Articles | Volume 16, issue 10
https://doi.org/10.5194/tc-16-4553-2022
https://doi.org/10.5194/tc-16-4553-2022
Research article
 | 
27 Oct 2022
Research article |  | 27 Oct 2022

Surface melt on the Shackleton Ice Shelf, East Antarctica (2003–2021)

Dominic Saunderson, Andrew Mackintosh, Felicity McCormack, Richard Selwyn Jones, and Ghislain Picard

Related authors

Simulation of snow albedo and solar irradiance profile with the Two-streAm Radiative TransfEr in Snow (TARTES) v2.0 model
Ghislain Picard and Quentin Libois
Geosci. Model Dev., 17, 8927–8953, https://doi.org/10.5194/gmd-17-8927-2024,https://doi.org/10.5194/gmd-17-8927-2024, 2024
Short summary
How do extreme ENSO events affect Antarctic surface mass balance?
Jessica M. A. Macha, Andrew N. Mackintosh, Felicity S. Mccormack, Benjamin J. Henley, Helen V. McGregor, Christiaan T. van Dalum, and Ariaan Purich
EGUsphere, https://doi.org/10.5194/egusphere-2024-3425,https://doi.org/10.5194/egusphere-2024-3425, 2024
Short summary
A thicker, rather than thinner, East Antarctic Ice Sheet plateau during the Last Glacial Maximum
Cari Rand, Richard S. Jones, Andrew N. Mackintosh, Brent Goehring, and Kat Lilly
EGUsphere, https://doi.org/10.5194/egusphere-2024-2674,https://doi.org/10.5194/egusphere-2024-2674, 2024
Short summary
Simulation of Arctic snow microwave emission in surface-sensitive atmosphere channels
Melody Sandells, Nick Rutter, Kirsty Wivell, Richard Essery, Stuart Fox, Chawn Harlow, Ghislain Picard, Alexandre Roy, Alain Royer, and Peter Toose
The Cryosphere, 18, 3971–3990, https://doi.org/10.5194/tc-18-3971-2024,https://doi.org/10.5194/tc-18-3971-2024, 2024
Short summary
Time series of alpine snow surface radiative-temperature maps from high-precision thermal-infrared imaging
Sara Arioli, Ghislain Picard, Laurent Arnaud, Simon Gascoin, Esteban Alonso-González, Marine Poizat, and Mark Irvine
Earth Syst. Sci. Data, 16, 3913–3934, https://doi.org/10.5194/essd-16-3913-2024,https://doi.org/10.5194/essd-16-3913-2024, 2024
Short summary

Related subject area

Discipline: Ice sheets | Subject: Ice Shelf
An analysis of the interaction between surface and basal crevasses in ice shelves
Maryam Zarrinderakht, Christian Schoof, and Anthony Peirce
The Cryosphere, 18, 3841–3856, https://doi.org/10.5194/tc-18-3841-2024,https://doi.org/10.5194/tc-18-3841-2024, 2024
Short summary
The importance of cloud properties when assessing surface melting in an offline-coupled firn model over Ross Ice shelf, West Antarctica
Nicolaj Hansen, Andrew Orr, Xun Zou, Fredrik Boberg, Thomas J. Bracegirdle, Ella Gilbert, Peter L. Langen, Matthew A. Lazzara, Ruth Mottram, Tony Phillips, Ruth Price, Sebastian B. Simonsen, and Stuart Webster
The Cryosphere, 18, 2897–2916, https://doi.org/10.5194/tc-18-2897-2024,https://doi.org/10.5194/tc-18-2897-2024, 2024
Short summary
Coupled ice–ocean interactions during future retreat of West Antarctic ice streams in the Amundsen Sea sector
David T. Bett, Alexander T. Bradley, C. Rosie Williams, Paul R. Holland, Robert J. Arthern, and Daniel N. Goldberg
The Cryosphere, 18, 2653–2675, https://doi.org/10.5194/tc-18-2653-2024,https://doi.org/10.5194/tc-18-2653-2024, 2024
Short summary
Responses of the Pine Island and Thwaites glaciers to melt and sliding parameterizations
Ian Joughin, Daniel Shapero, and Pierre Dutrieux
The Cryosphere, 18, 2583–2601, https://doi.org/10.5194/tc-18-2583-2024,https://doi.org/10.5194/tc-18-2583-2024, 2024
Short summary
Calving of Ross Ice Shelf from wave erosion and hydrostatic stresses
Nicolas B. Sartore, Till J. W. Wagner, Matthew R. Siegfried, Nimish Pujara, and Lucas K. Zoet
EGUsphere, https://doi.org/10.5194/egusphere-2024-571,https://doi.org/10.5194/egusphere-2024-571, 2024
Short summary

Cited articles

Arthur, J. F., Stokes, C., Jamieson, S. S., Carr, J. R., and Leeson, A. A.: Recent Understanding of Antarctic Supraglacial Lakes Using Satellite Remote Sensing, Prog. Phys. Geogr.-Earth Environ., 44, 0309133320916114, https://doi.org/10.1177/0309133320916114, 2020a. a
Arthur, J. F., Stokes, C. R., Jamieson, S. S. R., Carr, J. R., and Leeson, A. A.: Distribution and seasonal evolution of supraglacial lakes on Shackleton Ice Shelf, East Antarctica, The Cryosphere, 14, 4103–4120, https://doi.org/10.5194/tc-14-4103-2020, 2020b. a, b
Bamber, J. L., Oppenheimer, M., Kopp, R. E., Aspinall, W. P., and Cooke, R. M.: Ice Sheet Contributions to Future Sea-Level Rise from Structured Expert Judgment, P. Natl. Acad. Sci., 116, 11195–11200, https://doi.org/10.1073/pnas.1817205116, 2019. a
Banwell, A. F., MacAyeal, D. R., and Sergienko, O. V.: Breakup of the Larsen B Ice Shelf Triggered by Chain Reaction Drainage of Supraglacial Lakes, Geophys. Res. Lett., 40, 5872–5876, https://doi.org/10.1002/2013GL057694, 2013. a
Banwell, A. F., Datta, R. T., Dell, R. L., Moussavi, M., Brucker, L., Picard, G., Shuman, C. A., and Stevens, L. A.: The 32-year record-high surface melt in 2019/2020 on the northern George VI Ice Shelf, Antarctic Peninsula, The Cryosphere, 15, 909–925, https://doi.org/10.5194/tc-15-909-2021, 2021. a, b
Download
Short summary
We investigate the variability in surface melt on the Shackleton Ice Shelf in East Antarctica over the last 2 decades (2003–2021). Using daily satellite observations and the machine learning approach of a self-organising map, we identify nine distinct spatial patterns of melt. These patterns allow comparisons of melt within and across melt seasons and highlight the importance of both air temperatures and local controls such as topography, katabatic winds, and albedo in driving surface melt.