Articles | Volume 9, issue 6
https://doi.org/10.5194/tc-9-2101-2015
https://doi.org/10.5194/tc-9-2101-2015
Research article
 | 
16 Nov 2015
Research article |  | 16 Nov 2015

Microwave scattering coefficient of snow in MEMLS and DMRT-ML revisited: the relevance of sticky hard spheres and tomography-based estimates of stickiness

H. Löwe and G. Picard

Related authors

Wind tunnel experiments to quantify the effect of aeolian snow transport on the surface snow microstructure
Benjamin Walter, Hagen Weigel, Sonja Wahl, and Henning Löwe
The Cryosphere, 18, 3633–3652, https://doi.org/10.5194/tc-18-3633-2024,https://doi.org/10.5194/tc-18-3633-2024, 2024
Short summary
Microstructure-based simulations of the viscous densification of snow and firn
Kévin Fourteau, Johannes Freitag, Mika Malinen, and Henning Löwe
The Cryosphere, 18, 2831–2846, https://doi.org/10.5194/tc-18-2831-2024,https://doi.org/10.5194/tc-18-2831-2024, 2024
Short summary
Altimetric Ku-band Radar Observations of Snow on Sea Ice Simulated with SMRT
Julien Meloche, Melody Sandells, Henning Löwe, Nick Rutter, Richard Essery, Ghislain Picard, Randall K. Scharien, Alexandre Langlois, Matthias Jaggi, Josh King, Peter Toose, Jérôme Bouffard, Alessandro Di Bella, and Michele Scagliola
EGUsphere, https://doi.org/10.5194/egusphere-2024-1583,https://doi.org/10.5194/egusphere-2024-1583, 2024
Preprint archived
Short summary
A rigorous approach to the specific surface area evolution in snow during temperature gradient metamorphism
Anna Braun, Kévin Fourteau, and Henning Löwe
The Cryosphere, 18, 1653–1668, https://doi.org/10.5194/tc-18-1653-2024,https://doi.org/10.5194/tc-18-1653-2024, 2024
Short summary
A microstructure-based parameterization of the effective anisotropic elasticity tensor of snow, firn, and bubbly ice
Kavitha Sundu, Johannes Freitag, Kévin Fourteau, and Henning Löwe
The Cryosphere, 18, 1579–1596, https://doi.org/10.5194/tc-18-1579-2024,https://doi.org/10.5194/tc-18-1579-2024, 2024
Short summary

Related subject area

Snow Physics
Multiscale modeling of heat and mass transfer in dry snow: influence of the condensation coefficient and comparison with experiments
Lisa Bouvet, Neige Calonne, Frédéric Flin, and Christian Geindreau
The Cryosphere, 18, 4285–4313, https://doi.org/10.5194/tc-18-4285-2024,https://doi.org/10.5194/tc-18-4285-2024, 2024
Short summary
Wind tunnel experiments to quantify the effect of aeolian snow transport on the surface snow microstructure
Benjamin Walter, Hagen Weigel, Sonja Wahl, and Henning Löwe
The Cryosphere, 18, 3633–3652, https://doi.org/10.5194/tc-18-3633-2024,https://doi.org/10.5194/tc-18-3633-2024, 2024
Short summary
Spatial variation in the specific surface area of surface snow measured along the traverse route from the coast to Dome Fuji, Antarctica, during austral summer
Ryo Inoue, Teruo Aoki, Shuji Fujita, Shun Tsutaki, Hideaki Motoyama, Fumio Nakazawa, and Kenji Kawamura
The Cryosphere, 18, 3513–3531, https://doi.org/10.5194/tc-18-3513-2024,https://doi.org/10.5194/tc-18-3513-2024, 2024
Short summary
Greenland's firn responds more to warming than to cooling
Megan Thompson-Munson, Jennifer E. Kay, and Bradley R. Markle
The Cryosphere, 18, 3333–3350, https://doi.org/10.5194/tc-18-3333-2024,https://doi.org/10.5194/tc-18-3333-2024, 2024
Short summary
Microstructure-based simulations of the viscous densification of snow and firn
Kévin Fourteau, Johannes Freitag, Mika Malinen, and Henning Löwe
The Cryosphere, 18, 2831–2846, https://doi.org/10.5194/tc-18-2831-2024,https://doi.org/10.5194/tc-18-2831-2024, 2024
Short summary

Cited articles

Arnaud, L., Picard, G., Champollion, N., Domine, F., Gallet, J., Lefebvre, E., Fily, M., and Barnola, J.: Measurement of vertical profiles of snow specific surface area with a 1 cm resolution using infrared reflectance: instrument description and validation, J. Glaciol., 57, 17–29, 2011.
Baxter, R.: Percus-Yevick equation for hard spheres with surface adhesion, J. Chem. Phys., 49, 2770, https://doi.org/10.1063/1.1670482, 1968.
Brucker, L., Picard, G., and Fily, M.: Snow grain-size profiles deduced from microwave snow emissivities in Antarctica, J. Glaciol., 56, 514–526, https://doi.org/10.3189/002214310792447806, 2010.
Brucker, L., Picard, G., Arnaud, L., Barnola, J.-M., Schneebeli, M., Brunjail, H., Lefebvre, E., and Fily, M.: Modeling time series of microwave brightness temperature at Dome C, Antarctica, using vertically resolved snow temperature and microstructure measurements, J. Glaciol., 57, 171–182, 2011.
Chang, W., Tan, S., Lemmetyinen, J., Tsang, L., Xu, X., and Yueh, S.: Dense Media Radiative Transfer Applied to SnowScat and SnowSAR, IEEE J. Sel. Top. Appl., 7, 3811–3825, https://doi.org/10.1109/JSTARS.2014.2343519, 2014.
Download
Short summary
The paper establishes a theoretical link between two widely used microwave models for snow. The scattering formulations from both models are unified by reformulating their microstructure models in a common framework. The results show that the scattering formulations can be considered equivalent, if exactly the same microstructure model is used. The paper also provides a method to measure a hitherto unknown input parameter for the microwave models from tomography images of snow.