Articles | Volume 13, issue 9
The Cryosphere, 13, 2345–2359, 2019
https://doi.org/10.5194/tc-13-2345-2019
The Cryosphere, 13, 2345–2359, 2019
https://doi.org/10.5194/tc-13-2345-2019

Research article 06 Sep 2019

Research article | 06 Sep 2019

Motion of dust particles in dry snow under temperature gradient metamorphism

Pascal Hagenmuller et al.

Related authors

The S2M meteorological and snow cover reanalysis over the French mountainous areas, description and evaluation (1958–2020)
Matthieu Vernay, Matthieu Lafaysse, Diego Monteiro, Pascal Hagenmuller, Rafife Nheili, Raphaëlle Samacoïts, Deborah Verfaillie, and Samuel Morin
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-249,https://doi.org/10.5194/essd-2021-249, 2021
Preprint under review for ESSD
Short summary
Experimental and model-based investigation of the links between snow bidirectional reflectance and snow microstructure
Marie Dumont, Frederic Flin, Aleksey Malinka, Olivier Brissaud, Pascal Hagenmuller, Philippe Lapalus, Bernard Lesaffre, Anne Dufour, Neige Calonne, Sabine Rolland du Roscoat, and Edward Ando
The Cryosphere, 15, 3921–3948, https://doi.org/10.5194/tc-15-3921-2021,https://doi.org/10.5194/tc-15-3921-2021, 2021
Short summary
Impact of water vapor diffusion and latent heat on the effective thermal conductivity of snow
Kévin Fourteau, Florent Domine, and Pascal Hagenmuller
The Cryosphere, 15, 2739–2755, https://doi.org/10.5194/tc-15-2739-2021,https://doi.org/10.5194/tc-15-2739-2021, 2021
Short summary
Macroscopic water vapor diffusion is not enhanced in snow
Kévin Fourteau, Florent Domine, and Pascal Hagenmuller
The Cryosphere, 15, 389–406, https://doi.org/10.5194/tc-15-389-2021,https://doi.org/10.5194/tc-15-389-2021, 2021
Short summary
Sensitivity of snow density and specific surface area measured by microtomography to different image processing algorithms
Pascal Hagenmuller, Margret Matzl, Guillaume Chambon, and Martin Schneebeli
The Cryosphere, 10, 1039–1054, https://doi.org/10.5194/tc-10-1039-2016,https://doi.org/10.5194/tc-10-1039-2016, 2016
Short summary

Related subject area

Discipline: Snow | Subject: Snow Physics
Orientation selective grain sublimation–deposition in snow under temperature gradient metamorphism observed with diffraction contrast tomography
Rémi Granger, Frédéric Flin, Wolfgang Ludwig, Ismail Hammad, and Christian Geindreau
The Cryosphere, 15, 4381–4398, https://doi.org/10.5194/tc-15-4381-2021,https://doi.org/10.5194/tc-15-4381-2021, 2021
Short summary
Experimental and model-based investigation of the links between snow bidirectional reflectance and snow microstructure
Marie Dumont, Frederic Flin, Aleksey Malinka, Olivier Brissaud, Pascal Hagenmuller, Philippe Lapalus, Bernard Lesaffre, Anne Dufour, Neige Calonne, Sabine Rolland du Roscoat, and Edward Ando
The Cryosphere, 15, 3921–3948, https://doi.org/10.5194/tc-15-3921-2021,https://doi.org/10.5194/tc-15-3921-2021, 2021
Short summary
Impact of water vapor diffusion and latent heat on the effective thermal conductivity of snow
Kévin Fourteau, Florent Domine, and Pascal Hagenmuller
The Cryosphere, 15, 2739–2755, https://doi.org/10.5194/tc-15-2739-2021,https://doi.org/10.5194/tc-15-2739-2021, 2021
Short summary
Enhancement of snow albedo reduction and radiative forcing due to coated black carbon in snow
Wei Pu, Tenglong Shi, Jiecan Cui, Yang Chen, Yue Zhou, and Xin Wang
The Cryosphere, 15, 2255–2272, https://doi.org/10.5194/tc-15-2255-2021,https://doi.org/10.5194/tc-15-2255-2021, 2021
Short summary
An exploratory modelling study of perennial firn aquifers in the Antarctic Peninsula for the period 1979–2016
J. Melchior van Wessem, Christian R. Steger, Nander Wever, and Michiel R. van den Broeke
The Cryosphere, 15, 695–714, https://doi.org/10.5194/tc-15-695-2021,https://doi.org/10.5194/tc-15-695-2021, 2021
Short summary

Cited articles

Aoki, T., Aoki, T., Fukabori, M., Hachikubo, A., Tachibana, Y., and Nishio, F.: Effects of snow physical parameters on spectral albedo and bidirectional reflectance of snow surface, J. Geophys. Res.: Atmospheres, 105, 10219–10236, https://doi.org/10.1029/1999JD901122, 2000. a
Aoki, T., Matoba, S., Yamaguchi, S., Tanikawa, T., Niwano, M., Kuchiki, K., Adachi, K., Uetake, J., Motoyama, H., and Hori, M.: Light-absorbing snow impurity concentrations measured on Northwest Greenland ice sheet in 2011 and 2012, B. Glaciol. Res., 32, 21–31, https://doi.org/10.5331/bgr.32.21, 2014. a, b
Bromiley, P. A. and Thacker, N. A.: Multi-dimensional Medical Image Segmentation with Partial Volume and Gradient Modelling, Ann. BMVA, 2008, 1–23, 2008. a
Calonne, N., Flin, F., Geindreau, C., Lesaffre, B., and Rolland du Roscoat, S.: Study of a temperature gradient metamorphism of snow from 3-D images: time evolution of microstructures, physical properties and their associated anisotropy, The Cryosphere, 8, 2255–2274, https://doi.org/10.5194/tc-8-2255-2014, 2014. a, b, c
Calonne, N., Flin, F., Lesaffre, B., Dufour, A., Roulle, J., Puglièse, P., Philip, A., Lahoucine, F., Geindreau, C., Panel, J.-M., Rolland du Roscoat, S., and Charrier, P.: CellDyM: A room temperature operating cryogenic cell for the dynamic monitoring of snow metamorphism by time-lapse X-ray microtomography, Geophys. Res. Lett., 42, 3911–3918, https://doi.org/10.1002/2015GL063541, 2015. a, b
Download
Short summary
Light–absorbing particles (LAPs, e.g. dust or black carbon) in snow are a potent climate forcing agent. Their presence darkens the snow surface and leads to higher solar energy absorption. Several studies have quantified this radiative impact by assuming that LAPs were motionless in dry snow, without any clear evidence of this assumption. Using time–lapse X–ray tomography, we show that temperature gradient metamorphism of snow induces downward motion of LAPs, leading to self–cleaning of snow.