brice P. Y. Noël, Tamsin L. Edwards, Xavier Fettweis, Jonathan M. Gregory, William H. Lipscomb, Roderik S. W. van de Wal, and Michiel R. van den Broeke
The Cryosphere, 14, 1747–1762, https://doi.org/10.5194/tc-14-1747-2020, https://doi.org/10.5194/tc-14-1747-2020, 2020
Short summary
Short summary
Future sea-level change projections with process-based ice sheet models are typically driven with surface mass balance forcing derived from climate models. In this work we address the problems arising from a mismatch of the modelled ice sheet geometry with the one used by the climate model. The proposed remapping method reproduces the original forcing data closely when applied to the original geometry and produces a physically meaningful forcing when applied to different modelled geometries.
Brice Noël, Leonardus van Kampenhout, Willem Jan van de Berg, Jan T. M. Lenaerts, Bert Wouters, and Michiel R. van den Broeke
The Cryosphere, 14, 1425–1435, https://doi.org/10.5194/tc-14-1425-2020, https://doi.org/10.5194/tc-14-1425-2020, 2020
Short summary
Short summary
We present a reconstruction of historical (1950–2014) surface mass balance of the Greenland ice sheet using the Community Earth System Model (CESM2; ~111 km) to force a high-resolution regional climate model (RACMO2; ~11 km), which is further refined to 1 km spatial resolution. For the first time, an Earth-system-model-based product, assimilating no observations, can reconstruct realistic historical ice sheet surface mass balance as well as the mass loss acceleration that started in the 1990s.
Donald A. Slater, Denis Felikson, Fiamma Straneo, Heiko Goelzer, Christopher M. Little, Mathieu Morlighem, Xavier Fettweis, and Sophie Nowicki
The Cryosphere, 14, 985–1008, https://doi.org/10.5194/tc-14-985-2020, https://doi.org/10.5194/tc-14-985-2020, 2020
Short summary
Short summary
Changes in the ocean around Greenland play an important role in determining how much the ice sheet will contribute to global sea level over the coming century. However, capturing these links in models is very challenging. This paper presents a strategy enabling an ensemble of ice sheet models to feel the effect of the ocean for the first time and should therefore result in a significant improvement in projections of the Greenland ice sheet's contribution to future sea level change.
Alice Barthel, Cécile Agosta, Christopher M. Little, Tore Hattermann, Nicolas C. Jourdain, Heiko Goelzer, Sophie Nowicki, Helene Seroussi, Fiammetta Straneo, and Thomas J. Bracegirdle
The Cryosphere, 14, 855–879, https://doi.org/10.5194/tc-14-855-2020, https://doi.org/10.5194/tc-14-855-2020, 2020
Short summary
Short summary
We compare existing coupled climate models to select a total of six models to provide forcing to the Greenland and Antarctic ice sheet simulations of the Ice Sheet Model Intercomparison Project (ISMIP6). We select models based on (i) their representation of current climate near Antarctica and Greenland relative to observations and (ii) their ability to sample a diversity of projected atmosphere and ocean changes over the 21st century.
Silje Smith-Johnsen, Basile de Fleurian, Nicole Schlegel, Helene Seroussi, and Kerim Nisancioglu
The Cryosphere, 14, 841–854, https://doi.org/10.5194/tc-14-841-2020, https://doi.org/10.5194/tc-14-841-2020, 2020
Short summary
Short summary
The Northeast Greenland Ice Stream (NEGIS) drains a large part of Greenland and displays fast flow far inland. However, the flow pattern is not well represented in ice sheet models. The fast flow has been explained by abnormally high geothermal heat flux. The heat melts the base of the ice sheet and the water produced may lubricate the bed and induce fast flow. By including high geothermal heat flux and a hydrology model, we successfully reproduce NEGIS flow pattern in an ice sheet model.
Anders Levermann, Ricarda Winkelmann, Torsten Albrecht, Heiko Goelzer, Nicholas R. Golledge, Ralf Greve, Philippe Huybrechts, Jim Jordan, Gunter Leguy, Daniel Martin, Mathieu Morlighem, Frank Pattyn, David Pollard, Aurelien Quiquet, Christian Rodehacke, Helene Seroussi, Johannes Sutter, Tong Zhang, Jonas Van Breedam, Reinhard Calov, Robert DeConto, Christophe Dumas, Julius Garbe, G. Hilmar Gudmundsson, Matthew J. Hoffman, Angelika Humbert, Thomas Kleiner, William H. Lipscomb, Malte Meinshausen, Esmond Ng, Sophie M. J. Nowicki, Mauro Perego, Stephen F. Price, Fuyuki Saito, Nicole-Jeanne Schlegel, Sainan Sun, and Roderik S. W. van de Wal
Earth Syst. Dynam., 11, 35–76, https://doi.org/10.5194/esd-11-35-2020, https://doi.org/10.5194/esd-11-35-2020, 2020
Short summary
Short summary
We provide an estimate of the future sea level contribution of Antarctica from basal ice shelf melting up to the year 2100. The full uncertainty range in the warming-related forcing of basal melt is estimated and applied to 16 state-of-the-art ice sheet models using a linear response theory approach. The sea level contribution we obtain is very likely below 61 cm under unmitigated climate change until 2100 (RCP8.5) and very likely below 40 cm if the Paris Climate Agreement is kept.
Matthias O. Willen, Martin Horwath, Ludwig Schröder, Andreas Groh, Stefan R. M. Ligtenberg, Peter Kuipers Munneke, and Michiel R. van den Broeke
The Cryosphere, 14, 349–366, https://doi.org/10.5194/tc-14-349-2020, https://doi.org/10.5194/tc-14-349-2020, 2020
Christiaan T. van Dalum, Willem Jan van de Berg, Quentin Libois, Ghislain Picard, and Michiel R. van den Broeke
Geosci. Model Dev., 12, 5157–5175, https://doi.org/10.5194/gmd-12-5157-2019, https://doi.org/10.5194/gmd-12-5157-2019, 2019
Short summary
Short summary
Climate models are often limited to relatively simple snow albedo schemes. Therefore, we have developed the SNOWBAL module to couple a climate model with a physically based wavelength dependent snow albedo model. Using SNOWBAL v1.2 to couple the snow albedo model TARTES with the regional climate model RACMO2 indicates a potential performance gain for the Greenland ice sheet.
Vincent Verjans, Amber A. Leeson, C. Max Stevens, Michael MacFerrin, Brice Noël, and Michiel R. van den Broeke
The Cryosphere, 13, 1819–1842, https://doi.org/10.5194/tc-13-1819-2019, https://doi.org/10.5194/tc-13-1819-2019, 2019
Short summary
Short summary
Firn models rely on empirical approaches for representing the percolation and refreezing of meltwater through the firn column. We develop liquid water schemes of different levels of complexity for firn models and compare their performances with respect to observations of density profiles from Greenland. Our results demonstrate that physically advanced water schemes do not lead to better agreement with density observations. Uncertainties in other processes contribute more to model discrepancy.
Tyler C. Sutterley, Thorsten Markus, Thomas A. Neumann, Michiel van den Broeke, J. Melchior van Wessem, and Stefan R. M. Ligtenberg
The Cryosphere, 13, 1801–1817, https://doi.org/10.5194/tc-13-1801-2019, https://doi.org/10.5194/tc-13-1801-2019, 2019
Short summary
Short summary
Most of the Antarctic ice sheet is fringed by ice shelves, floating extensions of ice that help to modulate the flow of the glaciers that float into them. We use airborne laser altimetry data to measure changes in ice thickness of ice shelves around West Antarctica and the Antarctic Peninsula. Each of our target ice shelves is susceptible to short-term changes in ice thickness. The method developed here provides a framework for processing NASA ICESat-2 data over ice shelves.
Leonardus van Kampenhout, Alan M. Rhoades, Adam R. Herrington, Colin M. Zarzycki, Jan T. M. Lenaerts, William J. Sacks, and Michiel R. van den Broeke
The Cryosphere, 13, 1547–1564, https://doi.org/10.5194/tc-13-1547-2019, https://doi.org/10.5194/tc-13-1547-2019, 2019
Short summary
Short summary
A new tool is evaluated in which the climate and surface mass balance (SMB) of the Greenland ice sheet are resolved at 55 and 28 km resolution, while the rest of the globe is modelled at ~110 km. The local refinement of resolution leads to improved accumulation (SMB > 0) compared to observations; however ablation (SMB < 0) is deteriorated in some regions. This is attributed to changes in cloud cover and a reduced effectiveness of a model-specific vertical downscaling technique.
Constantijn L. Jakobs, Carleen H. Reijmer, Peter Kuipers Munneke, Gert König-Langlo, and Michiel R. van den Broeke
The Cryosphere, 13, 1473–1485, https://doi.org/10.5194/tc-13-1473-2019, https://doi.org/10.5194/tc-13-1473-2019, 2019
Short summary
Short summary
We use 24 years of observations at Neumayer Station, East Antarctica, to calculate the surface energy balance and the associated surface melt, which we find to be mainly driven by the absorption of solar radiation. Meltwater can refreeze in the subsurface snow layers, thereby decreasing the surface albedo and hence allowing for more absorption of solar radiation. By implementing an albedo parameterisation, we show that this feedback accounts for a threefold increase in surface melt at Neumayer.
Hélène Seroussi, Sophie Nowicki, Erika Simon, Ayako Abe-Ouchi, Torsten Albrecht, Julien Brondex, Stephen Cornford, Christophe Dumas, Fabien Gillet-Chaulet, Heiko Goelzer, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Thomas Kleiner, Eric Larour, Gunter Leguy, William H. Lipscomb, Daniel Lowry, Matthias Mengel, Mathieu Morlighem, Frank Pattyn, Anthony J. Payne, David Pollard, Stephen F. Price, Aurélien Quiquet, Thomas J. Reerink, Ronja Reese, Christian B. Rodehacke, Nicole-Jeanne Schlegel, Andrew Shepherd, Sainan Sun, Johannes Sutter, Jonas Van Breedam, Roderik S. W. van de Wal, Ricarda Winkelmann, and Tong Zhang
The Cryosphere, 13, 1441–1471, https://doi.org/10.5194/tc-13-1441-2019, https://doi.org/10.5194/tc-13-1441-2019, 2019
Short summary
Short summary
We compare a wide range of Antarctic ice sheet simulations with varying initialization techniques and model parameters to understand the role they play on the projected evolution of this ice sheet under simple scenarios. Results are improved compared to previous assessments and show that continued improvements in the representation of the floating ice around Antarctica are critical to reduce the uncertainty in the future ice sheet contribution to sea level rise.
Tyler Pelle, Mathieu Morlighem, and Johannes H. Bondzio
The Cryosphere, 13, 1043–1049, https://doi.org/10.5194/tc-13-1043-2019, https://doi.org/10.5194/tc-13-1043-2019, 2019
Short summary
Short summary
How ocean-induced melt under floating ice shelves will change as ocean currents evolve remains a big uncertainty in projections of sea level rise. In this study, we combine two of the most recently developed melt models to form PICOP, which overcomes the limitations of past models and produces accurate ice shelf melt rates. We find that our model is easy to set up and computationally efficient, providing researchers an important tool to improve the accuracy of their future glacial projections.
Joshua K. Cuzzone, Nicole-Jeanne Schlegel, Mathieu Morlighem, Eric Larour, Jason P. Briner, Helene Seroussi, and Lambert Caron
The Cryosphere, 13, 879–893, https://doi.org/10.5194/tc-13-879-2019, https://doi.org/10.5194/tc-13-879-2019, 2019
Short summary
Short summary
We present ice sheet modeling results of ice retreat over southwestern Greenland during the last 12 000 years, and we also test the impact that model horizontal resolution has on differences in the simulated spatial retreat and its associated rate. Results indicate that model resolution plays a minor role in simulated retreat in areas where bed topography is not complex but plays an important role in areas where bed topography is complex (such as fjords).
Mathieu Morlighem, Michael Wood, Hélène Seroussi, Youngmin Choi, and Eric Rignot
The Cryosphere, 13, 723–734, https://doi.org/10.5194/tc-13-723-2019, https://doi.org/10.5194/tc-13-723-2019, 2019
Short summary
Short summary
Many glaciers along the coast of Greenland have been retreating. It has been suggested that this retreat is triggered by the presence of warm water in the fjords, and surface melt at the top of the ice sheet is exacerbating this problem. Here, we quantify the vulnerability of northwestern Greenland to further warming using a numerical model. We find that in current conditions, this sector alone will contribute more than 1 cm to sea rise level by 2100, and up to 3 cm in the most extreme scenario.
Ludwig Schröder, Martin Horwath, Reinhard Dietrich, Veit Helm, Michiel R. van den Broeke, and Stefan R. M. Ligtenberg
The Cryosphere, 13, 427–449, https://doi.org/10.5194/tc-13-427-2019, https://doi.org/10.5194/tc-13-427-2019, 2019
Short summary
Short summary
We developed an approach to combine measurements of seven satellite altimetry missions over the Antarctic Ice Sheet. Our resulting monthly grids of elevation changes between 1978 and 2017 provide unprecedented details of the long-term and interannual variation. Derived mass changes agree well with contemporaneous data of surface mass balance and satellite gravimetry and show which regions were responsible for the significant accelerations of mass loss in recent years.
Cécile Agosta, Charles Amory, Christoph Kittel, Anais Orsi, Vincent Favier, Hubert Gallée, Michiel R. van den Broeke, Jan T. M. Lenaerts, Jan Melchior van Wessem, Willem Jan van de Berg, and Xavier Fettweis
The Cryosphere, 13, 281–296, https://doi.org/10.5194/tc-13-281-2019, https://doi.org/10.5194/tc-13-281-2019, 2019
Short summary
Short summary
Antarctic surface mass balance (ASMB), a component of the sea level budget, is commonly estimated through modelling as observations are scarce. The polar-oriented regional climate model MAR performs well in simulating the observed ASMB. MAR and RACMO2 share common biases we relate to drifting snow transport, with a 3 times larger magnitude than in previous estimates. Sublimation of precipitation in the katabatic layer modelled by MAR is of a magnitude similar to an observation-based estimate.
Thiago Dias dos Santos, Mathieu Morlighem, Hélène Seroussi, Philippe Remy Bernard Devloo, and Jefferson Cardia Simões
Geosci. Model Dev., 12, 215–232, https://doi.org/10.5194/gmd-12-215-2019, https://doi.org/10.5194/gmd-12-215-2019, 2019
Short summary
Short summary
The reduction of numerical errors in ice sheet modeling increases the results' accuracy reliability. We improve numerical accuracy by better capturing grounding line dynamics, while maintaining a low computational cost. We implement an adaptive mesh refinement (AMR) technique in the Ice Sheet System Model and compare AMR simulations with uniformly refined meshes. Our results show that the computational time with AMR is significantly shorter than for uniformly refined meshes for a given accuracy.
Hongju Yu, Eric Rignot, Helene Seroussi, and Mathieu Morlighem
The Cryosphere, 12, 3861–3876, https://doi.org/10.5194/tc-12-3861-2018, https://doi.org/10.5194/tc-12-3861-2018, 2018
Short summary
Short summary
Thwaites Glacier, West Antarctica, has experienced rapid grounding line retreat and mass loss in the past decades. In this study, we simulate the evolution of Thwaites Glacier over the next century using different model configurations. Overall, we estimate a 5 mm contribution to global sea level rise from Thwaites Glacier in the next 30 years. However, a 300 % uncertainty is found over the next 100 years, ranging from 14 to 42 mm, depending on the model setup.
Michalea D. King, Ian M. Howat, Seongsu Jeong, Myoung J. Noh, Bert Wouters, Brice Noël, and Michiel R. van den Broeke
The Cryosphere, 12, 3813–3825, https://doi.org/10.5194/tc-12-3813-2018, https://doi.org/10.5194/tc-12-3813-2018, 2018
Short summary
Short summary
We derive the first continuous record of total ice discharged from all large Greenland outlet glaciers over the 2000–2016 period, resolving a distinct pattern of seasonal variability. We compare these results to glacier retreat and meltwater runoff and find that while runoff has a limited impact on ice discharge in summer, long-term changes in discharge are highly correlated to retreat. These results help to better understand Greenland outlet glacier sensitivity over a range of timescales.
Youngmin Choi, Mathieu Morlighem, Michael Wood, and Johannes H. Bondzio
The Cryosphere, 12, 3735–3746, https://doi.org/10.5194/tc-12-3735-2018, https://doi.org/10.5194/tc-12-3735-2018, 2018
Short summary
Short summary
Calving is an important mechanism that controls the dynamics of Greenland outlet glaciers. We test and compare four calving laws and assess which calving law has better predictive abilities. Overall, the calving law based on von Mises stress is more satisfactory than other laws, but new parameterizations should be derived to better capture the detailed processes involved in calving.
Veronika Emetc, Paul Tregoning, Mathieu Morlighem, Chris Borstad, and Malcolm Sambridge
The Cryosphere, 12, 3187–3213, https://doi.org/10.5194/tc-12-3187-2018, https://doi.org/10.5194/tc-12-3187-2018, 2018
Short summary
Short summary
The paper includes a model that can be used to predict zones of fracture formation in both floating and grounded ice in Antarctica. We used observations and a statistics-based model to predict fractures in most ice shelves in Antarctica as an alternative to the damage-based approach. We can predict the location of observed fractures with an average success rate of 84% for grounded ice and 61% for floating ice and mean overestimation error of 26% and 20%, respectively.
Hélène Seroussi and Mathieu Morlighem
The Cryosphere, 12, 3085–3096, https://doi.org/10.5194/tc-12-3085-2018, https://doi.org/10.5194/tc-12-3085-2018, 2018
Jiangjun Ran, Miren Vizcaino, Pavel Ditmar, Michiel R. van den Broeke, Twila Moon, Christian R. Steger, Ellyn M. Enderlin, Bert Wouters, Brice Noël, Catharina H. Reijmer, Roland Klees, Min Zhong, Lin Liu, and Xavier Fettweis
The Cryosphere, 12, 2981–2999, https://doi.org/10.5194/tc-12-2981-2018, https://doi.org/10.5194/tc-12-2981-2018, 2018
Short summary
Short summary
To accurately predict future sea level rise, the mechanisms driving the observed mass loss must be better understood. Here, we combine data from the satellite gravimetry, surface mass balance, and ice discharge to analyze the mass budget of Greenland at various temporal scales. This study, for the first time, suggests the existence of a substantial meltwater storage during summer, with a peak value of 80–120 Gt in July. We highlight its importance for understanding ice sheet mass variability
Rajashree Tri Datta, Marco Tedesco, Cecile Agosta, Xavier Fettweis, Peter Kuipers Munneke, and Michiel R. van den Broeke
The Cryosphere, 12, 2901–2922, https://doi.org/10.5194/tc-12-2901-2018, https://doi.org/10.5194/tc-12-2901-2018, 2018
Short summary
Short summary
Surface melting on the East Antarctic Peninsula (East AP) has been linked to ice shelf collapse, including the Larsen A (1995) and Larsen B (2002) ice shelves. Regional climate models (RCMs) are a valuable tool to understand how wind patterns and general warming can impact the stability of ice shelves through surface melt. Here, we evaluate one such RCM (Modèle Atmosphérique Régionale) over the East AP, including the remaining Larsen C ice shelf, by comparing it to satellite and ground data.
Chen Zhao, Rupert M. Gladstone, Roland C. Warner, Matt A. King, Thomas Zwinger, and Mathieu Morlighem
The Cryosphere, 12, 2637–2652, https://doi.org/10.5194/tc-12-2637-2018, https://doi.org/10.5194/tc-12-2637-2018, 2018
Short summary
Short summary
A combination of computer modelling and observational data were used to infer the resistance to ice flow at the bed of the Fleming Glacier on the Antarctic Peninsula. The model was also used to simulate the distribution of temperature within the ice, which governs the rate at which the ice can deform. This is especially important for glaciers like the Fleming Glacier, which has both regions of rapid deformation and regions of rapid sliding at the bed.
Chen Zhao, Rupert M. Gladstone, Roland C. Warner, Matt A. King, Thomas Zwinger, and Mathieu Morlighem
The Cryosphere, 12, 2653–2666, https://doi.org/10.5194/tc-12-2653-2018, https://doi.org/10.5194/tc-12-2653-2018, 2018
Short summary
Short summary
A combination of computer modelling and observational data were used to infer the resistance to ice flow at the bed of the Fleming Glacier on the Antarctic Peninsula in both 2008 and 2015. The comparison suggests the grounding line retreated by ~ 9 km from 2008 to 2015. The retreat may be enhanced by a positive feedback between friction, melting and sliding at the glacier bed.
Aleah Sommers, Harihar Rajaram, and Mathieu Morlighem
Geosci. Model Dev., 11, 2955–2974, https://doi.org/10.5194/gmd-11-2955-2018, https://doi.org/10.5194/gmd-11-2955-2018, 2018
Short summary
Short summary
Meltwater drainage beneath glaciers and ice sheets influences how fast they move and is complicated and constantly changing. Most models distinguish between
fastand
slowdrainage with different equations for each system. The SHAKTI model allows for the ice–water drainage arrangement to transition naturally between different types of flow. This model can be used to understand how drainage affects glacier speeds and the associated ice loss to further inform predictions of sea level rise.
Stefan R. M. Ligtenberg, Peter Kuipers Munneke, Brice P. Y. Noël, and Michiel R. van den Broeke
The Cryosphere, 12, 1643–1649, https://doi.org/10.5194/tc-12-1643-2018, https://doi.org/10.5194/tc-12-1643-2018, 2018
Short summary
Short summary
Firn is the transitional product between fresh snow and glacier ice, and a 10-100 m thick layer covers the Greenland ice sheet. It has the capacity to store meltwater and thereby mitigate runoff to the ocean. Using a model and improved atmospheric forcing, we simulate firn density and temperature that agrees well with observations from firn cores. Especially in the regions with substantial melt, and therefore the most sensitive to a warming climate, the results improved significantly.
Joshua K. Cuzzone, Mathieu Morlighem, Eric Larour, Nicole Schlegel, and Helene Seroussi
Geosci. Model Dev., 11, 1683–1694, https://doi.org/10.5194/gmd-11-1683-2018, https://doi.org/10.5194/gmd-11-1683-2018, 2018
Short summary
Short summary
This paper details the implementation of higher-order vertical finite elements in the Ice Sheet System Model (ISSM). When using higher-order vertical finite elements, fewer vertical layers are needed to accurately capture the thermal structure in an ice sheet versus a conventional linear vertical interpolation, therefore greatly improving model runtime speeds, particularly in higher-order stress balance ice sheet models. The implications for paleoclimate ice sheet simulations are discussed.
Konstanze Haubner, Jason E. Box, Nicole J. Schlegel, Eric Y. Larour, Mathieu Morlighem, Anne M. Solgaard, Kristian K. Kjeldsen, Signe H. Larsen, Eric Rignot, Todd K. Dupont, and Kurt H. Kjær
The Cryosphere, 12, 1511–1522, https://doi.org/10.5194/tc-12-1511-2018, https://doi.org/10.5194/tc-12-1511-2018, 2018
Short summary
Short summary
We investigate the effect of neglecting calving on Upernavik Isstrøm, West Greenland, between 1849 and 2012.
Our simulation is forced with observed terminus positions in discrete time steps and is responsive to the prescribed ice front changes.
Simulated frontal retreat is needed to obtain a realistic ice surface elevation and velocity evolution of Upernavik.
Using the prescribed terminus position change we gain insight to mass loss partitioning during different time periods.
Jan Melchior van Wessem, Willem Jan van de Berg, Brice P. Y. Noël, Erik van Meijgaard, Charles Amory, Gerit Birnbaum, Constantijn L. Jakobs, Konstantin Krüger, Jan T. M. Lenaerts, Stef Lhermitte, Stefan R. M. Ligtenberg, Brooke Medley, Carleen H. Reijmer, Kristof van Tricht, Luke D. Trusel, Lambertus H. van Ulft, Bert Wouters, Jan Wuite, and Michiel R. van den Broeke
The Cryosphere, 12, 1479–1498, https://doi.org/10.5194/tc-12-1479-2018, https://doi.org/10.5194/tc-12-1479-2018, 2018
Short summary
Short summary
We present a detailed evaluation of the latest version of the regional atmospheric climate model RACMO2.3p2 (1979-2016) over the Antarctic ice sheet. The model successfully reproduces the present-day climate and surface mass balance (SMB) when compared with an extensive set of observations and improves on previous estimates of the Antarctic climate and SMB.
This study shows that the latest version of RACMO2 can be used for high-resolution future projections over the AIS.
Heiko Goelzer, Sophie Nowicki, Tamsin Edwards, Matthew Beckley, Ayako Abe-Ouchi, Andy Aschwanden, Reinhard Calov, Olivier Gagliardini, Fabien Gillet-Chaulet, Nicholas R. Golledge, Jonathan Gregory, Ralf Greve, Angelika Humbert, Philippe Huybrechts, Joseph H. Kennedy, Eric Larour, William H. Lipscomb, Sébastien Le clec'h, Victoria Lee, Mathieu Morlighem, Frank Pattyn, Antony J. Payne, Christian Rodehacke, Martin Rückamp, Fuyuki Saito, Nicole Schlegel, Helene Seroussi, Andrew Shepherd, Sainan Sun, Roderik van de Wal, and Florian A. Ziemen
The Cryosphere, 12, 1433–1460, https://doi.org/10.5194/tc-12-1433-2018, https://doi.org/10.5194/tc-12-1433-2018, 2018
Short summary
Short summary
We have compared a wide spectrum of different initialisation techniques used in the ice sheet modelling community to define the modelled present-day Greenland ice sheet state as a starting point for physically based future-sea-level-change projections. Compared to earlier community-wide comparisons, we find better agreement across different models, which implies overall improvement of our understanding of what is needed to produce such initial states.
Helmut Rott, Wael Abdel Jaber, Jan Wuite, Stefan Scheiblauer, Dana Floricioiu, Jan Melchior van Wessem, Thomas Nagler, Nuno Miranda, and Michiel R. van den Broeke
The Cryosphere, 12, 1273–1291, https://doi.org/10.5194/tc-12-1273-2018, https://doi.org/10.5194/tc-12-1273-2018, 2018
Short summary
Short summary
We analysed volume change, mass balance and ice flow of glaciers draining into the Larsen A and Larsen B embayments on the Antarctic Peninsula for 2011 to 2013 and 2013 to 2016. The mass balance is based on elevation change measured by the radar satellite mission TanDEM-X and on the mass budget method. The glaciers show continuing losses in ice mass, which is a response to ice shelf break-up. After 2013 the downwasting of glaciers slowed down, coinciding with years of persistent sea ice cover.
Hafeez Jeofry, Neil Ross, Hugh F. J. Corr, Jilu Li, Mathieu Morlighem, Prasad Gogineni, and Martin J. Siegert
Earth Syst. Sci. Data, 10, 711–725, https://doi.org/10.5194/essd-10-711-2018, https://doi.org/10.5194/essd-10-711-2018, 2018
Short summary
Short summary
Accurately characterizing the complexities of the ice-sheet dynamic specifically close to the grounding line across the Weddell Sea (WS) sector in the ice-sheet models provides challenges to the scientific community. Our main objective is to comprehend these complexities, adding accuracy to the projection of future ice-sheet dynamics. Therefore, we have developed a new bed elevation digital elevation model across the WS sector, which will be of value to ice-sheet modelling experiments.
Felicity S. Graham, Mathieu Morlighem, Roland C. Warner, and Adam Treverrow
The Cryosphere, 12, 1047–1067, https://doi.org/10.5194/tc-12-1047-2018, https://doi.org/10.5194/tc-12-1047-2018, 2018
Short summary
Short summary
Ice sheet flow is anisotropic, depending on the nature of the stress applied. However, most large-scale ice sheet models rely on the Glen flow relation, which ignores anisotropic effects. We implement a flow relation (ESTAR) for anisotropic ice in a large-scale ice sheet model. In ice shelf simulations, the Glen flow relation overestimates velocities by up to 17 % compared with ESTAR. Our results have implications for ice sheet model simulations of paleo-ice extent and sea level rise prediction.
Brice Noël, Willem Jan van de Berg, J. Melchior van Wessem, Erik van Meijgaard, Dirk van As, Jan T. M. Lenaerts, Stef Lhermitte, Peter Kuipers Munneke, C. J. P. Paul Smeets, Lambertus H. van Ulft, Roderik S. W. van de Wal, and Michiel R. van den Broeke
The Cryosphere, 12, 811–831, https://doi.org/10.5194/tc-12-811-2018, https://doi.org/10.5194/tc-12-811-2018, 2018
Short summary
Short summary
We present a detailed evaluation of the latest version of the regional climate model RACMO2.3p2 at 11 km resolution (1958–2016) over the Greenland ice sheet (GrIS). The model successfully reproduces the present-day climate and surface mass balance, i.e. snowfall minus meltwater run-off, of the GrIS compared to in situ observations. Since run-off from marginal narrow glaciers is poorly resolved at 11 km, further statistical downscaling to 1 km resolution is required for mass balance studies.
Alex S. Gardner, Geir Moholdt, Ted Scambos, Mark Fahnstock, Stefan Ligtenberg, Michiel van den Broeke, and Johan Nilsson
The Cryosphere, 12, 521–547, https://doi.org/10.5194/tc-12-521-2018, https://doi.org/10.5194/tc-12-521-2018, 2018
Short summary
Short summary
We map present-day Antarctic surface velocities from Landsat imagery and compare to earlier estimates from radar. Flow accelerations across the grounding lines of West Antarctica's Amundsen Sea Embayment, Getz Ice Shelf and the western Antarctic Peninsula, account for 89 % of the observed increase in ice discharge. In contrast, glaciers draining the East Antarctic have been remarkably stable. Our work suggests that patterns of mass loss are part of a longer-term phase of enhanced flow.
Eric Larour, Daniel Cheng, Gilberto Perez, Justin Quinn, Mathieu Morlighem, Bao Duong, Lan Nguyen, Kit Petrie, Silva Harounian, Daria Halkides, and Wayne Hayes
Geosci. Model Dev., 10, 4393–4403, https://doi.org/10.5194/gmd-10-4393-2017, https://doi.org/10.5194/gmd-10-4393-2017, 2017
Short summary
Short summary
This work presents a new way of carrying out simulations using the C++ based Ice Sheet System Model (ISSM) within a web page. This allows for a new generation of websites that can rely on the entire code of a climate model, without compromising or simplifying the physics implemented in such a model. We believe this approach will enable better education/outreach websites as well as improve access to complex climate models without compromising their integrity.
Elizabeth R. Thomas, J. Melchior van Wessem, Jason Roberts, Elisabeth Isaksson, Elisabeth Schlosser, Tyler J. Fudge, Paul Vallelonga, Brooke Medley, Jan Lenaerts, Nancy Bertler, Michiel R. van den Broeke, Daniel A. Dixon, Massimo Frezzotti, Barbara Stenni, Mark Curran, and Alexey A. Ekaykin
Clim. Past, 13, 1491–1513, https://doi.org/10.5194/cp-13-1491-2017, https://doi.org/10.5194/cp-13-1491-2017, 2017
Short summary
Short summary
Regional Antarctic snow accumulation derived from 79 ice core records is evaluated as part of the PAGES Antarctica 2k working group. Our results show that surface mass balance for the total Antarctic ice sheet has increased at a rate of 7 ± 0.13 Gt dec-1 since 1800 AD, representing a net reduction in sea level of ~ 0.02 mm dec-1 since 1800 and ~ 0.04 mm dec-1 since 1900 AD. The largest contribution is from the Antarctic Peninsula.
Christian R. Steger, Carleen H. Reijmer, and Michiel R. van den Broeke
The Cryosphere, 11, 2507–2526, https://doi.org/10.5194/tc-11-2507-2017, https://doi.org/10.5194/tc-11-2507-2017, 2017
Short summary
Short summary
Mass loss from the Greenland Ice Sheet, which contributes to sea level rise, is currently dominated by surface melt and run-off. The relation between these two variables is rather uncertain due to the firn layer’s potential to buffer melt in solid (refreezing) or liquid (firn aquifer) form. To address this uncertainty, we analyse output of a numerical firn model run over 1960–2014. Results show a spatially variable response of the ice sheet to increasing melt and an upward migration of aquifers.
Peter Kuipers Munneke, Daniel McGrath, Brooke Medley, Adrian Luckman, Suzanne Bevan, Bernd Kulessa, Daniela Jansen, Adam Booth, Paul Smeets, Bryn Hubbard, David Ashmore, Michiel Van den Broeke, Heidi Sevestre, Konrad Steffen, Andrew Shepherd, and Noel Gourmelen
The Cryosphere, 11, 2411–2426, https://doi.org/10.5194/tc-11-2411-2017, https://doi.org/10.5194/tc-11-2411-2017, 2017
Short summary
Short summary
How much snow falls on the Larsen C ice shelf? This is a relevant question, because this ice shelf might collapse sometime this century. To know if and when this could happen, we found out how much snow falls on its surface. This was difficult, because there are only very few measurements. Here, we used data from automatic weather stations, sled-pulled radars, and a climate model to find that melting the annual snowfall produces about 20 cm of water in the NE and over 70 cm in the SW.
Riccardo E. M. Riva, Thomas Frederikse, Matt A. King, Ben Marzeion, and Michiel R. van den Broeke
The Cryosphere, 11, 1327–1332, https://doi.org/10.5194/tc-11-1327-2017, https://doi.org/10.5194/tc-11-1327-2017, 2017
Short summary
Short summary
The reduction of ice masses stored on land has made an important contribution to sea-level rise over the last century, as well as changed the Earth's shape. We model the solid-earth response to ice mass changes and find significant vertical deformation signals over large continental areas. We show how deformation rates have varied strongly throughout the last century, which affects the interpretation and extrapolation of recent observations of vertical land motion and sea-level change.
Hongju Yu, Eric Rignot, Mathieu Morlighem, and Helene Seroussi
The Cryosphere, 11, 1283–1296, https://doi.org/10.5194/tc-11-1283-2017, https://doi.org/10.5194/tc-11-1283-2017, 2017
Short summary
Short summary
We combine 2-D ice flow model with linear elastic fracture mechanics (LEFM) to model the calving behavior of Thwaites Glacier, West Antarctica. We find the combination of full-Stokes (FS) model and LEFM produces crevasses that are consistent with observations. We also find that calving is enhanced with pre-existing surface crevasses, shorter ice shelves or undercut at the ice shelf front. We conclude that the FS/LEFM combination is capable of constraining crevasse formation and iceberg calving.
Daniel Farinotti, Douglas J. Brinkerhoff, Garry K. C. Clarke, Johannes J. Fürst, Holger Frey, Prateek Gantayat, Fabien Gillet-Chaulet, Claire Girard, Matthias Huss, Paul W. Leclercq, Andreas Linsbauer, Horst Machguth, Carlos Martin, Fabien Maussion, Mathieu Morlighem, Cyrille Mosbeux, Ankur Pandit, Andrea Portmann, Antoine Rabatel, RAAJ Ramsankaran, Thomas J. Reerink, Olivier Sanchez, Peter A. Stentoft, Sangita Singh Kumari, Ward J. J. van Pelt, Brian Anderson, Toby Benham, Daniel Binder, Julian A. Dowdeswell, Andrea Fischer, Kay Helfricht, Stanislav Kutuzov, Ivan Lavrentiev, Robert McNabb, G. Hilmar Gudmundsson, Huilin Li, and Liss M. Andreassen
The Cryosphere, 11, 949–970, https://doi.org/10.5194/tc-11-949-2017, https://doi.org/10.5194/tc-11-949-2017, 2017
Short summary
Short summary
ITMIX – the Ice Thickness Models Intercomparison eXperiment – was the first coordinated performance assessment for models inferring glacier ice thickness from surface characteristics. Considering 17 different models and 21 different test cases, we show that although solutions of individual models can differ considerably, an ensemble average can yield uncertainties in the order of 10 ± 24 % the mean ice thickness. Ways forward for improving such estimates are sketched.
Harry Zekollari, Philippe Huybrechts, Brice Noël, Willem Jan van de Berg, and Michiel R. van den Broeke
The Cryosphere, 11, 805–825, https://doi.org/10.5194/tc-11-805-2017, https://doi.org/10.5194/tc-11-805-2017, 2017
Short summary
Short summary
In this study the dynamics of the world’s northernmost ice cap are investigated with a 3-D ice flow model. Under 1961–1990 climatic conditions
an ice cap similar to the observed one is obtained, with comparable geometry and surface velocities. The southern part of the ice cap is very unstable,
and under early-21st-century climatic conditions this part of the ice cap fully disappears. In a projected warmer and wetter climate the ice cap will at
first steepen, before eventually disappearing.
Henning Åkesson, Kerim H. Nisancioglu, Rianne H. Giesen, and Mathieu Morlighem
The Cryosphere, 11, 281–302, https://doi.org/10.5194/tc-11-281-2017, https://doi.org/10.5194/tc-11-281-2017, 2017
Short summary
Short summary
We present simulations of the history of Hardangerjøkulen ice cap in southern Norway using a dynamical ice sheet model. From mid-Holocene ice-free conditions 4000 years ago, Hardangerjøkulen grows nonlinearly in response to a linear climate forcing, reaching maximum extent during the Little Ice Age (~ 1750 AD). The ice cap exhibits spatially asymmetric growth and retreat and is highly sensitive to climate change. Our results call for reassessment of glacier reconstructions from proxy records.
Stephen F. Price, Matthew J. Hoffman, Jennifer A. Bonin, Ian M. Howat, Thomas Neumann, Jack Saba, Irina Tezaur, Jeffrey Guerber, Don P. Chambers, Katherine J. Evans, Joseph H. Kennedy, Jan Lenaerts, William H. Lipscomb, Mauro Perego, Andrew G. Salinger, Raymond S. Tuminaro, Michiel R. van den Broeke, and Sophie M. J. Nowicki
Geosci. Model Dev., 10, 255–270, https://doi.org/10.5194/gmd-10-255-2017, https://doi.org/10.5194/gmd-10-255-2017, 2017
Short summary
Short summary
We introduce the Cryospheric Model Comparison Tool (CmCt) and propose qualitative and quantitative metrics for evaluating ice sheet model simulations against observations. Greenland simulations using the Community Ice Sheet Model are compared to gravimetry and altimetry observations from 2003 to 2013. We show that the CmCt can be used to score simulations of increasing complexity relative to observations of dynamic change in Greenland over the past decade.
Feras Habbal, Eric Larour, Mathieu Morlighem, Helene Seroussi, Christopher P. Borstad, and Eric Rignot
Geosci. Model Dev., 10, 155–168, https://doi.org/10.5194/gmd-10-155-2017, https://doi.org/10.5194/gmd-10-155-2017, 2017
Short summary
Short summary
This work presents the results from testing a suite of numerical solvers on a standard ice sheet benchmark test. We note the relevance of this test to practical simulations and identify the fastest solvers for the transient simulation. The highlighted solvers show significant speed-ups in relation to the default solver (~1.5–100 times faster) and enable a new capability for solving massive, high-resolution models that are critical for improving projections of ice sheets and sea-level change.
Sophie M. J. Nowicki, Anthony Payne, Eric Larour, Helene Seroussi, Heiko Goelzer, William Lipscomb, Jonathan Gregory, Ayako Abe-Ouchi, and Andrew Shepherd
Geosci. Model Dev., 9, 4521–4545, https://doi.org/10.5194/gmd-9-4521-2016, https://doi.org/10.5194/gmd-9-4521-2016, 2016
Short summary
Short summary
This paper describes an experimental protocol designed to quantify and understand the global sea level that arises due to past, present, and future changes in the Greenland and Antarctic ice sheets, along with investigating ice sheet–climate feedbacks. The Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6) protocol includes targeted experiments, and a set of output diagnostic related to ice sheets, that are part of the 6th phase of the Coupled Model Intercomparison Project (CMIP6).
Eric Larour, Jean Utke, Anton Bovin, Mathieu Morlighem, and Gilberto Perez
Geosci. Model Dev., 9, 3907–3918, https://doi.org/10.5194/gmd-9-3907-2016, https://doi.org/10.5194/gmd-9-3907-2016, 2016
Short summary
Short summary
We present an approach to derive the adjoint state of the C++ coded Ice Sheet System Model. The approach enables data assimilation of observations to improve projections of polar ice sheet mass balance and contribution to sea-level rise. It is applicable to other Earth science frameworks relying on C++ and parallel computing, is non-intrusive, and enables computation of transient adjoints for any type of physics, hence providing insights into the sensitivities of any model to its inputs.
Janin Schaffer, Ralph Timmermann, Jan Erik Arndt, Steen Savstrup Kristensen, Christoph Mayer, Mathieu Morlighem, and Daniel Steinhage
Earth Syst. Sci. Data, 8, 543–557, https://doi.org/10.5194/essd-8-543-2016, https://doi.org/10.5194/essd-8-543-2016, 2016
Short summary
Short summary
The RTopo-2 data set provides consistent maps of global ocean bathymetry and ice surface topographies for Greenland and Antarctica at 30 arcsec grid spacing. We corrected data from earlier products in the areas of Petermann, Hagen Bræ, and Helheim glaciers, incorporated original data for the floating ice tongue of Nioghalvfjerdsfjorden Glacier, and applied corrections for the geometry of Getz, Abbot, and Fimbul ice shelf cavities. The data set is available from the PANGAEA database.
Brice Noël, Willem Jan van de Berg, Horst Machguth, Stef Lhermitte, Ian Howat, Xavier Fettweis, and Michiel R. van den Broeke
The Cryosphere, 10, 2361–2377, https://doi.org/10.5194/tc-10-2361-2016, https://doi.org/10.5194/tc-10-2361-2016, 2016
Short summary
Short summary
We present a 1 km resolution data set (1958–2015) of daily Greenland ice sheet surface mass balance (SMB), statistically downscaled from the data of RACMO2.3 at 11 km using elevation dependence, precipitation and bare ice albedo corrections. The data set resolves Greenland narrow ablation zones and local outlet glaciers, and shows more realistic SMB patterns, owing to enhanced runoff at the ice sheet margins. An evaluation of the product against SMB measurements shows improved agreement.
Nicole-Jeanne Schlegel, David N. Wiese, Eric Y. Larour, Michael M. Watkins, Jason E. Box, Xavier Fettweis, and Michiel R. van den Broeke
The Cryosphere, 10, 1965–1989, https://doi.org/10.5194/tc-10-1965-2016, https://doi.org/10.5194/tc-10-1965-2016, 2016
Short summary
Short summary
We investigate Greenland Ice Sheet mass change from 2003–2012 by comparing observations from GRACE with state-of-the-art atmospheric and ice sheet model simulations. We find that the largest discrepancies (in the northwest and southeast) are likely controlled by errors in modeled surface climate as well as ice–ocean interaction and hydrological processes (not included in the models). Models should consider such processes at monthly to seasonal resolutions in order to improve future projections.
Michiel R. van den Broeke, Ellyn M. Enderlin, Ian M. Howat, Peter Kuipers Munneke, Brice P. Y. Noël, Willem Jan van de Berg, Erik van Meijgaard, and Bert Wouters
The Cryosphere, 10, 1933–1946, https://doi.org/10.5194/tc-10-1933-2016, https://doi.org/10.5194/tc-10-1933-2016, 2016
Short summary
Short summary
We present recent (1958–2015) mass balance time series for the Greenland ice sheet. We show that recent mass loss is caused by a combination of increased surface meltwater runoff and solid ice discharge. Most meltwater above 2000 m a.s.l. refreezes in the cold firn and does not leave the ice sheet, but this goes at the expense of firn heating and densifying. In spite of a temporary rebound in 2013, it appears that the ice sheet remains in a state of persistent mass loss.
Xylar S. Asay-Davis, Stephen L. Cornford, Gaël Durand, Benjamin K. Galton-Fenzi, Rupert M. Gladstone, G. Hilmar Gudmundsson, Tore Hattermann, David M. Holland, Denise Holland, Paul R. Holland, Daniel F. Martin, Pierre Mathiot, Frank Pattyn, and Hélène Seroussi
Geosci. Model Dev., 9, 2471–2497, https://doi.org/10.5194/gmd-9-2471-2016, https://doi.org/10.5194/gmd-9-2471-2016, 2016
Short summary
Short summary
Coupled ice sheet–ocean models capable of simulating moving grounding lines are just becoming available. Such models have a broad range of potential applications in studying the dynamics of ice sheets and glaciers, including assessing their contributions to sea level change. Here we describe the idealized experiments that make up three interrelated Model Intercomparison Projects (MIPs) for marine ice sheet models and regional ocean circulation models incorporating ice shelf cavities.
Patrick M. Alexander, Marco Tedesco, Nicole-Jeanne Schlegel, Scott B. Luthcke, Xavier Fettweis, and Eric Larour
The Cryosphere, 10, 1259–1277, https://doi.org/10.5194/tc-10-1259-2016, https://doi.org/10.5194/tc-10-1259-2016, 2016
Short summary
Short summary
We compared satellite-derived estimates of spatial and seasonal variations in Greenland Ice Sheet mass with a set of model simulations, revealing an agreement between models and satellite estimates for the ice-sheet-wide seasonal fluctuations in mass, but disagreement at finer spatial scales. The model simulations underestimate low-elevation mass loss. Improving the ability of models to capture variations and trends in Greenland Ice Sheet mass is important for estimating future sea level rise.
Hongju Yu, Eric Rignot, Mathieu Morlighem, and Helene Seroussi
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-101, https://doi.org/10.5194/tc-2016-101, 2016
Revised manuscript not accepted
Short summary
Short summary
We performed a 2D Full-Stokes (FS) modeling study of grounding line dynamics and calving of Thwaites Glacier, West Antarctica. We compare FS with simplified models on grounding line migration and we combine FS with Linear Elastic Fracture Mechanics to simulate crevasse propagation. We find that only FS is able to provide reliable grounding line migration and to explain observed crevasse. We conclude that it may be essential to employ FS in the grounding line region for 2D simulations.
Pierre Rampal, Sylvain Bouillon, Einar Ólason, and Mathieu Morlighem
The Cryosphere, 10, 1055–1073, https://doi.org/10.5194/tc-10-1055-2016, https://doi.org/10.5194/tc-10-1055-2016, 2016
Short summary
Short summary
The Arctic sea ice cover has changed drastically over the last decades and undergone a shift in its dynamical regime, as seen by the increase of extreme fracturing events and the acceleration of sea ice drift. In this paper we present a new sea ice model, neXtSIM, that is capable of simulating both sea ice drift and deformation as observed from satellites, with similar spatial and temporal scaling properties. At the same time, the model reproduces sea ice area, extent, and volume correctly.
Zheng Xu, Ernst J. O. Schrama, Wouter van der Wal, Michiel van den Broeke, and Ellyn M. Enderlin
The Cryosphere, 10, 895–912, https://doi.org/10.5194/tc-10-895-2016, https://doi.org/10.5194/tc-10-895-2016, 2016
Short summary
Short summary
In this paper, we compare the regional mass changes of the Greenland ice sheet between the solutions based on GRACE data and input/output method. Differences are found in some regions and indicate errors in those solutions. Therefore we improve our GRACE and IOM solutions by applying a simulation. We show the improved regional mass changes approximations are more consistent in regions. The remaining difference in the northwester Greenland is due to the underestimated uncertainty in IOM solution.
Wenshan Wang, Charles S. Zender, Dirk van As, Paul C. J. P. Smeets, and Michiel R. van den Broeke
The Cryosphere, 10, 727–741, https://doi.org/10.5194/tc-10-727-2016, https://doi.org/10.5194/tc-10-727-2016, 2016
Short summary
Short summary
We identify and correct station-tilt-induced biases in insolation observed by automatic weather stations on the Greenland Ice Sheet. Without tilt correction, only 40 % of clear days have the correct solar noon time (±0.5 h). The largest hourly bias exceeds 20 %. We estimate the tilt angles based on solar geometric relationship between insolation observed on horizontal surfaces and that on tilted surfaces, and produce shortwave radiation and albedo that agree better with independent data sets.
Surendra Adhikari, Erik R. Ivins, and Eric Larour
Geosci. Model Dev., 9, 1087–1109, https://doi.org/10.5194/gmd-9-1087-2016, https://doi.org/10.5194/gmd-9-1087-2016, 2016
Short summary
Short summary
We present a numerically accurate, computationally efficient, (km-scale) high-resolution model for gravitationally consistent relative sea level that, unlike contemporary state-of-the-art models, operates efficiently on an unstructured mesh. The model is useful for earth system modeling and space geodesy. A straightforward and computationally less burdensome coupling to a dynamical ice-sheet model, for example, allows a refined and realistic simulation of fast-flowing outlet glaciers.
Ioana S. Muresan, Shfaqat A. Khan, Andy Aschwanden, Constantine Khroulev, Tonie Van Dam, Jonathan Bamber, Michiel R. van den Broeke, Bert Wouters, Peter Kuipers Munneke, and Kurt H. Kjær
The Cryosphere, 10, 597–611, https://doi.org/10.5194/tc-10-597-2016, https://doi.org/10.5194/tc-10-597-2016, 2016
Short summary
Short summary
We use a regional 3-D outlet glacier model to simulate the behaviour of Jakobshavn Isbræ (JI) during 1990–2014. The model simulates two major accelerations in 1998 and 2003 that are consistent with observations. We find that most of the JI retreat during the simulated period is driven by the ocean parametrization used, and the glacier's subsequent response, which is largely governed by bed geometry. The study shows progress in modelling the temporal variability of the flow at JI.
Johannes H. Bondzio, Hélène Seroussi, Mathieu Morlighem, Thomas Kleiner, Martin Rückamp, Angelika Humbert, and Eric Y. Larour
The Cryosphere, 10, 497–510, https://doi.org/10.5194/tc-10-497-2016, https://doi.org/10.5194/tc-10-497-2016, 2016
Short summary
Short summary
We implemented a level-set method in the ice sheet system model. This method allows us to dynamically evolve a calving front subject to user-defined calving rates. We apply the method to Jakobshavn Isbræ, West Greenland, and study its response to calving rate perturbations. We find its behaviour strongly dependent on the calving rate, which was to be expected. Both reduced basal drag and rheological shear margin weakening sustain the acceleration of this dynamic outlet glacier.
Laura A. Stevens, Fiamma Straneo, Sarah B. Das, Albert J. Plueddemann, Amy L. Kukulya, and Mathieu Morlighem
The Cryosphere, 10, 417–432, https://doi.org/10.5194/tc-10-417-2016, https://doi.org/10.5194/tc-10-417-2016, 2016
Short summary
Short summary
Here we pair detailed hydrographic measurements collected with an autonomous underwater vehicle as close as 150 m from the ice–ocean interface of the Saqqarliup sermia–Sarqardleq Fjord system, West Greenland, with modeled and observed subglacial discharge locations and magnitudes. We find evidence of two main types of subsurface glacially modified water localized in space that are consistent with runoff discharged at two locations along the grounding line.
J. M. van Wessem, S. R. M. Ligtenberg, C. H. Reijmer, W. J. van de Berg, M. R. van den Broeke, N. E. Barrand, E. R. Thomas, J. Turner, J. Wuite, T. A. Scambos, and E. van Meijgaard
The Cryosphere, 10, 271–285, https://doi.org/10.5194/tc-10-271-2016, https://doi.org/10.5194/tc-10-271-2016, 2016
Short summary
Short summary
This study presents the first high-resolution (5.5 km) modelled estimate of surface mass balance (SMB) over the period 1979–2014 for the Antarctic Peninsula (AP). Precipitation (snowfall and rain) largely determines the SMB, and is exceptionally high over the western mountain slopes, with annual values > 4 m water equivalent. Snowmelt is widespread over the AP, but only runs off into the ocean at some locations: the Larsen B,C, and Wilkins ice shelves, and along the north-western mountains.
K. Bentel, F. W. Landerer, and C. Boening
Ocean Sci., 11, 953–963, https://doi.org/10.5194/os-11-953-2015, https://doi.org/10.5194/os-11-953-2015, 2015
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) is a key mechanism for large-scale northward heat transport and plays an important role for global climate. Previously, AMOC changes have been inferred from in situ ocean bottom pressure (OBP) observations at single latitudes. We extend the analysis to space-based observations (and the whole North Atlantic) and show on data from the ECCO2 model that AMOC anomalies can be inferred from OBP at a resolution resembling the GRACE gravity mission.
C. Charalampidis, D. van As, J. E. Box, M. R. van den Broeke, W. T. Colgan, S. H. Doyle, A. L. Hubbard, M. MacFerrin, H. Machguth, and C. J. P. P. Smeets
The Cryosphere, 9, 2163–2181, https://doi.org/10.5194/tc-9-2163-2015, https://doi.org/10.5194/tc-9-2163-2015, 2015
P. Kuipers Munneke, S. R. M. Ligtenberg, B. P. Y. Noël, I. M. Howat, J. E. Box, E. Mosley-Thompson, J. R. McConnell, K. Steffen, J. T. Harper, S. B. Das, and M. R. van den Broeke
The Cryosphere, 9, 2009–2025, https://doi.org/10.5194/tc-9-2009-2015, https://doi.org/10.5194/tc-9-2009-2015, 2015
Short summary
Short summary
The snow layer on top of the Greenland Ice Sheet is changing: it is thickening in the high and cold interior due to increased snowfall, while it is thinning around the margins. The marginal thinning is caused by compaction, and by more melt.
This knowledge is important: there are satellites that measure volume change of the ice sheet. It can be caused by increased ice discharge, or by compaction of the snow layer. Here, we quantify the latter, so that we can translate volume to mass change.
K. Le Morzadec, L. Tarasov, M. Morlighem, and H. Seroussi
Geosci. Model Dev., 8, 3199–3213, https://doi.org/10.5194/gmd-8-3199-2015, https://doi.org/10.5194/gmd-8-3199-2015, 2015
Short summary
Short summary
A long-term challenge for any model of complex large-scale processes
is accounting for the impact of unresolved sub-grid (SG) processes.
We quantify the impact of SG mass-balance and ice fluxes on glacial
cycle ensemble results for North America. We find no easy solutions to
accurately capture these impacts. We show that SG process
representation and associated parametric uncertainties can have
significant impact on coarse resolution model results for glacial
cycle ice sheet evolution.
B. Noël, W. J. van de Berg, E. van Meijgaard, P. Kuipers Munneke, R. S. W. van de Wal, and M. R. van den Broeke
The Cryosphere, 9, 1831–1844, https://doi.org/10.5194/tc-9-1831-2015, https://doi.org/10.5194/tc-9-1831-2015, 2015
Short summary
Short summary
We compare Greenland Ice Sheet surface mass balance (SMB) from the updated polar version of the regional climate model RACMO2.3 and the previous version 2.1. RACMO2.3 has an adjusted rainfall-to-snowfall conversion favouring summer snowfall over rainfall. Enhanced summer snowfall reduce melt rates in the ablation zone by covering dark ice with highly reflective fresh snow. This improves the modelled SMB-elevation gradient and surface energy balance compared to observations in west Greenland.
S. L. Cornford, D. F. Martin, A. J. Payne, E. G. Ng, A. M. Le Brocq, R. M. Gladstone, T. L. Edwards, S. R. Shannon, C. Agosta, M. R. van den Broeke, H. H. Hellmer, G. Krinner, S. R. M. Ligtenberg, R. Timmermann, and D. G. Vaughan
The Cryosphere, 9, 1579–1600, https://doi.org/10.5194/tc-9-1579-2015, https://doi.org/10.5194/tc-9-1579-2015, 2015
Short summary
Short summary
We used a high-resolution ice sheet model capable of resolving grounding line dynamics (BISICLES) to compute responses of the major West Antarctic ice streams to projections of ocean and atmospheric warming. This is computationally demanding, and although other groups have considered parts of West Antarctica, we think this is the first calculation for the whole region at the sub-kilometer resolution that we show is required.
S. de la Peña, I. M. Howat, P. W. Nienow, M. R. van den Broeke, E. Mosley-Thompson, S. F. Price, D. Mair, B. Noël, and A. J. Sole
The Cryosphere, 9, 1203–1211, https://doi.org/10.5194/tc-9-1203-2015, https://doi.org/10.5194/tc-9-1203-2015, 2015
Short summary
Short summary
This paper presents an assessment of changes in the near-surface structure of the accumulation zone of the Greenland Ice Sheet caused by an increase of melt at higher elevations in the last decade, especially during the unusually warm years of 2010 and 2012. The increase in melt and firn densification complicate the interpretation of changes in the ice volume, and the observed increase in firn ice content may reduce the important meltwater buffering capacity of the Greenland Ice Sheet.
R. S. W. van de Wal, C. J. P. P. Smeets, W. Boot, M. Stoffelen, R. van Kampen, S. H. Doyle, F. Wilhelms, M. R. van den Broeke, C. H. Reijmer, J. Oerlemans, and A. Hubbard
The Cryosphere, 9, 603–611, https://doi.org/10.5194/tc-9-603-2015, https://doi.org/10.5194/tc-9-603-2015, 2015
Short summary
Short summary
This paper addresses the feedback between ice flow and melt rates. Using 20 years of data covering the whole ablation area, we show that there is not a strong positive correlation between annual ice velocities and melt rates. Rapid variations around the equilibrium line indicate the possibility of rapid variations high on the ice sheet.
E. Larour, J. Utke, B. Csatho, A. Schenk, H. Seroussi, M. Morlighem, E. Rignot, N. Schlegel, and A. Khazendar
The Cryosphere, 8, 2335–2351, https://doi.org/10.5194/tc-8-2335-2014, https://doi.org/10.5194/tc-8-2335-2014, 2014
Short summary
Short summary
We present a temporal inversion of surface mass balance and basal friction for the Northeast Greenland Ice Sheet between 2003 and 2009, using the altimetry record from ICESat. The inversion relies on automatic differentiation of ISSM and demonstrates the feasibility of assimilating altimetry records into reconstructions of the Greenland Ice Sheet. The boundary conditions provide a snapshot of the state of the ice for this period and can be used for further process studies.
P. M. Alexander, M. Tedesco, X. Fettweis, R. S. W. van de Wal, C. J. P. P. Smeets, and M. R. van den Broeke
The Cryosphere, 8, 2293–2312, https://doi.org/10.5194/tc-8-2293-2014, https://doi.org/10.5194/tc-8-2293-2014, 2014
H. Seroussi, M. Morlighem, E. Larour, E. Rignot, and A. Khazendar
The Cryosphere, 8, 2075–2087, https://doi.org/10.5194/tc-8-2075-2014, https://doi.org/10.5194/tc-8-2075-2014, 2014
J. M. Lea, D. W. F. Mair, F. M. Nick, B. R. Rea, D. van As, M. Morlighem, P. W. Nienow, and A. Weidick
The Cryosphere, 8, 2031–2045, https://doi.org/10.5194/tc-8-2031-2014, https://doi.org/10.5194/tc-8-2031-2014, 2014
B. Noël, X. Fettweis, W. J. van de Berg, M. R. van den Broeke, and M. Erpicum
The Cryosphere, 8, 1871–1883, https://doi.org/10.5194/tc-8-1871-2014, https://doi.org/10.5194/tc-8-1871-2014, 2014
S. R. M. Ligtenberg, P. Kuipers Munneke, and M. R. van den Broeke
The Cryosphere, 8, 1711–1723, https://doi.org/10.5194/tc-8-1711-2014, https://doi.org/10.5194/tc-8-1711-2014, 2014
H. Seroussi, M. Morlighem, E. Rignot, J. Mouginot, E. Larour, M. Schodlok, and A. Khazendar
The Cryosphere, 8, 1699–1710, https://doi.org/10.5194/tc-8-1699-2014, https://doi.org/10.5194/tc-8-1699-2014, 2014
S. A. Khan, K. K. Kjeldsen, K. H. Kjær, S. Bevan, A. Luckman, A. Aschwanden, A. A. Bjørk, N. J. Korsgaard, J. E. Box, M. van den Broeke, T. M. van Dam, and A. Fitzner
The Cryosphere, 8, 1497–1507, https://doi.org/10.5194/tc-8-1497-2014, https://doi.org/10.5194/tc-8-1497-2014, 2014
H. Fréville, E. Brun, G. Picard, N. Tatarinova, L. Arnaud, C. Lanconelli, C. Reijmer, and M. van den Broeke
The Cryosphere, 8, 1361–1373, https://doi.org/10.5194/tc-8-1361-2014, https://doi.org/10.5194/tc-8-1361-2014, 2014
B. Medley, I. Joughin, B. E. Smith, S. B. Das, E. J. Steig, H. Conway, S. Gogineni, C. Lewis, A. S. Criscitiello, J. R. McConnell, M. R. van den Broeke, J. T. M. Lenaerts, D. H. Bromwich, J. P. Nicolas, and C. Leuschen
The Cryosphere, 8, 1375–1392, https://doi.org/10.5194/tc-8-1375-2014, https://doi.org/10.5194/tc-8-1375-2014, 2014
S. Adhikari, E. R. Ivins, E. Larour, H. Seroussi, M. Morlighem, and S. Nowicki
Solid Earth, 5, 569–584, https://doi.org/10.5194/se-5-569-2014, https://doi.org/10.5194/se-5-569-2014, 2014
J. T. M. Lenaerts, C. J. P. P. Smeets, K. Nishimura, M. Eijkelboom, W. Boot, M. R. van den Broeke, and W. J. van de Berg
The Cryosphere, 8, 801–814, https://doi.org/10.5194/tc-8-801-2014, https://doi.org/10.5194/tc-8-801-2014, 2014
B. C. Gunter, O. Didova, R. E. M. Riva, S. R. M. Ligtenberg, J. T. M. Lenaerts, M. A. King, M. R. van den Broeke, and T. Urban
The Cryosphere, 8, 743–760, https://doi.org/10.5194/tc-8-743-2014, https://doi.org/10.5194/tc-8-743-2014, 2014
J. M. van Wessem, C. H. Reijmer, J. T. M. Lenaerts, W. J. van de Berg, M. R. van den Broeke, and E. van Meijgaard
The Cryosphere, 8, 125–135, https://doi.org/10.5194/tc-8-125-2014, https://doi.org/10.5194/tc-8-125-2014, 2014
I. Sasgen, H. Konrad, E. R. Ivins, M. R. Van den Broeke, J. L. Bamber, Z. Martinec, and V. Klemann
The Cryosphere, 7, 1499–1512, https://doi.org/10.5194/tc-7-1499-2013, https://doi.org/10.5194/tc-7-1499-2013, 2013
A. K. Rennermalm, L. C. Smith, V. W. Chu, J. E. Box, R. R. Forster, M. R. Van den Broeke, D. Van As, and S. E. Moustafa
The Cryosphere, 7, 1433–1445, https://doi.org/10.5194/tc-7-1433-2013, https://doi.org/10.5194/tc-7-1433-2013, 2013
M. M. Helsen, W. J. van de Berg, R. S. W. van de Wal, M. R. van den Broeke, and J. Oerlemans
Clim. Past, 9, 1773–1788, https://doi.org/10.5194/cp-9-1773-2013, https://doi.org/10.5194/cp-9-1773-2013, 2013
I. Joughin, S. B. Das, G. E. Flowers, M. D. Behn, R. B. Alley, M. A. King, B. E. Smith, J. L. Bamber, M. R. van den Broeke, and J. H. van Angelen
The Cryosphere, 7, 1185–1192, https://doi.org/10.5194/tc-7-1185-2013, https://doi.org/10.5194/tc-7-1185-2013, 2013
W. J. van de Berg, M. R. van den Broeke, E. van Meijgaard, and F. Kaspar
Clim. Past, 9, 1589–1600, https://doi.org/10.5194/cp-9-1589-2013, https://doi.org/10.5194/cp-9-1589-2013, 2013
C. L. Vernon, J. L. Bamber, J. E. Box, M. R. van den Broeke, X. Fettweis, E. Hanna, and P. Huybrechts
The Cryosphere, 7, 599–614, https://doi.org/10.5194/tc-7-599-2013, https://doi.org/10.5194/tc-7-599-2013, 2013
X. Fettweis, B. Franco, M. Tedesco, J. H. van Angelen, J. T. M. Lenaerts, M. R. van den Broeke, and H. Gallée
The Cryosphere, 7, 469–489, https://doi.org/10.5194/tc-7-469-2013, https://doi.org/10.5194/tc-7-469-2013, 2013
I. M. Howat, S. de la Peña, J. H. van Angelen, J. T. M. Lenaerts, and M. R. van den Broeke
The Cryosphere, 7, 201–204, https://doi.org/10.5194/tc-7-201-2013, https://doi.org/10.5194/tc-7-201-2013, 2013
M. M. Helsen, R. S. W. van de Wal, M. R. van den Broeke, W. J. van de Berg, and J. Oerlemans
The Cryosphere, 6, 255–272, https://doi.org/10.5194/tc-6-255-2012, https://doi.org/10.5194/tc-6-255-2012, 2012
M. R. van den Broeke, C. J. P. P. Smeets, and R. S. W. van de Wal
The Cryosphere, 5, 377–390, https://doi.org/10.5194/tc-5-377-2011, https://doi.org/10.5194/tc-5-377-2011, 2011
M. van den Broeke, P. Smeets, J. Ettema, C. van der Veen, R. van de Wal, and J. Oerlemans
The Cryosphere, 2, 179–189, https://doi.org/10.5194/tc-2-179-2008, https://doi.org/10.5194/tc-2-179-2008, 2008
Related subject area
Discipline: Ice sheets | Subject: Antarctic
Thwaites Glacier thins and retreats fastest where ice-shelf channels intersect its grounding zone
Melt sensitivity of irreversible retreat of Pine Island Glacier
A model framework for atmosphere–snow water vapor exchange and the associated isotope effects at Dome Argus, Antarctica – Part 1: The diurnal changes
The long-term sea-level commitment from Antarctica
The influence of present-day regional surface mass balance uncertainties on the future evolution of the Antarctic Ice Sheet
How well can satellite altimetry and firn models resolve Antarctic firn thickness variations?
Feedback mechanisms controlling Antarctic glacial-cycle dynamics simulated with a coupled ice sheet–solid Earth model
The effect of ice shelf rheology on shelf edge bending
Hysteresis of idealized, instability-prone outlet glaciers in response to pinning-point buttressing variation
A physics-based Antarctic melt detection technique: combining Advanced Microwave Scanning Radiometer 2, radiative-transfer modeling, and firn modeling
Brief communication: Precision measurement of the index of refraction of deep glacial ice at radio frequencies at Summit Station, Greenland
Widespread increase in discharge from west Antarctic Peninsula glaciers since 2018
Surface dynamics and history of the calving cycle of Astrolabe Glacier (Adélie Coast, Antarctica) derived from satellite imagery
Detecting Holocene retreat and readvance in the Amundsen Sea sector of Antarctica: assessing the suitability of sites near Pine Island Glacier for subglacial bedrock drilling
Weak relationship between remotely detected crevasses and inferred ice rheological parameters on Antarctic ice shelves
Extensive palaeo-surfaces beneath the Evans–Rutford region of the West Antarctic Ice Sheet control modern and past ice flow
Towards the systematic reconnaissance of seismic signals from glaciers and ice sheets – Part 1: Event detection for cryoseismology
Towards the systematic reconnaissance of seismic signals from glaciers and ice sheets – Part 2: Unsupervised learning for source process characterization
Geometric amplification and suppression of ice-shelf basal melt in West Antarctica
Alpine topography of the Gamburtsev Subglacial Mountains, Antarctica, mapped from ice sheet surface morphology
A fast and unified subglacial hydrological model applied to Thwaites Glacier, Antarctica
Impact of boundary conditions on the modeled thermal regime of the Antarctic ice sheet
The staggered retreat of grounded ice in the Ross Sea, Antarctica, since the Last Glacial Maximum (LGM)
The effect of landfast sea ice buttressing on ice dynamic speedup in the Larsen B embayment, Antarctica
Meteoric water and glacial melt in the southeastern Amundsen Sea: a time series from 1994 to 2020
Evaporative controls on Antarctic precipitation: an ECHAM6 model study using innovative water tracer diagnostics
Disentangling the drivers of future Antarctic ice loss with a historically calibrated ice-sheet model
Modelling GNSS-observed seasonal velocity changes of the Ross Ice Shelf, Antarctica, using the Ice-sheet and Sea-level System Model (ISSM)
Insights into the vulnerability of Antarctic glaciers from the ISMIP6 ice sheet model ensemble and associated uncertainty
Evaluation of four calving laws for Antarctic ice shelves
Oceanic gateways in Antarctica – Impact of relative sea-level change on sub-shelf melt
Englacial architecture of Lambert Glacier, East Antarctica
Mass changes of the northern Antarctic Peninsula Ice Sheet derived from repeat bi-static synthetic aperture radar acquisitions for the period 2013–2017
The evolution of future Antarctic surface melt using PISM-dEBM-simple
Characteristics and rarity of the strong 1940s westerly wind event over the Amundsen Sea, West Antarctica
Sensitivity of the MAR regional climate model snowpack to the parameterization of the assimilation of satellite-derived wet-snow masks on the Antarctic Peninsula
Stratigraphic noise and its potential drivers across the plateau of Dronning Maud Land, East Antarctica
Modes of Antarctic tidal grounding line migration revealed by Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) laser altimetry
Evaluating the impact of enhanced horizontal resolution over the Antarctic domain using a variable-resolution Earth system model
Statistically parameterizing and evaluating a positive degree-day model to estimate surface melt in Antarctica from 1979 to 2022
Widespread slowdown in thinning rates of West Antarctic ice shelves
Seasonal variability in Antarctic ice shelf velocities forced by sea surface height variations
Revisiting temperature sensitivity: how does Antarctic precipitation change with temperature?
Cosmogenic-nuclide data from Antarctic nunataks can constrain past ice sheet instabilities
Exploring ice sheet model sensitivity to ocean thermal forcing and basal sliding using the Community Ice Sheet Model (CISM)
High mid-Holocene accumulation rates over West Antarctica inferred from a pervasive ice-penetrating radar reflector
Seasonal and interannual variability of the landfast ice mass balance between 2009 and 2018 in Prydz Bay, East Antarctica
Megadunes in Antarctica: migration and characterization from remote and in situ observations
Slowdown of Shirase Glacier, East Antarctica, caused by strengthening alongshore winds
Timescales of outlet-glacier flow with negligible basal friction: theory, observations and modeling
Allison M. Chartrand, Ian M. Howat, Ian R. Joughin, and Benjamin E. Smith
The Cryosphere, 18, 4971–4992, https://doi.org/10.5194/tc-18-4971-2024, https://doi.org/10.5194/tc-18-4971-2024, 2024
Short summary
Short summary
This study uses high-resolution remote-sensing data to show that shrinking of the West Antarctic Thwaites Glacier’s ice shelf (floating extension) is exacerbated by several sub-ice-shelf meltwater channels that form as the glacier transitions from full contact with the seafloor to fully floating. In mapping these channels, the position of the transition zone, and thinning rates of the Thwaites Glacier, this work elucidates important processes driving its rapid contribution to sea level rise.
Brad Reed, J. A. Mattias Green, Adrian Jenkins, and G. Hilmar Gudmundsson
The Cryosphere, 18, 4567–4587, https://doi.org/10.5194/tc-18-4567-2024, https://doi.org/10.5194/tc-18-4567-2024, 2024
Short summary
Short summary
We use a numerical ice-flow model to simulate the response of a 1940s Pine Island Glacier to changes in melting beneath its ice shelf. A decadal period of warm forcing is sufficient to push the glacier into an unstable, irreversible retreat from its long-term position on a subglacial ridge to an upstream ice plain. This retreat can only be stopped when unrealistic cold forcing is applied. These results show that short warm anomalies can lead to quick and substantial increases in ice flux.
Tianming Ma, Zhuang Jiang, Minghu Ding, Pengzhen He, Yuansheng Li, Wenqian Zhang, and Lei Geng
The Cryosphere, 18, 4547–4565, https://doi.org/10.5194/tc-18-4547-2024, https://doi.org/10.5194/tc-18-4547-2024, 2024
Short summary
Short summary
We constructed a box model to evaluate the isotope effects of atmosphere–snow water vapor exchange at Dome A, Antarctica. The results show clear and invisible diurnal changes in surface snow isotopes under summer and winter conditions, respectively. The model also predicts that the annual net effects of atmosphere–snow water vapor exchange would be overall enrichments in snow isotopes since the effects in summer appear to be greater than those in winter at the study site.
Ann Kristin Klose, Violaine Coulon, Frank Pattyn, and Ricarda Winkelmann
The Cryosphere, 18, 4463–4492, https://doi.org/10.5194/tc-18-4463-2024, https://doi.org/10.5194/tc-18-4463-2024, 2024
Short summary
Short summary
We systematically assess the long-term sea-level response from Antarctica to warming projected over the next centuries, using two ice-sheet models. We show that this committed Antarctic sea-level contribution is substantially higher than the transient sea-level change projected for the coming decades. A low-emission scenario already poses considerable risk of multi-meter sea-level increase over the next millennia, while additional East Antarctic ice loss unfolds under the high-emission pathway.
Christian Wirths, Thomas F. Stocker, and Johannes C. R. Sutter
The Cryosphere, 18, 4435–4462, https://doi.org/10.5194/tc-18-4435-2024, https://doi.org/10.5194/tc-18-4435-2024, 2024
Short summary
Short summary
We investigated the influence of several regional climate models on the Antarctic Ice Sheet when applied as forcing for the Parallel Ice Sheet Model (PISM). Our study shows that the choice of regional climate model forcing results in uncertainties of around a tenth of those in future sea level rise projections and also affects the extent of grounding line retreat in West Antarctica.
Maria T. Kappelsberger, Martin Horwath, Eric Buchta, Matthias O. Willen, Ludwig Schröder, Sanne B. M. Veldhuijsen, Peter Kuipers Munneke, and Michiel R. van den Broeke
The Cryosphere, 18, 4355–4378, https://doi.org/10.5194/tc-18-4355-2024, https://doi.org/10.5194/tc-18-4355-2024, 2024
Short summary
Short summary
The interannual variations in the height of the Antarctic Ice Sheet (AIS) are mainly due to natural variations in snowfall. Precise knowledge of these variations is important for the detection of any long-term climatic trends in AIS surface elevation. We present a new product that spatially resolves these height variations over the period 1992–2017. The product combines the strengths of atmospheric modeling results and satellite altimetry measurements.
Torsten Albrecht, Meike Bagge, and Volker Klemann
The Cryosphere, 18, 4233–4255, https://doi.org/10.5194/tc-18-4233-2024, https://doi.org/10.5194/tc-18-4233-2024, 2024
Short summary
Short summary
We performed coupled ice sheet–solid Earth simulations and discovered a positive (forebulge) feedback mechanism for advancing grounding lines, supporting a larger West Antarctic Ice Sheet during the Last Glacial Maximum. During deglaciation we found that the stabilizing glacial isostatic adjustment feedback dominates grounding-line retreat in the Ross Sea, with a weak Earth structure. This may have consequences for present and future ice sheet stability and potential rates of sea-level rise.
W. Roger Buck
The Cryosphere, 18, 4165–4176, https://doi.org/10.5194/tc-18-4165-2024, https://doi.org/10.5194/tc-18-4165-2024, 2024
Short summary
Short summary
Standard theory predicts that the edge of an ice shelf should bend downward. Satellite observations show that the edges of many ice shelves bend upward. A new theory for ice shelf bending is developed that, for the first time, includes the kind of vertical variations in ice flow properties expected for ice shelves. Upward bending of shelf edges is predicted as long as the ice surface is very cold and the ice flow properties depend strongly on temperature.
Johannes Feldmann, Anders Levermann, and Ricarda Winkelmann
The Cryosphere, 18, 4011–4028, https://doi.org/10.5194/tc-18-4011-2024, https://doi.org/10.5194/tc-18-4011-2024, 2024
Short summary
Short summary
Here we show in simplified simulations that the (ir)reversibility of the retreat of instability-prone, Antarctica-type glaciers can strongly depend on the depth of the bed depression they rest on. If it is sufficiently deep, then the destabilized glacier does not recover from its collapsed state. Our results suggest that glaciers resting on a wide and deep bed depression, such as Antarctica's Thwaites Glacier, are particularly susceptible to irreversible retreat.
Marissa E. Dattler, Brooke Medley, and C. Max Stevens
The Cryosphere, 18, 3613–3631, https://doi.org/10.5194/tc-18-3613-2024, https://doi.org/10.5194/tc-18-3613-2024, 2024
Short summary
Short summary
We developed an algorithm based on combining models and satellite observations to identify the presence of surface melt on the Antarctic Ice Sheet. We find that this method works similarly to previous methods by assessing 13 sites and the Larsen C ice shelf. Unlike previous methods, this algorithm is based on physical parameters, and updates to this method could allow the meltwater present on the Antarctic Ice Sheet to be quantified instead of simply detected.
Christoph Welling and The RNO-G Collaboration
The Cryosphere, 18, 3433–3437, https://doi.org/10.5194/tc-18-3433-2024, https://doi.org/10.5194/tc-18-3433-2024, 2024
Short summary
Short summary
We report on the measurement of the index of refraction in glacial ice at radio frequencies. We show that radio echoes from within the ice can be associated with specific features of the ice conductivity and use this to determine the wave velocity. This measurement is especially relevant for the Radio Neutrino Observatory Greenland (RNO-G), a neutrino detection experiment currently under construction at Summit Station, Greenland.
Benjamin J. Davison, Anna E. Hogg, Carlos Moffat, Michael P. Meredith, and Benjamin J. Wallis
The Cryosphere, 18, 3237–3251, https://doi.org/10.5194/tc-18-3237-2024, https://doi.org/10.5194/tc-18-3237-2024, 2024
Short summary
Short summary
Using a new dataset of ice motion, we observed glacier acceleration on the west coast of the Antarctic Peninsula. The speed-up began around January 2021, but some glaciers sped up earlier or later. Using a combination of ship-based ocean temperature observations and climate models, we show that the speed-up coincided with a period of unusually warm air and ocean temperatures in the region.
Floriane Provost, Dimitri Zigone, Emmanuel Le Meur, Jean-Philippe Malet, and Clément Hibert
The Cryosphere, 18, 3067–3079, https://doi.org/10.5194/tc-18-3067-2024, https://doi.org/10.5194/tc-18-3067-2024, 2024
Short summary
Short summary
The recent calving of Astrolabe Glacier in November 2021 presents an opportunity to better understand the processes leading to ice fracturing. Optical-satellite imagery is used to retrieve the calving cycle of the glacier ice tongue and to measure the ice velocity and strain rates in order to document fracture evolution. We observed that the presence of sea ice for consecutive years has favoured the glacier extension but failed to inhibit the growth of fractures that accelerated in June 2021.
Joanne S. Johnson, John Woodward, Ian Nesbitt, Kate Winter, Seth Campbell, Keir A. Nichols, Ryan A. Venturelli, Scott Braddock, Brent M. Goehring, Brenda Hall, Dylan H. Rood, and Greg Balco
EGUsphere, https://doi.org/10.5194/egusphere-2024-1452, https://doi.org/10.5194/egusphere-2024-1452, 2024
Short summary
Short summary
Determining where and when the Antarctic ice sheet was smaller than present requires recovery and exposure dating of subglacial bedrock. Here we use ice sheet model outputs and field data (geological and glaciological observations, bedrock samples and ground-penetrating radar from subglacial ridges) to assess the suitability for drilling of sites in the Hudson Mountains, West Antarctica. We find that no sites are perfect, but two are feasible, with the most suitable being Winkie Nunatak.
Cristina Gerli, Sebastian Rosier, G. Hilmar Gudmundsson, and Sainan Sun
The Cryosphere, 18, 2677–2689, https://doi.org/10.5194/tc-18-2677-2024, https://doi.org/10.5194/tc-18-2677-2024, 2024
Short summary
Short summary
Recent efforts have focused on using AI and satellite imagery to track crevasses for assessing ice shelf damage and informing ice flow models. Our study reveals a weak connection between these observed products and damage maps inferred from ice flow models. While there is some improvement in crevasse-dense regions, this association remains limited. Directly mapping ice damage from satellite observations may not significantly improve the representation of these processes within ice flow models.
Charlotte M. Carter, Michael J. Bentley, Stewart S. R. Jamieson, Guy J. G. Paxman, Tom A. Jordan, Julien A. Bodart, Neil Ross, and Felipe Napoleoni
The Cryosphere, 18, 2277–2296, https://doi.org/10.5194/tc-18-2277-2024, https://doi.org/10.5194/tc-18-2277-2024, 2024
Short summary
Short summary
We use radio-echo sounding data to investigate the presence of flat surfaces beneath the Evans–Rutford region in West Antarctica. These surfaces may be what remains of laterally continuous surfaces, formed before the inception of the West Antarctic Ice Sheet, and we assess two hypotheses for their formation. Tectonic structures in the region may have also had a control on the growth of the ice sheet by focusing ice flow into troughs adjoining these surfaces.
Rebecca B. Latto, Ross J. Turner, Anya M. Reading, and J. Paul Winberry
The Cryosphere, 18, 2061–2079, https://doi.org/10.5194/tc-18-2061-2024, https://doi.org/10.5194/tc-18-2061-2024, 2024
Short summary
Short summary
The study of icequakes allows for investigation of many glacier processes that are unseen by typical reconnaissance methods. However, detection of such seismic signals is challenging due to low signal-to-noise levels and diverse source mechanisms. Here we present a novel algorithm that is optimized to detect signals from a glacier environment. We apply the algorithm to seismic data recorded in the 2010–2011 austral summer from the Whillans Ice Stream and evaluate the resulting event catalogue.
Rebecca B. Latto, Ross J. Turner, Anya M. Reading, Sue Cook, Bernd Kulessa, and J. Paul Winberry
The Cryosphere, 18, 2081–2101, https://doi.org/10.5194/tc-18-2081-2024, https://doi.org/10.5194/tc-18-2081-2024, 2024
Short summary
Short summary
Seismic catalogues are potentially rich sources of information on glacier processes. In a companion study, we constructed an event catalogue for seismic data from the Whillans Ice Stream. Here, we provide a semi-automated workflow for consistent catalogue analysis using an unsupervised cluster analysis. We discuss the defining characteristics of identified signal types found in this catalogue and possible mechanisms for the underlying glacier processes and noise sources.
Jan De Rydt and Kaitlin Naughten
The Cryosphere, 18, 1863–1888, https://doi.org/10.5194/tc-18-1863-2024, https://doi.org/10.5194/tc-18-1863-2024, 2024
Short summary
Short summary
The West Antarctic Ice Sheet is losing ice at an accelerating pace. This is largely due to the presence of warm ocean water around the periphery of the Antarctic continent, which melts the ice. It is generally assumed that the strength of this process is controlled by the temperature of the ocean. However, in this study we show that an equally important role is played by the changing geometry of the ice sheet, which affects the strength of the ocean currents and thereby the melt rates.
Edmund J. Lea, Stewart S. R. Jamieson, and Michael J. Bentley
The Cryosphere, 18, 1733–1751, https://doi.org/10.5194/tc-18-1733-2024, https://doi.org/10.5194/tc-18-1733-2024, 2024
Short summary
Short summary
We use the ice surface expression of the Gamburtsev Subglacial Mountains in East Antarctica to map the horizontal pattern of valleys and ridges in finer detail than possible from previous methods. In upland areas, valleys are spaced much less than 5 km apart, with consequences for the distribution of melting at the bed and hence the likelihood of ancient ice being preserved. Automated mapping techniques were tested alongside manual approaches, with a hybrid approach recommended for future work.
Elise Kazmierczak, Thomas Gregov, Violaine Coulon, and Frank Pattyn
EGUsphere, https://doi.org/10.5194/egusphere-2024-466, https://doi.org/10.5194/egusphere-2024-466, 2024
Short summary
Short summary
We introduce a new fast model for the water flow beneath the ice sheet capable of handling in a unified way various hydrological and bed conditions. Applying this model to Thwaites Glacier, we show that accounting for this water flow in ice-sheet model projections has the potential to greatly increase the contribution to future sea-level rise. We also demonstrate that the sensitivity of the ice sheet in response to external changes depends on both the efficiency of the drainage and the bed type.
In-Woo Park, Emilia Kyung Jin, Mathieu Morlighem, and Kang-Kun Lee
The Cryosphere, 18, 1139–1155, https://doi.org/10.5194/tc-18-1139-2024, https://doi.org/10.5194/tc-18-1139-2024, 2024
Short summary
Short summary
This study conducted 3D thermodynamic ice sheet model experiments, and modeled temperatures were compared with 15 observed borehole temperature profiles. We found that using incompressibility of ice without sliding agrees well with observed temperature profiles in slow-flow regions, while incorporating sliding in fast-flow regions captures observed temperature profiles. Also, the choice of vertical velocity scheme has a greater impact on the shape of the modeled temperature profile.
Matthew A. Danielson and Philip J. Bart
The Cryosphere, 18, 1125–1138, https://doi.org/10.5194/tc-18-1125-2024, https://doi.org/10.5194/tc-18-1125-2024, 2024
Short summary
Short summary
The post-Last Glacial Maximum (LGM) retreat of the West Antarctic Ice Sheet in the Ross Sea was more significant than for any other Antarctic sector. Here we combined the available dates of retreat with new mapping of sediment deposited by the ice sheet during overall retreat. Our work shows that the post-LGM retreat through the Ross Sea was not uniform. This uneven retreat can cause instability in the present-day Antarctic ice sheet configuration and lead to future runaway retreat.
Trystan Surawy-Stepney, Anna E. Hogg, Stephen L. Cornford, Benjamin J. Wallis, Benjamin J. Davison, Heather L. Selley, Ross A. W. Slater, Elise K. Lie, Livia Jakob, Andrew Ridout, Noel Gourmelen, Bryony I. D. Freer, Sally F. Wilson, and Andrew Shepherd
The Cryosphere, 18, 977–993, https://doi.org/10.5194/tc-18-977-2024, https://doi.org/10.5194/tc-18-977-2024, 2024
Short summary
Short summary
Here, we use satellite observations and an ice flow model to quantify the impact of sea ice buttressing on ice streams on the Antarctic Peninsula. The evacuation of 11-year-old landfast sea ice in the Larsen B embayment on the East Antarctic Peninsula in January 2022 was closely followed by major changes in the calving behaviour and acceleration (30 %) of the ocean-terminating glaciers. Our results show that sea ice buttressing had a negligible direct role in the observed dynamic changes.
Andrew N. Hennig, David A. Mucciarone, Stanley S. Jacobs, Richard A. Mortlock, and Robert B. Dunbar
The Cryosphere, 18, 791–818, https://doi.org/10.5194/tc-18-791-2024, https://doi.org/10.5194/tc-18-791-2024, 2024
Short summary
Short summary
A total of 937 seawater paired oxygen isotope (δ18O)–salinity samples collected during seven cruises on the SE Amundsen Sea between 1994 and 2020 reveal a deep freshwater source with δ18O − 29.4±1.0‰, consistent with the signature of local ice shelf melt. Local mean meteoric water content – comprised primarily of glacial meltwater – increased between 1994 and 2020 but exhibited greater interannual variability than increasing trend.
Qinggang Gao, Louise C. Sime, Alison J. McLaren, Thomas J. Bracegirdle, Emilie Capron, Rachael H. Rhodes, Hans Christian Steen-Larsen, Xiaoxu Shi, and Martin Werner
The Cryosphere, 18, 683–703, https://doi.org/10.5194/tc-18-683-2024, https://doi.org/10.5194/tc-18-683-2024, 2024
Short summary
Short summary
Antarctic precipitation is a crucial component of the climate system. Its spatio-temporal variability impacts sea level changes and the interpretation of water isotope measurements in ice cores. To better understand its climatic drivers, we developed water tracers in an atmospheric model to identify moisture source conditions from which precipitation originates. We find that mid-latitude surface winds exert an important control on moisture availability for Antarctic precipitation.
Violaine Coulon, Ann Kristin Klose, Christoph Kittel, Tamsin Edwards, Fiona Turner, Ricarda Winkelmann, and Frank Pattyn
The Cryosphere, 18, 653–681, https://doi.org/10.5194/tc-18-653-2024, https://doi.org/10.5194/tc-18-653-2024, 2024
Short summary
Short summary
We present new projections of the evolution of the Antarctic ice sheet until the end of the millennium, calibrated with observations. We show that the ocean will be the main trigger of future ice loss. As temperatures continue to rise, the atmosphere's role may shift from mitigating to amplifying Antarctic mass loss already by the end of the century. For high-emission scenarios, this may lead to substantial sea-level rise. Adopting sustainable practices would however reduce the rate of ice loss.
Francesca Baldacchino, Nicholas R. Golledge, Huw Horgan, Mathieu Morlighem, Alanna V. Alevropoulos-Borrill, Alena Malyarenko, Alexandra Gossart, Daniel P. Lowry, and Laurine van Haastrecht
EGUsphere, https://doi.org/10.5194/egusphere-2023-2793, https://doi.org/10.5194/egusphere-2023-2793, 2023
Short summary
Short summary
Understanding how the Ross Ice Shelf flow is changing in a warming world is important for monitoring mass changes. The flow displays an intra-annual variation; however, it is unclear what mechanisms drive this variability. Sensitivity maps are modelled showing areas of the ice shelf where changes in basal melt most influence the ice flow. We suggest that basal melting partly drives the flow variability along the calving front of the ice shelf and will continue to do so in a warming world.
Hélène Seroussi, Vincent Verjans, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Peter Van Katwyk, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 17, 5197–5217, https://doi.org/10.5194/tc-17-5197-2023, https://doi.org/10.5194/tc-17-5197-2023, 2023
Short summary
Short summary
Mass loss from Antarctica is a key contributor to sea level rise over the 21st century, and the associated uncertainty dominates sea level projections. We highlight here the Antarctic glaciers showing the largest changes and quantify the main sources of uncertainty in their future evolution using an ensemble of ice flow models. We show that on top of Pine Island and Thwaites glaciers, Totten and Moscow University glaciers show rapid changes and a strong sensitivity to warmer ocean conditions.
Joel A. Wilner, Mathieu Morlighem, and Gong Cheng
The Cryosphere, 17, 4889–4901, https://doi.org/10.5194/tc-17-4889-2023, https://doi.org/10.5194/tc-17-4889-2023, 2023
Short summary
Short summary
We use numerical modeling to study iceberg calving off of ice shelves in Antarctica. We examine four widely used mathematical descriptions of calving (
calving laws), under the assumption that Antarctic ice shelf front positions should be in steady state under the current climate forcing. We quantify how well each of these calving laws replicates the observed front positions. Our results suggest that the eigencalving and von Mises laws are most suitable for Antarctic ice shelves.
Moritz Kreuzer, Torsten Albrecht, Lena Nicola, Ronja Reese, and Ricarda Winkelmann
EGUsphere, https://doi.org/10.5194/egusphere-2023-2737, https://doi.org/10.5194/egusphere-2023-2737, 2023
Short summary
Short summary
The study investigates how changing sea levels around Antarctica can potentially affect the floating ice shelves. It utilizes numerical models for both the Antarctic Ice Sheet and the solid Earth, investigating features like troughs and sills that control the flow of ocean water onto the continental shelf. The research finds that variations in sea level alone can significantly impact the melting rates of ice shelves.
Rebecca J. Sanderson, Kate Winter, S. Louise Callard, Felipe Napoleoni, Neil Ross, Tom A. Jordan, and Robert G. Bingham
The Cryosphere, 17, 4853–4871, https://doi.org/10.5194/tc-17-4853-2023, https://doi.org/10.5194/tc-17-4853-2023, 2023
Short summary
Short summary
Ice-penetrating radar allows us to explore the internal structure of glaciers and ice sheets to constrain past and present ice-flow conditions. In this paper, we examine englacial layers within the Lambert Glacier in East Antarctica using a quantitative layer tracing tool. Analysis reveals that the ice flow here has been relatively stable, but evidence for former fast flow along a tributary suggests that changes have occurred in the past and could change again in the future.
Thorsten Seehaus, Christian Sommer, Thomas Dethinne, and Philipp Malz
The Cryosphere, 17, 4629–4644, https://doi.org/10.5194/tc-17-4629-2023, https://doi.org/10.5194/tc-17-4629-2023, 2023
Short summary
Short summary
Existing mass budget estimates for the northern Antarctic Peninsula (>70° S) are affected by considerable limitations. We carried out the first region-wide analysis of geodetic mass balances throughout this region (coverage of 96.4 %) for the period 2013–2017 based on repeat pass bi-static TanDEM-X acquisitions. A total mass budget of −24.1±2.8 Gt/a is revealed. Imbalanced high ice discharge, particularly at former ice shelf tributaries, is the main driver of overall ice loss.
Julius Garbe, Maria Zeitz, Uta Krebs-Kanzow, and Ricarda Winkelmann
The Cryosphere, 17, 4571–4599, https://doi.org/10.5194/tc-17-4571-2023, https://doi.org/10.5194/tc-17-4571-2023, 2023
Short summary
Short summary
We adopt the novel surface module dEBM-simple in the Parallel Ice Sheet Model (PISM) to investigate the impact of atmospheric warming on Antarctic surface melt and long-term ice sheet dynamics. As an enhancement compared to traditional temperature-based melt schemes, the module accounts for changes in ice surface albedo and thus the melt–albedo feedback. Our results underscore the critical role of ice–atmosphere feedbacks in the future sea-level contribution of Antarctica on long timescales.
Gemma K. O'Connor, Paul R. Holland, Eric J. Steig, Pierre Dutrieux, and Gregory J. Hakim
The Cryosphere, 17, 4399–4420, https://doi.org/10.5194/tc-17-4399-2023, https://doi.org/10.5194/tc-17-4399-2023, 2023
Short summary
Short summary
Glaciers in West Antarctica are rapidly melting, but the causes are unknown due to limited observations. A leading hypothesis is that an unusually large wind event in the 1940s initiated the ocean-driven melting. Using proxy reconstructions (e.g., using ice cores) and climate model simulations, we find that wind events similar to the 1940s event are relatively common on millennial timescales, implying that ocean variability or climate trends are also necessary to explain the start of ice loss.
Thomas Dethinne, Quentin Glaude, Ghislain Picard, Christoph Kittel, Patrick Alexander, Anne Orban, and Xavier Fettweis
The Cryosphere, 17, 4267–4288, https://doi.org/10.5194/tc-17-4267-2023, https://doi.org/10.5194/tc-17-4267-2023, 2023
Short summary
Short summary
We investigate the sensitivity of the regional climate model
Modèle Atmosphérique Régional(MAR) to the assimilation of wet-snow occurrence estimated by remote sensing datasets. The assimilation is performed by nudging the MAR snowpack temperature. The data assimilation is performed over the Antarctic Peninsula for the 2019–2021 period. The results show an increase in the melt production (+66.7 %) and a decrease in surface mass balance (−4.5 %) of the model for the 2019–2020 melt season.
Nora Hirsch, Alexandra Zuhr, Thomas Münch, Maria Hörhold, Johannes Freitag, Remi Dallmayr, and Thomas Laepple
The Cryosphere, 17, 4207–4221, https://doi.org/10.5194/tc-17-4207-2023, https://doi.org/10.5194/tc-17-4207-2023, 2023
Short summary
Short summary
Stable water isotopes from firn cores provide valuable information on past climates, yet their utility is hampered by stratigraphic noise, i.e. the irregular deposition and wind-driven redistribution of snow. We found stratigraphic noise on the Antarctic Plateau to be related to the local accumulation rate, snow surface roughness and slope inclination, which can guide future decisions on sampling locations and thus increase the resolution of climate reconstructions from low-accumulation areas.
Bryony I. D. Freer, Oliver J. Marsh, Anna E. Hogg, Helen Amanda Fricker, and Laurie Padman
The Cryosphere, 17, 4079–4101, https://doi.org/10.5194/tc-17-4079-2023, https://doi.org/10.5194/tc-17-4079-2023, 2023
Short summary
Short summary
We develop a method using ICESat-2 data to measure how Antarctic grounding lines (GLs) migrate across the tide cycle. At an ice plain on the Ronne Ice Shelf we observe 15 km of tidal GL migration, the largest reported distance in Antarctica, dominating any signal of long-term migration. We identify four distinct migration modes, which provide both observational support for models of tidal ice flexure and GL migration and insights into ice shelf–ocean–subglacial interactions in grounding zones.
Rajashree Tri Datta, Adam Herrington, Jan T. M. Lenaerts, David P. Schneider, Luke Trusel, Ziqi Yin, and Devon Dunmire
The Cryosphere, 17, 3847–3866, https://doi.org/10.5194/tc-17-3847-2023, https://doi.org/10.5194/tc-17-3847-2023, 2023
Short summary
Short summary
Precipitation over Antarctica is one of the greatest sources of uncertainty in sea level rise estimates. Earth system models (ESMs) are a valuable tool for these estimates but typically run at coarse spatial resolutions. Here, we present an evaluation of the variable-resolution CESM2 (VR-CESM2) for the first time with a grid designed for enhanced spatial resolution over Antarctica to achieve the high resolution of regional climate models while preserving the two-way interactions of ESMs.
Yaowen Zheng, Nicholas R. Golledge, Alexandra Gossart, Ghislain Picard, and Marion Leduc-Leballeur
The Cryosphere, 17, 3667–3694, https://doi.org/10.5194/tc-17-3667-2023, https://doi.org/10.5194/tc-17-3667-2023, 2023
Short summary
Short summary
Positive degree-day (PDD) schemes are widely used in many Antarctic numerical ice sheet models. However, the PDD approach has not been systematically explored for its application in Antarctica. We have constructed a novel grid-cell-level spatially distributed PDD (dist-PDD) model and assessed its accuracy. We suggest that an appropriately parameterized dist-PDD model can be a valuable tool for exploring Antarctic surface melt beyond the satellite era.
Fernando S. Paolo, Alex S. Gardner, Chad A. Greene, Johan Nilsson, Michael P. Schodlok, Nicole-Jeanne Schlegel, and Helen A. Fricker
The Cryosphere, 17, 3409–3433, https://doi.org/10.5194/tc-17-3409-2023, https://doi.org/10.5194/tc-17-3409-2023, 2023
Short summary
Short summary
We report on a slowdown in the rate of thinning and melting of West Antarctic ice shelves. We present a comprehensive assessment of the Antarctic ice shelves, where we analyze at a continental scale the changes in thickness, flow, and basal melt over the past 26 years. We also present a novel method to estimate ice shelf change from satellite altimetry and a time-dependent data set of ice shelf thickness and basal melt rates at an unprecedented resolution.
Cyrille Mosbeux, Laurie Padman, Emilie Klein, Peter D. Bromirski, and Helen A. Fricker
The Cryosphere, 17, 2585–2606, https://doi.org/10.5194/tc-17-2585-2023, https://doi.org/10.5194/tc-17-2585-2023, 2023
Short summary
Short summary
Antarctica's ice shelves (the floating extension of the ice sheet) help regulate ice flow. As ice shelves thin or lose contact with the bedrock, the upstream ice tends to accelerate, resulting in increased mass loss. Here, we use an ice sheet model to simulate the effect of seasonal sea surface height variations and see if we can reproduce observed seasonal variability of ice velocity on the ice shelf. When correctly parameterised, the model fits the observations well.
Lena Nicola, Dirk Notz, and Ricarda Winkelmann
The Cryosphere, 17, 2563–2583, https://doi.org/10.5194/tc-17-2563-2023, https://doi.org/10.5194/tc-17-2563-2023, 2023
Short summary
Short summary
For future sea-level projections, approximating Antarctic precipitation increases through temperature-scaling approaches will remain important, as coupled ice-sheet simulations with regional climate models remain computationally expensive, especially on multi-centennial timescales. We here revisit the relationship between Antarctic temperature and precipitation using different scaling approaches, identifying and explaining regional differences.
Anna Ruth W. Halberstadt, Greg Balco, Hannah Buchband, and Perry Spector
The Cryosphere, 17, 1623–1643, https://doi.org/10.5194/tc-17-1623-2023, https://doi.org/10.5194/tc-17-1623-2023, 2023
Short summary
Short summary
This paper explores the use of multimillion-year exposure ages from Antarctic bedrock outcrops to benchmark ice sheet model predictions and thereby infer ice sheet sensitivity to warm climates. We describe a new approach for model–data comparison, highlight an example where observational data are used to distinguish end-member models, and provide guidance for targeted sampling around Antarctica that can improve understanding of ice sheet response to climate warming in the past and future.
Mira Berdahl, Gunter Leguy, William H. Lipscomb, Nathan M. Urban, and Matthew J. Hoffman
The Cryosphere, 17, 1513–1543, https://doi.org/10.5194/tc-17-1513-2023, https://doi.org/10.5194/tc-17-1513-2023, 2023
Short summary
Short summary
Contributions to future sea level from the Antarctic Ice Sheet remain poorly constrained. One reason is that ice sheet model initialization methods can have significant impacts on how the ice sheet responds to future forcings. We investigate the impacts of two key parameters used during model initialization. We find that these parameter choices alone can impact multi-century sea level rise by up to 2 m, emphasizing the need to carefully consider these choices for sea level rise predictions.
Julien A. Bodart, Robert G. Bingham, Duncan A. Young, Joseph A. MacGregor, David W. Ashmore, Enrica Quartini, Andrew S. Hein, David G. Vaughan, and Donald D. Blankenship
The Cryosphere, 17, 1497–1512, https://doi.org/10.5194/tc-17-1497-2023, https://doi.org/10.5194/tc-17-1497-2023, 2023
Short summary
Short summary
Estimating how West Antarctica will change in response to future climatic change depends on our understanding of past ice processes. Here, we use a reflector widely visible on airborne radar data across West Antarctica to estimate accumulation rates over the past 4700 years. By comparing our estimates with current atmospheric data, we find that accumulation rates were 18 % greater than modern rates. This has implications for our understanding of past ice processes in the region.
Na Li, Ruibo Lei, Petra Heil, Bin Cheng, Minghu Ding, Zhongxiang Tian, and Bingrui Li
The Cryosphere, 17, 917–937, https://doi.org/10.5194/tc-17-917-2023, https://doi.org/10.5194/tc-17-917-2023, 2023
Short summary
Short summary
The observed annual maximum landfast ice (LFI) thickness off Zhongshan (Davis) was 1.59±0.17 m (1.64±0.08 m). Larger interannual and local spatial variabilities for the seasonality of LFI were identified at Zhongshan, with the dominant influencing factors of air temperature anomaly, snow atop, local topography and wind regime, and oceanic heat flux. The variability of LFI properties across the study domain prevailed at interannual timescales, over any trend during the recent decades.
Giacomo Traversa, Davide Fugazza, and Massimo Frezzotti
The Cryosphere, 17, 427–444, https://doi.org/10.5194/tc-17-427-2023, https://doi.org/10.5194/tc-17-427-2023, 2023
Short summary
Short summary
Megadunes are fields of huge snow dunes present in Antarctica and on other planets, important as they present mass loss on the leeward side (glazed snow), on a continent characterized by mass gain. Here, we studied megadunes using remote data and measurements acquired during past field expeditions. We quantified their physical properties and migration and demonstrated that they migrate against slope and wind. We further proposed automatic detections of the glazed snow on their leeward side.
Bertie W. J. Miles, Chris R. Stokes, Adrian Jenkins, Jim R. Jordan, Stewart S. R. Jamieson, and G. Hilmar Gudmundsson
The Cryosphere, 17, 445–456, https://doi.org/10.5194/tc-17-445-2023, https://doi.org/10.5194/tc-17-445-2023, 2023
Short summary
Short summary
Satellite observations have shown that the Shirase Glacier catchment in East Antarctica has been gaining mass over the past 2 decades, a trend largely attributed to increased snowfall. Our multi-decadal observations of Shirase Glacier show that ocean forcing has also contributed to some of this recent mass gain. This has been caused by strengthening easterly winds reducing the inflow of warm water underneath the Shirase ice tongue, causing the glacier to slow down and thicken.
Johannes Feldmann and Anders Levermann
The Cryosphere, 17, 327–348, https://doi.org/10.5194/tc-17-327-2023, https://doi.org/10.5194/tc-17-327-2023, 2023
Short summary
Short summary
Here we present a scaling relation that allows the comparison of the timescales of glaciers with geometric similarity. According to the relation, thicker and wider glaciers on a steeper bed slope have a much faster timescale than shallower, narrower glaciers on a flatter bed slope. The relation is supported by observations and simplified numerical simulations. We combine the scaling relation with a statistical analysis of the topography of 13 instability-prone Antarctic outlet glaciers.
Cited articles
Adhikari, S., Ivins, E. R., Larour, E., Seroussi, H., Morlighem, M., and
Nowicki, S.: Future Antarctic bed topography and its implications for ice
sheet dynamics, Solid Earth, 5, 569–584,
https://doi.org/10.5194/se-5-569-2014, 2014. a
Bakker, A. M. R., Wong, T. E., Ruckert, K. L., and Keller, K.: Sea-level
projections representing the deeply uncertain contribution of the West
Antarctic ice sheet, Sci. Rep., 7, 3880, https://doi.org/10.1038/s41598-017-04134-5, 2017. a
Barletta, V. R., Bevis, M., Smith, B. E., Wilson, T., Brown, A., Bordoni, A.,
Willis, M., Khan, S. A., Rovira-Navarro, M., Dalziel, I., Smalley Jr, R.,
Kendrick, E., Konfal, S., Caccamise II, D. J., Aster, R. C., Nyblade, A., and
Wiens, D. A.: Observed rapid bedrock uplift in Amundsen Sea Embayment
promotes ice-sheet stability, Science, 360, 1335–1339, 2018. a
Bell, R. E.: The role of subglacial water in ice-sheet mass balance, Nat.
Geosci., 1, 297–304, https://doi.org/10.1038/ngeo186, 2008. a
Bindschadler, R., Nowicki, S., Abe-Ouchi, A., Aschwanden, A., Choi, H.,
Fastook, J., Granzow, G., Greve, R., Gutowski, G., Herzfeld, U., Jackson, C.,
Johnson, J., Khroulev, C., Levermann, A., Lipscomb, W., Martin, M.,
Morlighem, M., Parizek, B., Pollard, D., Price, S., Ren, D., Saito,
F.and Sato, T., Seddik, H., Seroussi, H., Takahashi, K., Walker, R., and
Wang, W.: Ice-Sheet Model Sensitivities to Environmental Forcing and Their
Use in Projecting Future Sea-Level (The SeaRISE Project), J. Glaciol., 59,
195–224, https://doi.org/10.3189/2013JoG12J125, 2013. a
Blatter, H.: Velocity And Stress-Fields In Grounded Glaciers: A Simple
Algorithm For Including Deviatoric Stress Gradients, J. Glaciol., 41,
333–344, 1995. a
Borstad, C. P., Khazendar, A., Larour, E., Morlighem, M., Rignot, E., Schodlok,
M. P., and Seroussi, H.: A damage mechanics assessment of the Larsen B ice
shelf prior to collapse: Toward a physically-based calving law, Geophys. Res.
Lett., 39, 1–5, https://doi.org/10.1029/2012GL053317, 2012. a
Brondex, J., Gagliardini, O., Gillet-Chaulet, F., and Durand, G.: Sensitivity
of grounding line dynamics to the choice of the friction law, J. Glaciol.,
63, 854–866, https://doi.org/10.1017/jog.2017.51, 2017. a, b
Budd, W. F., Jenssen, D., and Smith, I. N.: A three-dimensional time-dependent
model of three West Antarctic ice-sheet, Ann. Glaciol., 5, 29–36, 1984. a
Church, J., Clark, P., Cazenave, A., Gregory, J., Jevrejeva, S., Levermann, A.,
Merrifield, M., Milne, G., Nerem, R., Nunn, P., Payne, A., Pfeffer, W.,
Stammer, D., and Unnikrishnan, A.: Sea Level Change, book section 13,
1137–1216, Cambridge University Press, Cambridge, UK and New
York, NY, USA, https://doi.org/10.1017/CBO9781107415324.026, 2013. a, b
Cornford, S. L., Martin, D. F., Payne, A. J., Ng, E. G., Le Brocq, A. M.,
Gladstone, R. M., Edwards, T. L., Shannon, S. R., Agosta, C., van den Broeke,
M. R., Hellmer, H. H., Krinner, G., Ligtenberg, S. R. M., Timmermann, R., and
Vaughan, D. G.: Century-scale simulations of the response of the West
Antarctic Ice Sheet to a warming climate, The Cryosphere, 9, 1579–1600,
https://doi.org/10.5194/tc-9-1579-2015, 2015. a, b, c, d
De Rydt, J. and Gudmundsson, G.: Coupled ice shelf-ocean modeling and complex
grounding line retreat from a seabed ridge, J. Geophys. Res., 121, 865–880,
https://doi.org/10.1002/2015JF003791, 2016. a
De Rydt, J., Holland, P. R., Dutrieux, P., and Jenkins, A.: Geometric and
oceanographic controls on melting beneath Pine Island Glacier, J.
Geophys. Res.-Oceans, 119, 2420–2438, https://doi.org/10.1002/2013JC009513, 2014. a
Durand, G., Gagliardini, O., Zwinger, T., Le Meur, E., and Hindmarsh, R.: Full
Stokes modeling of marine ice sheets: influence of the grid size, Ann.
Glaciol., 50, 109–114, 2009. a
Eldred, M. S., Adams, B. M., Gay, D. M., Swiler, L. P., Haskell, K., Bohnhoff,
W. J., Eddy, J. P., Hart, W. E., Watson, J.-P., Hough, P. D., and Kolda,
T. G.: DAKOTA, A Multilevel Parallel Object-Oriented Framework
for Design Optimization, Parameter Estimation, Uncertainty
Quantification, and Sensitivity Analysis, Version 4.2 User's
Manual, Technical Report SAND 2006-6337, Tech. rep., Sandia National
Laboratories, Albuquerque, NM, USA, 2008. a
Fretwell, P., Pritchard, H. D., Vaughan, D. G., Bamber, J. L., Barrand, N.
E., Bell, R., Bianchi, C., Bingham, R. G., Blankenship, D. D., Casassa, G.,
Catania, G., Callens, D., Conway, H., Cook, A. J., Corr, H. F. J., Damaske,
D., Damm, V., Ferraccioli, F., Forsberg, R., Fujita, S., Gim, Y., Gogineni,
P., Griggs, J. A., Hindmarsh, R. C. A., Holmlund, P., Holt, J. W., Jacobel,
R. W., Jenkins, A., Jokat, W., Jordan, T., King, E. C., Kohler, J., Krabill,
W., Riger-Kusk, M., Langley, K. A., Leitchenkov, G., Leuschen, C., Luyendyk,
B. P., Matsuoka, K., Mouginot, J., Nitsche, F. O., Nogi, Y., Nost, O. A.,
Popov, S. V., Rignot, E., Rippin, D. M., Rivera, A., Roberts, J., Ross, N.,
Siegert, M. J., Smith, A. M., Steinhage, D., Studinger, M., Sun, B., Tinto,
B. K., Welch, B. C., Wilson, D., Young, D. A., Xiangbin, C., and Zirizzotti,
A.: Bedmap2: improved ice bed, surface and thickness datasets for Antarctica,
The Cryosphere, 7, 375–393, https://doi.org/10.5194/tc-7-375-2013, 2013. a
Frezzotti, M., Scarchilli, C., Becagli, S., Proposito, M., and Urbini, S.: A
synthesis of the Antarctic surface mass balance during the last 800 yr, The
Cryosphere, 7, 303–319, https://doi.org/10.5194/tc-7-303-2013, 2013. a
Frieler, K., Clark, P. U., He, F., Buizert, C., Reese, R., Ligtenberg, S.
R. M., van den Broeke, M. R., Winkelmann, R., and Levermann, A.: Consistent
evidence of increasing Antarctic accumulation with warming, Nat. Clim.
Change, 5, 348–352, 2015. a
Fyke, J., Lenaerts, J. T. M., and Wang, H.: Basin-scale heterogeneity in
Antarctic precipitation and its impact on surface mass variability, The
Cryosphere, 11, 2595–2609, https://doi.org/10.5194/tc-11-2595-2017, 2017. a
Gardner, A. S., Moholdt, G., Scambos, T., Fahnstock, M., Ligtenberg, S., van
den Broeke, M., and Nilsson, J.: Increased West Antarctic and unchanged East
Antarctic ice discharge over the last 7 years, The Cryosphere, 12, 521–547,
https://doi.org/10.5194/tc-12-521-2018, 2018. a
Gillet-Chaulet, F., Gagliardini, O., Seddik, H., Nodet, M., Durand, G., Ritz,
C., Zwinger, T., Greve, R., and Vaughan, D. G.: Greenland ice sheet
contribution to sea-level rise from a new-generation ice-sheet model, The
Cryosphere, 6, 1561–1576, https://doi.org/10.5194/tc-6-1561-2012, 2012. a
Gillet-Chaulet, F., Durand, G., Gagliardini, O., Mosbeux, C., Mouginot, J.,
Rémy, F., and Ritz, C.: Assimilation of surface velocities acquired
between 1996 and 2010 to constrain the form of the basal friction law under
Pine Island Glacier, Geophys. Res. Lett., 43, 10311–10321,
https://doi.org/10.1002/2016GL069937, 2016. a
Gladstone, R. M., Payne, A. J., and Cornford, S. L.: Parameterising the
grounding line in flow-line ice sheet models, The Cryosphere, 4, 605–619,
https://doi.org/10.5194/tc-4-605-2010, 2010. a
Glen, J.: The creep of polycrystalline ice, Proc. R. Soc. A, 228, 519–538,
1955. a
Goelzer, H., Nowicki, S., Edwards, T., Beckley, M., Abe-Ouchi, A.,
Aschwanden, A., Calov, R., Gagliardini, O., Gillet-Chaulet, F., Golledge, N.
R., Gregory, J., Greve, R., Humbert, A., Huybrechts, P., Kennedy, J. H.,
Larour, E., Lipscomb, W. H., Le clec'h, S., Lee, V., Morlighem, M., Pattyn,
F., Payne, A. J., Rodehacke, C., Rückamp, M., Saito, F., Schlegel, N.,
Seroussi, H., Shepherd, A., Sun, S., van de Wal, R., and Ziemen, F. A.:
Design and results of the ice sheet model initialisation experiments
initMIP-Greenland: an ISMIP6 intercomparison, The Cryosphere, 12, 1433–1460,
https://doi.org/10.5194/tc-12-1433-2018, 2018. a
Golledge, N. R., Kowalewski, D. E., Naish, T. R., Levy, R. H., Fogwill, C. J.,
and Gasson, E. G. W.: The multi-millennial Antarctic commitment to future
sea-level rise, Nature, 526, 421–425, https://doi.org/10.1038/nature15706, 2015. a, b, c, d
Hellmer, H. and Olber, D.: A two-dimensional model of the thermohaline
circulation under an ice shelf, Antarct. Sci., 1, 325–336, 1989. a
Hellmer, H. H., Kauker, F., Timmermann, R., Determann, J., and Rae, J.:
Twenty-first-century warming of a large Antarctic ice-shelf cavity by a
redirected coastal current, Nature, 485, 225–228, https://doi.org/10.1038/nature11064,
2012. a, b
Hendrickson, B. and Leland, R.: The Chaco user's guide, version 2.0,
Technical Report SAND-95-2344, Tech. rep., Sandia National
Laboratories, Albuquerque, NM, USA, 1995. a
Hindmarsh, R.: A numerical comparison of approximations to the Stokes
equations used in ice sheet and glacier modeling, J. Geophys. Res., 109,
1–15, https://doi.org/10.1029/2003JF000065, 2004. a
Holland, D. and Jenkins, A.: Modeling thermodynamic ice-ocean interactions at
the base of an ice shelf, J. Phys. Oceanogr., 29, 1787–1800, 1999. a
Jenkins, A., Hellmer, H., and Holland, D.: The role of meltwater advection in
the formulation of conservative boundary conditions at an ice-ocean
interface, J. Phys. Oceanogr., 3, 285–296, 2001. a
Khazendar, A., Borstad, C., Scheuchl, B., Rignot, E., and Seroussi, H.: The
evolving instability of the remnant Larsen B Ice Shelf and its
tributary glaciers, Earth Planet. Sci. Lett., 419, 199–210,
https://doi.org/10.1016/j.epsl.2015.03.014, 2015. a
Larour, E. and Schlegel, N.: On ISSM and leveraging the Cloud towards
faster quantification of the uncertainty in ice-sheet mass balance
projections, Comp. Geosci., 96, 193–201,
https://doi.org/10.1016/j.cageo.2016.08.007,
2016. a
Larour, E., Morlighem, M., Seroussi, H., Schiermeier, J., and Rignot, E.: Ice
flow sensitivity to geothermal heat flux of Pine Island Glacier,
Antarctica, J. Geophys. Res.-Earth, 117, 1–12,
https://doi.org/10.1029/2012JF002371, 2012a. a, b
Larour, E., Seroussi, H., Morlighem, M., and Rignot, E.: Continental scale,
high order, high spatial resolution, ice sheet modeling using the Ice Sheet
System Model (ISSM), J. Geophys. Res., 117, 1–20,
https://doi.org/10.1029/2011JF002140, 2012c. a, b, c, d
Lenaerts, J. T. M., van den Broeke, M. R., van de Berg, W. J., van Meijgaard,
E., and Munneke, P. K.: A new, high-resolution surface mass balance map of
Antarctica (1979–2010) based on regional atmospheric climate modeling,
Geophys. Res. Lett., 39, 1–5, https://doi.org/10.1029/2011GL050713, 2012. a, b, c
Losch, M.: Modeling ice shelf cavities in a z coordinate ocean general
circulation model, J. Geophys. Res., 113, C08043, https://doi.org/10.1029/2007JC004368, 2008. a, b
Losch, M., Menemenlis, D., Campin, J.-M., Heimbach, P., and Hill, C.: On the
formulation of sea-ice models. Part 1: Effects of different solver
implementations and parameterizations, Ocean Model., 33, 129–144,
https://doi.org/10.1016/j.ocemod.2009.12.008, 2010. a
Lythe, M. and Vaughan, D.: BEDMAP: A new ice thickness and subglacial
topographic model of Antarctica., J. Geophys. Res., 106,
11335–11351, 2001. a
MacAyeal, D. R.: Large-scale ice flow over a viscous basal sediment: Theory
and application to Ice Stream B, Antarctica, J. Geophys. Res., 94,
4071–4087, 1989. a
MacAyeal, D. R.: A tutorial on the use of control methods in ice-sheet
modeling, J. Glaciol., 39, 91–98, 1993. a
Marshall, S. and Clarke, G.: A continuum mixture model of ice stream
thermomechanics in the Laurentide Ice Sheet .2. Application to the Hudson
Strait Ice Stream, J. Geophys. Res.-Sol. Ea., 102, 20615–20637,
1997. a
Maule, C. F., Purucker, M. E., Olsen, N., and Mosegaard, K.: Heat Flux
Anomalies in Antarctica Revealed by Satellite Magnetic Data, Science, 309,
464–467, https://doi.org/10.1126/science.1106888, 2005. a
Medley, B., Joughin, I., Smith, B. E., Das, S. B., Steig, E. J., Conway, H.,
Gogineni, S., Lewis, C., Criscitiello, A. S., McConnell, J. R., van den
Broeke, M. R., Lenaerts, J. T. M., Bromwich, D. H., Nicolas, J. P., and
Leuschen, C.: Constraining the recent mass balance of Pine Island and
Thwaites glaciers, West Antarctica, with airborne observations of snow
accumulation, The Cryosphere, 8, 1375–1392,
https://doi.org/10.5194/tc-8-1375-2014, 2014. a
Menemenlis, D., Campin, C., Heimbach, P., Hill, C., Lee, T., Nguyen, M.,
Schodlok, M., and Zhang, M.: ECCO 2: High resolution global ocean and sea
ice data synthesis, Mercator Ocean Quart. Newsl., 31, 13–21, 2008. a
Morlighem, M., Rignot, E., Seroussi, H., Larour, E., Ben Dhia, H., and Aubry,
D.: Spatial patterns of basal drag inferred using control methods from a
full-Stokes and simpler models for Pine Island Glacier, West
Antarctica, Geophys. Res. Lett., 37, 1–6, https://doi.org/10.1029/2010GL043853,
2010. a, b
Morlighem, M., Rignot, E., Seroussi, H., Larour, E., Ben Dhia, H., and Aubry,
D.: A mass conservation approach for mapping glacier ice thickness, Geophys.
Res. Lett., 38, 1–6, https://doi.org/10.1029/2011GL048659, 2011. a
Nowicki, S., Bindschadler, R. A., Abe-Ouchi, A., Aschwanden, A., Bueler, E.,
Choi, H., Fastook, J., Granzow, G., Greve, R., Gutowski, G., Herzfeld, U.,
Jackson, C., Johnson, J., Khroulev, C., Larour, E., Levermann, A., Lipscomb,
W. H., Martin, M. A., Morlighem, M., Parizek, B. R., Pollard, D., Price,
S. F., Ren, D., Rignot, E., Saito, F., Sato, T., Seddik, H., Seroussi, H.,
Takahashi, K., Walker, R., and Wang, W. L.: Insights into spatial
sensitivities of ice mass response to environmental change from the SeaRISE
ice sheet modeling project I: Antarctica, J. Geophys. Res., 118, 1–23,
https://doi.org/10.1002/jgrf.20081, 2013. a, b, c, d
Nowicki, S. M. J., Payne, A., Larour, E., Seroussi, H., Goelzer, H.,
Lipscomb, W., Gregory, J., Abe-Ouchi, A., and Shepherd, A.: Ice Sheet Model
Intercomparison Project (ISMIP6) contribution to CMIP6, Geosci. Model Dev.,
9, 4521–4545, https://doi.org/10.5194/gmd-9-4521-2016, 2016. a
Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ,
R., Church, J. A., Clarke, L., Dahe, Q., Dasgupta, P., Dubash, N. K.,
Edenhofer, O., Elgizouli, I., Field, C. B., Forster, P., Friedlingstein, P.,
Fuglestvedt, J., Gomez-Echeverri, L., Hallegatte, S., Hegerl, G., Howden, M.,
Jiang, K., Jimenez Cisneroz, B., Kattsov, V., Lee, H., Mach, K. J., Marotzke,
J., Mastrandrea, M. D., Meyer, L., Minx, J., Mulugetta, Y., O'Brien, K.,
Oppenheimer, M., Pereira, J. J., Pichs-Madruga, R., Plattner, G. K.,
Pörtner, H.-O., Power, S. B., Preston, B., Ravindranath, N. H.,
Reisinger, A., Riahi, K., Rusticucci, M., Scholes, R., Seyboth, K., Sokona,
Y., Stavins, R., Stocker, T. F., Tschakert, P., van Vuuren, D., and van
Ypserle, J. P.: Climate Change 2014: Synthesis Report. Contribution of
Working Groups I, II and III to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, EPIC3Geneva, Switzerland, IPCC,
151 pp., available at: http://epic.awi.de/37530/ (last access: 20 March 2018), 2014. a
Pattyn, F.: A new three-dimensional higher-order thermomechanical ice sheet
model: Basic sensitivity, ice stream development, and ice flow across
subglacial lakes, J. Geophys. Res., 108, 1–15, https://doi.org/10.1029/2002JB002329,
2003. a
Pattyn, F.: Antarctic subglacial conditions inferred from a hybrid ice
sheet/ice stream model, Earth Planet. Sc. Lett., 295, 451–461,
https://doi.org/10.1016/j.epsl.2010.04.025, 2010. a
Pattyn, F.: Sea-level response to melting of Antarctic ice shelves on
multi-centennial timescales with the fast Elementary Thermomechanical Ice
Sheet model (f.ETISh v1.0), The Cryosphere, 11, 1851–1878,
https://doi.org/10.5194/tc-11-1851-2017, 2017. a, b, c, d
Phillips, T., Rajaram, H., and Steffen, K.: Cryo-hydrologic warming: A
potential mechanism for rapid thermal response of ice sheets, Geophys. Res.
Lett., 7, 1–5, https://doi.org/10.1029/2010GL044397, 2010. a
Phillips, T., Rajaram, H., Colgan, W., Steffen, K., and Abdalati, W.:
Evaluation of cryo-hydrologic warming as an explanation for increased ice
velocities in the wet snow zone, Sermeq Avannarleq, West Greenland,
J. Geophys. Res.-Earth, 118, 1241–1256, https://doi.org/10.1002/jgrf.20079,
2013. a
Pritchard, H. D., Ligtenberg, S. R. M., Fricker, H. A., Vaughan, D. G., van den
Broeke, M. R., and Padman, L.: Antarctic ice-sheet loss driven by basal
melting of ice shelves, Nature, 484, 502–505, https://doi.org/10.1038/nature10968,
2012. a
Rignot, E. and Jacobs, S.: Rapid bottom melting widespread near Antarctic ice
sheet grounding lines, Science, 296, 2020–2023,
https://doi.org/10.1126/science.1070942, 2002. a
Rignot, E., Velicogna, I., van den Broeke, M., Monaghan, A., and Lenaerts, J.:
Acceleration of the contribution of the Greenland and Antarctic ice
sheets to sea level rise, Geophys. Res. Lett., 38, 1–5,
https://doi.org/10.1029/2011GL046583, 2011. a, b, c
Rignot, E., Jacobs, S., Mouginot, J., and Scheuchl, B.: Ice shelf melting
around Antarctica, Science, 341, 266–270, https://doi.org/10.1126/science.1235798,
2013. a
Rignot, E., Mouginot, J., Morlighem, M., Seroussi, H., and Scheuchl, B.:
Widespread, rapid grounding line retreat of Pine Island, Thwaites,
Smith and Kohler glaciers, West Antarctica from 1992 to 2011,
Geophys. Res. Lett., 41, 3502–3509, https://doi.org/10.1002/2014GL060140, 2014. a
Schlegel, N.-J., Larour, E., Seroussi, H., Morlighem, M., and Box, J. E.:
Decadal-scale sensitivity of Northeast Greenland ice flow to errors in
surface mass balance using ISSM, J. Geophys. Res.-Earth, 118,
1–14, https://doi.org/10.1002/jgrf.20062, 2013. a, b, c
Schodlok, M., Menemenlis, D., and Rignot, E.: Ice shelf basal melt rates around
Antarctica from simulations and observations, J. Geophys. Res., 121,
1085–1109, https://doi.org/10.1002/2015JC011117, 2016. a, b, c, d
Schoof, C.: The effect of cavitation on glacier sliding, Proc. R. Soc. A, 461,
609–627, https://doi.org/10.1098/rspa.2004.1350, 2005. a
Schoof, C. and Hindmarsh, R. C. A.: Thin-Film Flows with Wall Slip:
An Asymptotic Analysis of Higher Order Glacier Flow Models,
Quart. J. Mech. Appl. Math., 63, 73–114, https://doi.org/10.1093/qjmam/hbp025, 2010. a
Seroussi, H., Morlighem, M., Rignot, E., Larour, E., Aubry, D., Ben Dhia, H.,
and Kristensen, S. S.: Ice flux divergence anomalies on 79north Glacier,
Greenland, Geophys. Res. Lett., 38, L09501,
https://doi.org/10.1029/2011GL047338, 2011. a
Seroussi, H., Morlighem, M., Rignot, E., Khazendar, A., Larour, E., and
Mouginot, J.: Dependence of century-scale projections of the Greenland ice
sheet on its thermal regime, J. Glaciol., 59, 1024–1034,
https://doi.org/10.3189/2013JoG13J054, 2013. a, b, c
Seroussi, H., Morlighem, M., Larour, E., Rignot, E., and Khazendar, A.:
Hydrostatic grounding line parameterization in ice sheet models, The
Cryosphere, 8, 2075–2087, https://doi.org/10.5194/tc-8-2075-2014, 2014a. a
Seroussi, H., Morlighem, M., Rignot, E., Mouginot, J., Larour, E., Schodlok,
M., and Khazendar, A.: Sensitivity of the dynamics of Pine Island Glacier,
West Antarctica, to climate forcing for the next 50 years, The Cryosphere, 8,
1699–1710, https://doi.org/10.5194/tc-8-1699-2014, 2014b. a
Seroussi, H., Ivins, E. R., Wiens, D. A., and Bondzio, J.: Influence of a
West Antarctic mantle plume on ice sheet basal conditions, J. Geophys.
Res.-Sol. Ea., 122, 7127–7155, https://doi.org/10.1002/2017JB014423, 2017a. a
Seroussi, H., Nakayama, Y., Larour, E., Menemenlis, D., Morlighem, M.,
Rignot, E., and Khazendar, A.: Continued retreat of Thwaites Glacier,
West Antarctica, controlled by bed topography and ocean circulation,
Geophys. Res. Lett., 44, 6191–6199, https://doi.org/10.1002/2017GL072910, 2017b. a, b, c, d
Shepherd, A., Ivins, E., A, G., Barletta, V., Bentley, M., Bettadpur, S.,
Briggs, K., Bromwich, D., Forsberg, R., Galin, N., Horwath, M., Jacobs, S.,
Joughin, I., King, M., Lenaerts, J., Li, J., Ligtenberg, S., Luckman, A.,
Luthcke, S., McMillan, M., Meister, R., Milne, G., Mouginot, J., Muir, A.,
Nicolas, J., Paden, J., Payne, A., Pritchard, H., Rignot, E., Rott, H.,
Sorensen, L., Scambos, T., Scheuchl, B., Schrama, E., Smith, B., Sundal, A.,
van Angelen, J., van de Berg, W., van den Broeke, M., Vaughan, D., Velicogna,
I., Wahr, J., Whitehouse, P., Wingham, D., Yi, D., Young, D., and Zwally, H.:
A Reconciled Estimate of Ice-Sheet Mass Balance, Science, 338, 1183–1189,
https://doi.org/10.1126/science.1228102, 2012.
a
Shepherd, A., Ivins, E., Rignot, E., Smith, B., van den Broeke, M., Velicogna,
I., Whitehouse, P., Briggs, K., Joughin, I., Krinner, G., Nowicki, S., Payne,
T., Scambos, T., Schlegel, N., Geruo, A., Agosta, C., Ahlstrom, A., Babonis,
G., Barletta, V., Blazquez, A., Bonin, J., Csatho, B., Cullather, R.,
Felikson, D., Fettweis, X., Forsberg, R., Gallee, H., Gardner, A., Gilbert,
L., Groh, A., Gunter, B., Hanna, E., Harig, C., Helm, V., Horvath, A.,
Horwath, M., Khan, S., Kjeldsen, K. K., Konrad, H., Langen, P., Lecavalier,
B., Loomis, B., Luthcke, S., McMillan, M., Melini, D., Mernild, S.,
Mohajerani, Y., Moore, P., Mouginot, J., Moyano, G., Muir, A., Nagler, T.,
Nield, G., Nilsson, J., Noel, B., Otosaka, I., Pattle, M. E., Peltier, W. R.,
Pie, N., Rietbroek, R., Rott, H., Sandberg-Sorensen, L., Sasgen, I., Save,
H., Scheuchl, B., Schrama, E., Schroeder, L., Seo, K.-W., Simonsen, S.,
Slater, T., Spada, G., Sutterley, T., Talpe, M., Tarasov, L., van de Berg,
W. J., van der Wal, W., van Wessem, M., Vishwakarma, B. D., Wiese, D.,
Wouters, B., and Team, I.: Mass balance of the Antarctic Ice Sheet from
1992 to 2017, Nature, 558, 219–222, https://doi.org/10.1038/s41586-018-0179-y, 2018. a, b
Sundal, A. V., Shepherd, A., Nienow, P., Hanna, E., Palmer, S., and Huybrechts,
P.: Melt-induced speed-up of Greenland ice sheet offset by efficient
subglacial drainage, Nature, 469, 522–524, https://doi.org/10.1038/nature09740,
2011. a
Swiler, L. P. and Wyss, G. D.: A User's Guide to Sandia's Latin
Hypercube Sampling Software: LHS UNIX Library/Standalone
Version, Technical Report SAND2004-2439, Tech. rep., Sandia National
Laboratories, Albuquerque, NM, USA, 2004. a
Taylor, K., Stouffer, R., and Meehl, G.: An Overview of CMIP5 and the
experiment design, B. Am. Math. Soc., 93, 485–498,
https://doi.org/10.1175/BAMS-D-11-00094.1, 2012. a
Tsai, V., Stewart, A., and Thompson, A.: Marine ice-sheet profiles and
stability under Coulomb basal conditions, J. Glaciol., 61, 205–215,
https://doi.org/10.3189/2015JoG14J221, 2015. a
Velicogna, I.: Increasing rates of ice mass loss from the Greenland and
Antarctic ice sheets revealed by GRACE, Geophys. Res. Lett., 36, 1–4,
https://doi.org/10.1029/2009GL040222, 2009. a
Weertman, J.: On the sliding of glaciers, J. Glaciol., 3, 33–38, 1957. a
Winkelmann, R., Levermann, A., Martin, M., and Frieler, K.: Increased future
ice discharge from Antarctica owing to higher snowfall, Nature, 492,
239–242, https://doi.org/10.1038/nature11616, 2012. a
Short summary
Using NASA supercomputers and a novel framework, in which Sandia National Laboratories' statistical software is embedded in the Jet Propulsion Laboratory's ice sheet model, we run a range of 100-year warming scenarios for Antarctica. We find that 1.2 m of sea level contribution is achievable, but not likely. Also, we find that bedrock topography beneath the ice drives potential for regional sea level contribution, highlighting the need for accurate bedrock mapping of the ice sheet interior.
Using NASA supercomputers and a novel framework, in which Sandia National Laboratories'...