Articles | Volume 16, issue 10
https://doi.org/10.5194/tc-16-4553-2022
https://doi.org/10.5194/tc-16-4553-2022
Research article
 | 
27 Oct 2022
Research article |  | 27 Oct 2022

Surface melt on the Shackleton Ice Shelf, East Antarctica (2003–2021)

Dominic Saunderson, Andrew Mackintosh, Felicity McCormack, Richard Selwyn Jones, and Ghislain Picard

Related authors

Active-passive microwave scattering in the Antarctica wind-glazed region: an analog for icy moons of Saturn
Léa Elise Bonnefoy, Catherine Prigent, Ghislain Picard, Clément Soriot, Alice Le Gall, Lise Kilic, and Carlos Jimenez
EGUsphere, https://doi.org/10.5194/egusphere-2024-3972,https://doi.org/10.5194/egusphere-2024-3972, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Empirical classification of dry-wet snow status in Antarctica using multi-frequency passive microwave observations
Marion Leduc-Leballeur, Ghislain Picard, Pierre Zeiger, and Giovanni Macelloni
EGUsphere, https://doi.org/10.5194/egusphere-2025-732,https://doi.org/10.5194/egusphere-2025-732, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Assessing the sensitivity of the Vanderford Glacier, East Antarctica, to basal melt and calving
Lawrence A. Bird, Felicity S. McCormack, Johanna Beckmann, Richard S. Jones, and Andrew N. Mackintosh
The Cryosphere, 19, 955–973, https://doi.org/10.5194/tc-19-955-2025,https://doi.org/10.5194/tc-19-955-2025, 2025
Short summary
Gravity-derived Antarctic bathymetry using the Tomofast-x open-source code: a case study of Vincennes Bay
Lawrence A. Bird, Vitaliy Ogarko, Laurent Ailleres, Lachlan Grose, Jeremie Giraud, Felicity S. McCormack, David E. Gwyther, Jason L. Roberts, Richard S. Jones, and Andrew N. Mackintosh
EGUsphere, https://doi.org/10.5194/egusphere-2025-211,https://doi.org/10.5194/egusphere-2025-211, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Surface processes and drivers of the snow water stable isotopic composition at Dome C, East Antarctica – a multi-dataset and modelling analysis
Inès Ollivier, Hans Christian Steen-Larsen, Barbara Stenni, Laurent Arnaud, Mathieu Casado, Alexandre Cauquoin, Giuliano Dreossi, Christophe Genthon, Bénédicte Minster, Ghislain Picard, Martin Werner, and Amaëlle Landais
The Cryosphere, 19, 173–200, https://doi.org/10.5194/tc-19-173-2025,https://doi.org/10.5194/tc-19-173-2025, 2025
Short summary

Related subject area

Discipline: Ice sheets | Subject: Ice Shelf
Wave erosion, frontal bending, and calving at Ross Ice Shelf
Nicolas B. Sartore, Till J. W. Wagner, Matthew R. Siegfried, Nimish Pujara, and Lucas K. Zoet
The Cryosphere, 19, 249–265, https://doi.org/10.5194/tc-19-249-2025,https://doi.org/10.5194/tc-19-249-2025, 2025
Short summary
An analysis of the interaction between surface and basal crevasses in ice shelves
Maryam Zarrinderakht, Christian Schoof, and Anthony Peirce
The Cryosphere, 18, 3841–3856, https://doi.org/10.5194/tc-18-3841-2024,https://doi.org/10.5194/tc-18-3841-2024, 2024
Short summary
The importance of cloud properties when assessing surface melting in an offline-coupled firn model over Ross Ice shelf, West Antarctica
Nicolaj Hansen, Andrew Orr, Xun Zou, Fredrik Boberg, Thomas J. Bracegirdle, Ella Gilbert, Peter L. Langen, Matthew A. Lazzara, Ruth Mottram, Tony Phillips, Ruth Price, Sebastian B. Simonsen, and Stuart Webster
The Cryosphere, 18, 2897–2916, https://doi.org/10.5194/tc-18-2897-2024,https://doi.org/10.5194/tc-18-2897-2024, 2024
Short summary
Coupled ice–ocean interactions during future retreat of West Antarctic ice streams in the Amundsen Sea sector
David T. Bett, Alexander T. Bradley, C. Rosie Williams, Paul R. Holland, Robert J. Arthern, and Daniel N. Goldberg
The Cryosphere, 18, 2653–2675, https://doi.org/10.5194/tc-18-2653-2024,https://doi.org/10.5194/tc-18-2653-2024, 2024
Short summary
Responses of the Pine Island and Thwaites glaciers to melt and sliding parameterizations
Ian Joughin, Daniel Shapero, and Pierre Dutrieux
The Cryosphere, 18, 2583–2601, https://doi.org/10.5194/tc-18-2583-2024,https://doi.org/10.5194/tc-18-2583-2024, 2024
Short summary

Cited articles

Arthur, J. F., Stokes, C., Jamieson, S. S., Carr, J. R., and Leeson, A. A.: Recent Understanding of Antarctic Supraglacial Lakes Using Satellite Remote Sensing, Prog. Phys. Geogr.-Earth Environ., 44, 0309133320916114, https://doi.org/10.1177/0309133320916114, 2020a. a
Arthur, J. F., Stokes, C. R., Jamieson, S. S. R., Carr, J. R., and Leeson, A. A.: Distribution and seasonal evolution of supraglacial lakes on Shackleton Ice Shelf, East Antarctica, The Cryosphere, 14, 4103–4120, https://doi.org/10.5194/tc-14-4103-2020, 2020b. a, b
Bamber, J. L., Oppenheimer, M., Kopp, R. E., Aspinall, W. P., and Cooke, R. M.: Ice Sheet Contributions to Future Sea-Level Rise from Structured Expert Judgment, P. Natl. Acad. Sci., 116, 11195–11200, https://doi.org/10.1073/pnas.1817205116, 2019. a
Banwell, A. F., MacAyeal, D. R., and Sergienko, O. V.: Breakup of the Larsen B Ice Shelf Triggered by Chain Reaction Drainage of Supraglacial Lakes, Geophys. Res. Lett., 40, 5872–5876, https://doi.org/10.1002/2013GL057694, 2013. a
Banwell, A. F., Datta, R. T., Dell, R. L., Moussavi, M., Brucker, L., Picard, G., Shuman, C. A., and Stevens, L. A.: The 32-year record-high surface melt in 2019/2020 on the northern George VI Ice Shelf, Antarctic Peninsula, The Cryosphere, 15, 909–925, https://doi.org/10.5194/tc-15-909-2021, 2021. a, b
Download
Short summary
We investigate the variability in surface melt on the Shackleton Ice Shelf in East Antarctica over the last 2 decades (2003–2021). Using daily satellite observations and the machine learning approach of a self-organising map, we identify nine distinct spatial patterns of melt. These patterns allow comparisons of melt within and across melt seasons and highlight the importance of both air temperatures and local controls such as topography, katabatic winds, and albedo in driving surface melt.
Share