The following lists only preprints without a corresponding final revised paper.
today1M3M6M12M24M60M2007
Please choose a category.
Please change your selection of category and/or time.
24 Mar 2025
Characterizing sea ice melt pond fraction and geometry in relation to surface morphology
Lena G. Buth, Thomas Krumpen, Niklas Neckel, Melinda A. Webster, Gerit Birnbaum, Niels Fuchs, Philipp Heuser, Ole Johannsen, and Christian Haas
EGUsphere, https://doi.org/10.5194/egusphere-2025-1103, https://doi.org/10.5194/egusphere-2025-1103, 2025
Preprint under review for TC (discussion: open, 0 comments)
Short summary
Short summary
Arctic sea ice is becoming smoother, raising the question of how these changes affect melt pond coverage and thereby surface albedo. Using airborne imagery and laser altimeter data, we investigated how pressure ridges influence melt ponds. The presence of ridges does not directly control pond fraction, but it does influence pond size distribution and pond geometry. Small ponds have a more complex shape on rough ice than on smooth ice, while the opposite is true for large ponds.
21 Mar 2025
An alternative representation of Synthetic Aperture Radar images as an aid to the interpretation of englacial observations
Álvaro Arenas-Pingarrón, Alex M. Brisbourne, Carlos Martín, Hugh F. J. Corr, Carl Robinson, Tom A. Jordan, and Paul V. Brennan
EGUsphere, https://doi.org/10.5194/egusphere-2025-1068, https://doi.org/10.5194/egusphere-2025-1068, 2025
Preprint under review for TC (discussion: open, 0 comments)
Short summary
Short summary
Synthetic Aperture Radar (SAR) imaging is essential for deep englacial observations. Each pixel is formed by averaging the radar echoes within an antenna beamwidth, but the echo diversity is lost after the average. We improve the SAR interpretation if three sub-images are formed with different sub-beamwidths: each is coloured in red, green, or blue, and they are overlapped, creating a coloured image. Interpreters will better identify the slopes of internal layers, crevasses, and layer roughness.
21 Mar 2025
Reconstruction of mass balance and firn stratigraphy during the 1996–2011 warm period at high-altitude on Mt. Ortles, Eastern Alps: a comparison of modelled and ice core results
Luca Carturan, Alexander C. Ihle, Federico Cazorzi, Tiziana Lazzarina Zendrini, Fabrizio De Blasi, Giancarlo Dalla Fontana, Giuliano Dreossi, Daniela Festi, Bryan Mark, Klaus Dieter Oeggl, Roberto Seppi, Barbara Stenni, and Paolo Gabrielli
EGUsphere, https://doi.org/10.5194/egusphere-2025-729, https://doi.org/10.5194/egusphere-2025-729, 2025
Preprint under review for TC (discussion: open, 0 comments)
Short summary
Short summary
Paleoclimatic glacial archives in low-latitude mountains are increasingly affected by melt, causing heavy percolation and removing snow and firn accumulated across months, seasons or even years. Here we present a proxy system model that explicitly accounts for melt in ice and firn cores. Compared to traditional annual layer counting, the model significantly improved the interpretation and annual dating of the Mt. Ortles firn core, in the Italian Alps, that includes the very warm summer 2003.
21 Mar 2025
Evaluating the Utility of Sentinel-1 in a Data Assimilation System for Estimating Snow Depth in a Mountainous Basin
Bareera N. Mirza, Eric E. Small, and Mark S. Raleigh
EGUsphere, https://doi.org/10.5194/egusphere-2025-978, https://doi.org/10.5194/egusphere-2025-978, 2025
Preprint under review for TC (discussion: open, 0 comments)
Short summary
Short summary
Measuring snow depth in mountains is essential for water management, but current satellite methods have limitations. This study evaluates snow depth estimates from the Sentinel-1 radar satellite, revealing significant spatial errors, particularly during snowmelt. Combining it with other satellite data did not improve accuracy, emphasizing the need for improved techniques to advance global snow mapping for better water resource predictions
21 Mar 2025
Multitemporal analysis of Sentinel-1 backscattering during snow melt using high-resolution field measurements and radiative transfer modeling
Francesca Carletti, Carlo Marin, Chiara Ghielmini, Mathias Bavay, and Michael Lehning
EGUsphere, https://doi.org/10.5194/egusphere-2025-974, https://doi.org/10.5194/egusphere-2025-974, 2025
Preprint under review for TC (discussion: open, 0 comments)
Short summary
Short summary
This work presents the first high-resolution dataset of wet snow properties for satellite applications. With it, we validate links between Sentinel-1 backscattering and snowmelt stages, and investigate scattering mechanisms through a radiative transfer model. We disclose the influence of liquid water content and surface roughness at different melting stages and address future challenges, such as capturing large-scale scattering mechanisms and enhancing radiative transfer modules for wet snow.
20 Mar 2025
Active-passive microwave scattering in the Antarctica wind-glazed region: an analog for icy moons of Saturn
Léa Elise Bonnefoy, Catherine Prigent, Ghislain Picard, Clément Soriot, Alice Le Gall, Lise Kilic, and Carlos Jimenez
EGUsphere, https://doi.org/10.5194/egusphere-2024-3972, https://doi.org/10.5194/egusphere-2024-3972, 2025
Preprint under review for TC (discussion: open, 0 comments)
Short summary
Short summary
Microwave radiometry senses the thermal emission from a target, whereas its active counterpart, radar, sends a signal to the target and measures the signal reflected back. We simultaneously model radar and radiometry over the East Antarctic ice sheet, which we propose as an analog for icy moons: we can reproduce most data with a unique model. Saturn's moons' radar brightness cannot be reproduced and must be caused by processes unaccounted for in the model and less active in the Antarctic.
20 Mar 2025
Simulating the Holocene evolution of Ryder Glacier, North Greenland
Jamie Barnett, Felicity Alice Holmes, Joshua Cuzzone, Henning Åkesson, Mathieu Morlighem, Matt O'Regan, Johan Nilsson, Nina Kirchner, and Martin Jakobsson
EGUsphere, https://doi.org/10.5194/egusphere-2025-653, https://doi.org/10.5194/egusphere-2025-653, 2025
Preprint under review for TC (discussion: open, 0 comments)
Short summary
Short summary
Understanding how ice sheets have changed in the past can allow us to make better predictions for the future. By running a state-of-the-art model of Ryder Glacier, North Greenland, over the past 12,000 years we find that both a warming atmosphere and ocean play a key role in the evolution of the Glacier. Our conclusions stress that accurately quantifying the ice sheet’s interactions with the ocean are required to predict future changes and reliable sea level rise estimates.
19 Mar 2025
A new dataset of Southern Ocean sea-ice leads: First insights into regional lead patterns, seasonality and trends, 2003–2023
Umesh Dubey, Sascha Willmes, and Günther Heinemann
EGUsphere, https://doi.org/10.5194/egusphere-2025-736, https://doi.org/10.5194/egusphere-2025-736, 2025
Preprint under review for TC (discussion: open, 1 comment)
Short summary
Short summary
Sea-ice leads facilitate the exchange of heat and moisture between the ocean and atmosphere during wintertime. We present a new dataset on monthly wintertime sea-ice leads in the Southern Ocean from 2003 to 2023. Our study reveals distinct regional patterns, seasonal variability, and small but significant trends. Here, we present initial findings on Southern Ocean lead dynamics to support future research into the complex pan-Antarctic interactions among sea ice, ocean and atmosphere.
19 Mar 2025
Empirical classification of dry-wet snow status in Antarctica using multi-frequency passive microwave observations
Marion Leduc-Leballeur, Ghislain Picard, Pierre Zeiger, and Giovanni Macelloni
EGUsphere, https://doi.org/10.5194/egusphere-2025-732, https://doi.org/10.5194/egusphere-2025-732, 2025
Preprint under review for TC (discussion: open, 0 comments)
Short summary
Short summary
This study presents a quantitative and synthetic classification of the snowpack in 10 dry-wet status by aggregating separate binary indicators derived from satellite observations. The classification follows the expected evolution of the melt season: night refreezing is frequent at the onset, sustained melting is observed during the summer peak, and remnant liquid water at depth occurs at the end. This dataset improves the knowledge of melt processes using passive microwave remote sensing.
19 Mar 2025
Ocean-Induced Weakening of George VI Ice Shelf
Ann-Sofie P. Zinck, Bert Wouters, Franka Jesse, and Stef Lhermitte
EGUsphere, https://doi.org/10.5194/egusphere-2025-573, https://doi.org/10.5194/egusphere-2025-573, 2025
Preprint under review for TC (discussion: open, 0 comments)
Short summary
Short summary
Ocean-driven basal melting of ice shelves can carve channels into the ice shelf base. These channels represent potential weak areas of the ice shelf. On George VI Ice shelf we discover a new channel which onset coincides with the 2015 El-Nino Southern Oscillation event. Since the channel has developed rapidly and is located within a highly channelized area close to the ice shelf front it poses a potential thread of ice shelf retreat.
18 Mar 2025
Exploring the Greenland Ice Sheet's response to future atmospheric warming-threshold scenarios over 200 years
Alison Delhasse, Christoph Kittel, and Johanna Beckmann
EGUsphere, https://doi.org/10.5194/egusphere-2025-709, https://doi.org/10.5194/egusphere-2025-709, 2025
Preprint under review for TC (discussion: open, 0 comments)
Short summary
Short summary
This study explores how the Greenland Ice Sheet (GrIS) responds to different levels of stabilized global warming, and if the climate cools back. Our findings show that global temperature increases beyond +2.3 °C mark a critical threshold. We also highlight the importance of limiting warming to avoid irreversible ice loss, as well as the potential for recovery after temporarily exceeding warming thresholds if action is taken quickly to lower global temperatures.
18 Mar 2025
Short and Long-term Grounding Zone Dynamics of Amery Ice Shelf, East Antarctica
Yikai Zhu, Anna E. Hogg, Andrew Hooper, and Benjamin J. Wallis
EGUsphere, https://doi.org/10.5194/egusphere-2025-849, https://doi.org/10.5194/egusphere-2025-849, 2025
Preprint under review for TC (discussion: open, 0 comments)
Short summary
Short summary
This study investigates the long- and short-term changes in the grounding line of the Amery Ice Shelf in East Antarctica, using satellite observations and a method called Differential Range Offset Tracking (DROT). Our findings show how the grounding line behaves in response to tides and other environmental factors, with implications for understanding ice shelf stability.
17 Mar 2025
Brief communication: Sharp winter precipitation transition on the southern edge of the Tibetan Plateau
Titouan Biget, Fanny Brun, Walter Immerzeel, Leo Martin, Hamish Pritchard, Emily Colier, Yanbin Lei, and Tandong Yao
EGUsphere, https://doi.org/10.5194/egusphere-2025-863, https://doi.org/10.5194/egusphere-2025-863, 2025
Preprint under review for TC (discussion: open, 0 comments)
Short summary
Short summary
This study explore the precipitation in the southern Tibetan plateau using the water pressure of an high altitude lake and meteorological models and shows that snowfall could be much stronger on the Plateau than what is predicted by the models.
17 Mar 2025
The Antarctic Ice Sheet sliding law inferred from seismic observations
Kevin Hank, Robert J. Arthern, C. Rosie Williams, Alex M. Brisbourne, Andrew M. Smith, James A. Smith, Anna Wåhlin, and Sridhar Anandakrishnan
EGUsphere, https://doi.org/10.5194/egusphere-2025-764, https://doi.org/10.5194/egusphere-2025-764, 2025
Preprint under review for TC (discussion: open, 0 comments)
Short summary
Short summary
The slipperiness beneath ice sheets is a key source of uncertainty in sea level rise projections. Using both observations and model output, we infer the most probable representation of basal slipperiness in ice sheet models, enabling more accurate projections. For Pine Island Glacier, our results provide support for a Coulomb-type sliding law and widespread low effective pressures, potentially increasing sliding velocities in prognostic simulations and, hence, sea level rise projections.
13 Mar 2025
Review article: Weddell Sea polynya Formation, Cessation and Climatic Impacts
Lu Zhou, Holly Ayres, Birte Gülk, Aditya Narayanan, Casimir de Lavergne, Malin Ödalen, Alessandro Silvano, Xingchi Wang, Margaret Lindeman, and Nadine Steiger
EGUsphere, https://doi.org/10.5194/egusphere-2025-999, https://doi.org/10.5194/egusphere-2025-999, 2025
Preprint under review for TC (discussion: open, 1 comment)
Short summary
Short summary
Polynyas are large openings in polar sea ice that can influence global climate and ocean circulation. After disappearing for 40 years, major polynyas reappeared in the Weddell Sea in 2016 and 2017, sparking new scientific questions. Our review explores how ocean currents, atmospheric conditions, and deep ocean heat drive their formation. These polynyas impact ecosystems, carbon exchange, and deep water formation, but their future remains uncertain, requiring better observations and models.
13 Mar 2025
Thermokarst lakes disturb the permafrost structure and stimulate through-talik formation in the Qinghai–Tibet Plateau, China: A hydrogeophysical investigation
Xianmin Ke, Wei Wang, Fujun Niu, Zeyong Gao, Wenkang Huang, and Huake Cao
EGUsphere, https://doi.org/10.5194/egusphere-2025-864, https://doi.org/10.5194/egusphere-2025-864, 2025
Preprint under review for TC (discussion: open, 0 comments)
Short summary
Short summary
Measurements of the permafrost distribution are often limited to seasonally frozen soil or permafrost at a few borehole locations, and the detection of deep permafrost and sublake taliks in the QTP has rarely been attempted. We used ERT, TEM, and ground temperature measurement (GTM) methods to investigate permafrost structure and sublake talik morphologies. We determined the current permafrost structure and found that permafrost below three thermokarst lakes has thawed completely.
12 Mar 2025
Competing processes determine the long-term impact of basal friction parameterizations for Antarctic mass loss
Tim van den Akker, William H. Lipscomb, Gunter R. Leguy, Willem Jan van de Berg, and Roderik S. W. van de Wal
EGUsphere, https://doi.org/10.5194/egusphere-2025-441, https://doi.org/10.5194/egusphere-2025-441, 2025
Preprint under review for TC (discussion: open, 0 comments)
Short summary
Short summary
Ice sheet models to simulate future sea level rise require parameterizations, like for the friction at the bedrock. Studies have quantified the effect of using different parameterizations, and some have concluded that projections are sensitive to the choice of the specific parameterization. In this study, we show that you can make an ice sheet model sensitive to the basal friction parameterization, and that for equally defendable modellers choices you can also make the model insensitive to this.
12 Mar 2025
On the Statistical Relationship between Sea Ice Freeboard and C-Band Microwave Backscatter – A Study with Sentinel-1 and Operation IceBridge
Siqi Liu, Shiming Xu, Wenkai Guo, Yanfei Fan, Lu Zhou, Jack Landy, Malin Johansson, Weixin Zhu, and Alek Petty
EGUsphere, https://doi.org/10.5194/egusphere-2025-1069, https://doi.org/10.5194/egusphere-2025-1069, 2025
Preprint under review for TC (discussion: open, 0 comments)
Short summary
Short summary
In this study, we explore the potential of using synthetic aperture radars (SAR) to predict the sea ice height measurements by the airborne campaign of Operation IceBridge. In particular, we predict the meter-scale sea ice height with the statistical relationship between the two, overcoming the resolution limitation of SAR images from Sentinel-1 satellites. The prediction and ice drift correction algorithms can be applied to the extrapolation of ICESat-2 measurements in the Arctic region.
12 Mar 2025
Interannual variability in air temperature and snow drive differences in ice formation and growth
Arash Rafat and Homa Kheyrollah Pour
EGUsphere, https://doi.org/10.5194/egusphere-2025-975, https://doi.org/10.5194/egusphere-2025-975, 2025
Preprint under review for TC (discussion: open, 0 comments)
Short summary
Short summary
Climate change in Canada’s Northwest Territories (NWT) is making lake ice less predictable, thereby affecting ice road safety for northern communities. In this study, observations of significant changes in ice formation and growth between Oct.–Dec. 2021–2023 in a small NWT lake are related to changes in local snowfall and air temperatures. Collected data was used to develop simple models that can be applied for ice road planning, construction, and design under future and current climate change.
12 Mar 2025
Air clathrate hydrates in the EDML ice core, Antarctica
Florian Painer, Sepp Kipfstuhl, Martyn Drury, Tsutomu Uchida, Johannes Freitag, and Ilka Weikusat
EGUsphere, https://doi.org/10.5194/egusphere-2025-633, https://doi.org/10.5194/egusphere-2025-633, 2025
Preprint under review for TC (discussion: open, 0 comments)
Short summary
Short summary
Air clathrate hydrates trap ancient air in the deeper part of ice sheets. We use digital microscopy and automated image analysis to investigate the evolution of number, size and shape of air clathrate hydrates from 1250 m depth to the bottom of the ice sheet. We confirm the previously found relation of changes in number and size with past climate and find a connection of their shape to changes in ice deformation. The results will help to better understand air clathrate hydrates in deep ice.
12 Mar 2025
Scale patterns of the Sentinel-1 SAR-based snow depth product compared to station measurements and airborne LiDAR observations
Jiajie Ying, Lingmei Jiang, Jinmei Pan, Chuan Xiong, and Jianwei Yang
EGUsphere, https://doi.org/10.5194/egusphere-2025-276, https://doi.org/10.5194/egusphere-2025-276, 2025
Preprint under review for TC (discussion: open, 1 comment)
Short summary
Short summary
The Sentinel-1-based C-snow product has been widely used as reference data across various scales, but its reliability remains unknown. This study systematically evaluates its performance at 1, 10, and 25 km scales using ground-based measurements and airborne LiDAR data. The results show that performance is influenced by factors such as forest fraction, DEM, permanent ice, and wet snow. We also identify scale patterns differences compared to station and airborne datasets and explore the reasons.
12 Mar 2025
On the accuracy of the measured and modelled surface latent and sensible heat flux in the interior of the Greenland Ice Sheet
Ida Haven, Hans Christian Steen-Larsen, Laura J. Dietrich, Sonja Wahl, Jason E. Box, Michiel R. Van den Broeke, Alun Hubbard, Stephan T. Kral, Joachim Reuder, and Maurice Van Tiggelen
EGUsphere, https://doi.org/10.5194/egusphere-2025-711, https://doi.org/10.5194/egusphere-2025-711, 2025
Preprint under review for TC (discussion: open, 0 comments)
Short summary
Short summary
Three independent Eddy-Covariance measurement systems deployed on top of the Greenland Ice Sheet are compared. Using this dataset, we evaluate the reproducibility and quantify the differences between the systems. The fidelity of two regional climate models in capturing the seasonal variability in the latent and sensible heat flux between the snow surface and the atmosphere is assessed. We identify differences between observations and model simulations, especially during the winter period.
12 Mar 2025
Modelling the evolution of permafrost temperatures and active layer thickness in King George Island, Antarctica, since 1950
Joana Pedro Baptista, Goncalo Brito Guapo Teles Vieira, Hyoungseok Lee, António Manuel de Carvalho Soares Correia, and Sebastian Westermann
EGUsphere, https://doi.org/10.5194/egusphere-2025-150, https://doi.org/10.5194/egusphere-2025-150, 2025
Preprint under review for TC (discussion: open, 1 comment)
Short summary
Short summary
Permafrost underlies ice-free areas of Antarctica, but its response to long-term warming is unclear due to a limited number of monitoring sites. To address this, we used the CryoGrid model, forced with climate data, to estimate permafrost temperatures and active layer thickness at King Sejong Station since 1950. The results show ground temperatures rising 0.25 °C per decade and the active layer thickening by 2 m. Warming has accelerated since 2015, highlighting the need for continued monitoring.
07 Mar 2025
Brief Communication: Correction of Fundamental Errors in the EVP Sea Ice Dynamics in ICON
Oliver Gutjahr
EGUsphere, https://doi.org/10.5194/egusphere-2025-906, https://doi.org/10.5194/egusphere-2025-906, 2025
Preprint under review for TC (discussion: open, 1 comment)
Short summary
Short summary
The global ICON model, one of the world’s leading climate and Earth system models, had fundamental errors in its sea ice simulation. These issues caused excessive ice drift and overly mobile ice that fractured too easily, leading to unrealistic open water patches. After correcting these errors, the sea ice drift and coverage improved, now aligning well with observations. This study marks a turning point in ICON’s sea ice representation, ensuring more accurate simulations at all resolutions.
07 Mar 2025
Analysis of Snow Cover Changes Using MODIS Snow Products and Meteorological Data in the Hunza Region, Karakoram, Pakistan
Muqeet Ahmad, Shehzad Ali, Garee Khan, Parisa Karim, Muzammil Hassan, Kelden Jurmey, Lhachi Dema, and Shrija Gurung
EGUsphere, https://doi.org/10.5194/egusphere-2024-3991, https://doi.org/10.5194/egusphere-2024-3991, 2025
Preprint under review for TC (discussion: open, 0 comments)
Short summary
Short summary
This research examines the snow cover change in the Hunza region, Upper Indus Basin, from 2000 to 2020. Using satellite and meteorological data, we observed slight increases in winter snow cover and decreases in summer. The research points out how temperature and precipitation influence snow cover, showing complex seasonal trends. These results show that winter snow accumulation supports critical water resources for downstream areas, highlighting the importance of understanding regional climate.
06 Mar 2025
Arctic regional changes revealed by clustering of sea-ice observations
Amélie Simon, Pierre Tandeo, Florian Sévellec, and Camille Lique
EGUsphere, https://doi.org/10.5194/egusphere-2025-704, https://doi.org/10.5194/egusphere-2025-704, 2025
Preprint under review for TC (discussion: open, 0 comments)
Short summary
Short summary
This paper presents a new way to describe the Arctic sea-ice changes based on the shape of the observed seasonal cycles and using machine learning techniques. We show that the East Siberian and Laptev seas have lost their typical permanent sea-ice seasonal cycle while the Kara and Chukchi seas are experiencing a new typical seasonal cycle, corresponding to a partial winter-freezing.
05 Mar 2025
Satellite-observed surging dynamics of North Kunchhang Glacier I in the Eastern Karakoram
Fanyu Zhao, Di Long, Chenqi Fang, Yiming Wang, and Xingwu Duan
EGUsphere, https://doi.org/10.5194/egusphere-2025-652, https://doi.org/10.5194/egusphere-2025-652, 2025
Preprint under review for TC (discussion: open, 0 comments)
Short summary
Short summary
The heterogeneous surge behaviors in Karakoram reveal critical knowledge gaps in the underlying mechanism, urging detailed investigations. We integrate multisource remote sensing (satellite altimetry, DEMs, optical/SAR imagery) to holistically characterize surge phases of a Karakoram glacier, quantifying flow velocity, surface elevation, terminus position, and lake level variations. This integrated approach underscores the value of multi-sensor synergies in deciphering complex surge mechanisms.
05 Mar 2025
Brief communication: Tropical glaciers on Puncak Jaya (Irian Jaya/West Papua, Indonesia) close to extinction
David Ibel, Thomas Mölg, and Christian Sommer
EGUsphere, https://doi.org/10.5194/egusphere-2025-415, https://doi.org/10.5194/egusphere-2025-415, 2025
Preprint under review for TC (discussion: open, 0 comments)
Short summary
Short summary
As (tropical) glaciers retreat on a global scale, we analysed area changes of the Puncak Jaya glaciers in South-East Asia on West Papua, Indonesia using high resolution optical satellite imagery and historical glacier accounts from analogue maps. The results show a decrease of total glacier surface area by more than 99 % since 1850 and by 64 % since the last survey in 2018, with current glacier area (in 2024) amounting to 0.165 km2. Puncak Jaya glaciers will likely disappear around 2030.
05 Mar 2025
New evidence on the microstructural localization of sulfur, chlorine & sodium in polar ice cores with implications for impurity diffusion
Pascal Bohleber, Nicolas Stoll, Piers Larkman, Rachael H. Rhodes, and David Clases
EGUsphere, https://doi.org/10.5194/egusphere-2025-355, https://doi.org/10.5194/egusphere-2025-355, 2025
Preprint under review for TC (discussion: open, 0 comments)
Short summary
Short summary
To avoid misinterpretation of impurity signals in ice cores, post-depositional changes need to be identified. Peak broadening with depth observed especially for S was previously related to diffusion in ice veins, but the exact physical mechanisms remain unclear. Our two-dimensional impurity maps by laser ablation inductively coupled plasma mass spectrometry were extended for the first time to S and Cl and support a view on diffusion not only through veins but also along grain boundaries.
04 Mar 2025
Rockwall permafrost dynamics evidenced by Automated Electrical Resistivity Tomography at Aiguille du Midi (3842 m a.s.l., French Alps)
Feras Abdulsamad, Josué Bock, Florence Magnin, Emmanuel Malet, André Revil, Matan Ben-Asher, Jessy Richard, Pierre-Allain Duvillard, Marios Karaoulis, Thomas Condom, Ludovic Ravanel, and Philip Deline
EGUsphere, https://doi.org/10.5194/egusphere-2025-637, https://doi.org/10.5194/egusphere-2025-637, 2025
Preprint under review for TC (discussion: open, 0 comments)
Short summary
Short summary
Permafrost dynamics at Aiguille du Midi in the French Alps was investigated using Automated Electrical Resistivity Tomography (A-ERT) during four years. A-ERT reveals seasonal and multi-year permafrost changes. Temperatures estimated using resistivity measurements provide a good agreement with measured temperature in borehole in frozen zone. Variations in active layer thickness across different faces were observed, along with a slight decrease in permafrost resistivity suggesting warming.
03 Mar 2025
Unprecedent cave ice melt in the last 6100 years in the Central Pyrenees (A294 ice cave)
Carlos Sancho, Ánchel Belmonte, Maria Leunda, Marc Luetscher, Christoph Spötl, Juan Ignacio López-Moreno, Belén Oliva-Urcia, Jerónimo López-Martínez, Ana Moreno, and Miguel Bartolomé
EGUsphere, https://doi.org/10.5194/egusphere-2025-8, https://doi.org/10.5194/egusphere-2025-8, 2025
Preprint under review for TC (discussion: open, 1 comment)
Short summary
Short summary
Ice caves, vital for paleoclimate studies, face rapid ice loss due to global warming. A294 cave, home to the oldest firn deposit (6100 years BP), shows rising air temperatures (~1.07–1.56 °C in 12 years), fewer freezing days, and melting rates (15–192 cm/year). Key factors include warmer winters, increased rainfall, and reduced snowfall. This study highlights the urgency of recovering data from these unique ice archives before they vanish forever.
27 Feb 2025
Trace metal distributions in the transition zone from the Greenland Ice-Sheet to the surface water in Kangerlussuaq fjord (67 °N)
Clara R. Vives, Jørgen Bendtsen, Rasmus D. Dahms, Niels Daugbjerg, Kristina V. Larsen, and Minik T. Rosing
EGUsphere, https://doi.org/10.5194/egusphere-2025-677, https://doi.org/10.5194/egusphere-2025-677, 2025
Preprint under review for TC (discussion: open, 1 comment)
Short summary
Short summary
Glacial rock flour (GRF) from Greenland’s glaciers transports silicate and trace metals into fjords, influencing marine biogeochemistry. Trace metal concentrations are high in riverine and low-salinity waters but decrease sharply as salinity increases, challenging estimates based on freshwater input alone. Silicate rises due to GRF weathering but declines in fjords due to mixing. Uranium and molybdenum originate from the ocean, highlighting complex trace metal and nutrient dynamics.
27 Feb 2025
Estimation of the state and parameters in ice sheet model using an ensemble Kalman filter and Observing System Simulation Experiments
Youngmin Choi, Alek Petty, Denis Felikson, and Jonathan Poterjoy
EGUsphere, https://doi.org/10.5194/egusphere-2025-301, https://doi.org/10.5194/egusphere-2025-301, 2025
Preprint under review for TC (discussion: open, 0 comments)
Short summary
Short summary
In this study, we combined numerical models with satellite data using the ensemble Kalman filter to improve predictions of glacier states and their basal conditions. Simulations showed that adding more data enhances prediction accuracy. We also tested the effect of various data types and found that the high-resolution data improve model performance. This method could inform the design of better observation systems and refine future projections of ice sheet behavior.
27 Feb 2025
Brief communication: Reanalyses underperform in cold regions, raising concerns for climate services and research
Bin Cao and Stephan Gruber
EGUsphere, https://doi.org/10.5194/egusphere-2025-575, https://doi.org/10.5194/egusphere-2025-575, 2025
Preprint under review for TC (discussion: open, 1 comment)
Short summary
Short summary
The climate-driven changes in cold regions have an outsized importance for local resilient communities and for global climate through teleconnections. We shows that reanalyses are less accurate in cold regions compared to other more populated regions, coincident with the low density of observations. Our findings likely point to similar gaps in our knowledge and capabilities for climate research and services in cold regions.
27 Feb 2025
Greenland's annual and interannual mass variations from GRACE/GRACE-FO linked with climatic indices
Florent Cambier, José Darrozes, Muriel Llubes, Lucia Seoane, and Guillaume Ramillien
EGUsphere, https://doi.org/10.5194/egusphere-2025-558, https://doi.org/10.5194/egusphere-2025-558, 2025
Preprint under review for TC (discussion: open, 0 comments)
Short summary
Short summary
The Greenland Ice Sheet has been losing mass since the 1990s, driven by atmospheric and ocean interactions. Analyzing 2002–2023 gravimetric satellite data, this study identifies five principal modes of ice mass variability. Correlations between them, climatic indices, and meteorological parameters such as the temperature and precipitations reveal the presence of interactions at annual to decadal scales. Understanding these drivers is key to predicting future changes and sea-level rise.
26 Feb 2025
Brief communication: Impact of mountain glaciers on regional hydroclimate
Husile Bai, Summer Rupper, and Courtenay Strong
EGUsphere, https://doi.org/10.5194/egusphere-2025-675, https://doi.org/10.5194/egusphere-2025-675, 2025
Preprint under review for TC (discussion: open, 2 comments)
Short summary
Short summary
Glaciers do more than store water; they shape weather and climate in profound ways. Using high-resolution simulations, we show that even small glacier changes in the Karakoram altered regional wind patterns and monsoonal rainfall. These shifts affect water availability, natural hazards, and ecosystems. Properly representing glaciers in climate models is essential for improving hydroclimate projections and understanding future changes in mountain regions.
26 Feb 2025
Enhanced MOIDS-derived ice physical properties within CoLM revealing bare ice-snow-albedo feedback over Greenland
Shuyang Guo, Yongjiu Dai, Hua Yuan, and Hongbin Liang
EGUsphere, https://doi.org/10.5194/egusphere-2025-230, https://doi.org/10.5194/egusphere-2025-230, 2025
Preprint under review for TC (discussion: open, 1 comment)
Short summary
Short summary
The Snow, Ice, and Aerosol Radiation Model Version 4 has only been used to evaluate bare ice albedo in land surface models, with necessary ice property data lacking quality control. We integrated this model into our land surface model and improved bare ice properties using quality-controlled satellite data. Our findings show regional warming and reduced snow cover in Greenland’s bare ice region, driven by changes in bare ice properties through the bare ice-snow-albedo feedback.
24 Feb 2025
Insights into microphysical and optical properties of typical mineral dust within industrial-polluted snowpack via wet/dry deposition in Changchun, Northeastern China
Tenglong Shi, Jiayao Wang, Daizhou Zhang, Jiecan Cui, Zihang Wang, Yue Zhou, Wei Pu, Yang Bai, Zhigang Han, Meng Liu, Yanbiao Liu, Hongbin Xie, Minghui Yang, Ying Li, Meng Gao, and Xin Wang
EGUsphere, https://doi.org/10.5194/egusphere-2025-124, https://doi.org/10.5194/egusphere-2025-124, 2025
Preprint under review for TC (discussion: open, 2 comments)
Short summary
Short summary
This study examines the properties of dust in snow in Changchun, China, using advanced technology to analyze its size, shape, and light absorption. We found that dust composition affects how much heat is absorbed by snow, with certain minerals, like hematite, making snow melt faster. Our research highlights the importance of creating clear standards for classifying dust, which could improve climate models and field observations. This work helps better understand dust's role in climate change.
24 Feb 2025
ITS_LIVE global glacier velocity data in near real time
Alex S. Gardner, Chad A. Greene, Joseph H. Kennedy, Mark A. Fahnestock, Maria Liukis, Luis A. López, Yang Lei, Ted A. Scambos, and Amaury Dehecq
EGUsphere, https://doi.org/10.5194/egusphere-2025-392, https://doi.org/10.5194/egusphere-2025-392, 2025
Preprint under review for TC (discussion: open, 0 comments)
Short summary
Short summary
The NASA MEaSUREs Inter-mission Time Series of Land Ice Velocity and Elevation (ITS_LIVE) project provides glacier and ice sheet velocity products for the full Landsat, Sentinel-1 and Sentinel-2 satellite archives, and will soon include data from Sentinel 1C and NISAR satellites. This paper describes the ITS_LIVE processing chain and provides guidance for working with the cloud-optimized velocity data it produces.
24 Feb 2025
Recent history and future demise of Jostedalsbreen, the largest ice cap in mainland Europe
Henning Åkesson, Kamilla Hauknes Sjursen, Thomas Vikhamar Schuler, Thorben Dunse, Liss Marie Andreassen, Mette Kusk Gillespie, Benjamin Aubrey Robson, Thomas Schellenberger, and Jacob Clement Yde
EGUsphere, https://doi.org/10.5194/egusphere-2025-467, https://doi.org/10.5194/egusphere-2025-467, 2025
Preprint under review for TC (discussion: open, 0 comments)
Short summary
Short summary
We model the historical and future evolution of the Jostedalsbreen ice cap in Norway, projecting substantial and largely irreversible mass loss for the 21st century, and that the ice cap will split into three parts. Further mass loss is in the pipeline, with a disappearance during the 22nd century under high emissions. Our study demonstrates an approach to model complex ice masses, highlights uncertainties due to precipitation, and calls for further research on long-term future glacier change.
24 Feb 2025
Benchmarking Snow Fields of ERA5-Land in the Northern Regions of North America
Robert Sarpong and Ali Nazemi
EGUsphere, https://doi.org/10.5194/egusphere-2024-4150, https://doi.org/10.5194/egusphere-2024-4150, 2025
Preprint under review for TC (discussion: open, 0 comments)
Short summary
Short summary
We benchmark the ERA5-Land's snow cover, snow depth, and snow water equivalent across 21 ecological regions in Canada and Alaska using MODIS and CMC snow analysis products at monthly, seasonal and annual scales. Particular attention is given to inspect whether ERA5-Land snow fields are able to reconstruct the spatial structure of snow variables inferred by the reference products and whether there is any spatial structure within the ERA5-Lands discrepancies.
21 Feb 2025
Improving Seasonal Arctic Sea Ice Predictions with the Combination of Machine Learning and Earth System Model
Zikang He, Yiguo Wang, Julien Brajard, Xidong Wang, and Zheqi Shen
EGUsphere, https://doi.org/10.5194/egusphere-2024-4092, https://doi.org/10.5194/egusphere-2024-4092, 2025
Preprint under review for TC (discussion: open, 3 comments)
Short summary
Short summary
Declining Arctic sea ice presents both risks and opportunities for ecosystems, communities, and economic activities. To address prediction errors in dynamical models, we apply machine learning for error correction during prediction (online) or post-processing (offline). Our results show both methods enhance sea ice predictions, particularly from September to January, with offline corrections outperforming online corrections.
21 Feb 2025
Characterization of Ice Features in the Southwest Greenland Ablation Zone Using Multi-Modal SAR Data
Sara-Patricia Schlenk, Georg Fischer, Matteo Pardini, and Irena Hajnsek
EGUsphere, https://doi.org/10.5194/egusphere-2024-3474, https://doi.org/10.5194/egusphere-2024-3474, 2025
Preprint under review for TC (discussion: open, 0 comments)
Short summary
Short summary
Synthetic Aperture Radar (SAR) revealed ice features of unknown glaciological origin in southwest Greenland’s ablation zone. Using SAR techniques, we identified low-backscatter areas with surface scattering, in contrast to surrounding high-backscatter areas with scattering from the subsurface. Our first theory relates the low backscatter to residual liquid water in a weathering crust and the surrounding to bare glacier ice. These findings may deepen our understanding of ablation zone properties.
21 Feb 2025
Brief Communication: Daily, gap-free snow cover information based on a combination of NPP VIIRS and MODIS data
Andreas J. Dietz and Sebastian Roessler
EGUsphere, https://doi.org/10.5194/egusphere-2025-382, https://doi.org/10.5194/egusphere-2025-382, 2025
Preprint under review for TC (discussion: open, 1 comment)
Short summary
Short summary
The "Global SnowPack" product of the German Aerospace Center (DLR) contains binary information about the presence or absence of snow on a global scale since the year 2000. Now incorporating new input datasets, it was possible to increase the spatial resolution to 370 m. The detailed accuracy assessment proves the feasibility of the applied methods to remove data gaps caused by clouds and polar darkness.
21 Feb 2025
Arctic supraglacial lake derived bathymetry combining ICESat-2 and spectral stratification of satellite imagery
Jinhao Lv, Chunchun Gao, Chao Qi, Shaoyu Li, Dianpeng Su, Kai Zhang, and Fanlin Yang
EGUsphere, https://doi.org/10.5194/egusphere-2025-364, https://doi.org/10.5194/egusphere-2025-364, 2025
Preprint under review for TC (discussion: open, 0 comments)
Short summary
Short summary
This study combines ICESat-2 and multispectral imagery data, using satellite-based bathymetry (SDB) methods to estimate the water depth of supraglacial lakes on the Greenland ice sheet. Considering reflectance differences at varying depths, we performed spectral stratification based on these variations to derive more accurate SDB inversion results. This study, with its low cost, spatiotemporal advantages, and higher accuracy, can provide insights into terrain and climate change in the Arctic.
21 Feb 2025
Subglacial hydrology regulates oscillations in marine ice streams
Marianne Haseloff, Ian J. Hewitt, and Richard F. Katz
EGUsphere, https://doi.org/10.5194/egusphere-2025-204, https://doi.org/10.5194/egusphere-2025-204, 2025
Preprint under review for TC (discussion: open, 1 comment)
Short summary
Short summary
We combine models for marine ice sheets (which terminate in the ocean) and water flux at the ice-bed interface. The coupled system evolves dynamically due to a positive feedback between ice flow, heat dissipation at the ice stream bed, and basal lubrication. Our results show that depending on the hydraulic properties of the bed, distinct dynamic regimes can be identified. These regimes include steady streaming, hydraulically controlled surges, and thermally controlled oscillations.
19 Feb 2025
Quantification of capillary rise dynamics in snow using neutron radiography
Michael Lombardo, Amelie Fees, Anders Kaestner, Alec van Herwijnen, Jürg Schweizer, and Peter Lehmann
EGUsphere, https://doi.org/10.5194/egusphere-2025-304, https://doi.org/10.5194/egusphere-2025-304, 2025
Preprint under review for TC (discussion: open, 2 comments)
Short summary
Short summary
Water flow in snow is important for many applications including snow hydrology and avalanche forecasting. This work investigated the role of capillary forces at the soil-snow interface during capillary rise experiments using neutron radiography. The results showed that the properties of both the snow and the transitional layer below the snow affected the water flow. This work will allow for better representations of water flow across the soil-snow interface in snowpack models.
19 Feb 2025
Brief communication: Use of lightweight and low-cost steel net electrodes for electrical resistivity tomography (ERT) surveys performed on coarse-blocky surface environments
Mirko Pavoni, Luca Peruzzo, Jacopo Boaga, Alberto Carrera, Ilaria Barone, and Alexander Bast
EGUsphere, https://doi.org/10.5194/egusphere-2025-405, https://doi.org/10.5194/egusphere-2025-405, 2025
Preprint under review for TC (discussion: open, 0 comments)
Short summary
Short summary
We propose an alternative electrode to perform Electrical Resistivity Tomography measurements in coarse blocky environments, such as rock glaciers. Compared to the traditional steel spike electrodes, which need to be hammered between the blocks, the proposed steel-net electrodes can be easily pushed between the builders by hand and then removed. Furthermore, the steel-net electrode weighs one-sixth of the steel spike, and is, therefore, easier to carry in challenging mountain environments.
18 Feb 2025
SPASS – new gridded climatological snow datasets for Switzerland: Potential and limitations
Christoph Marty, Adrien Michel, Tobias Jonas, Cynthia Steijn, Regula Muelchi, and Sven Kotlarski
EGUsphere, https://doi.org/10.5194/egusphere-2025-413, https://doi.org/10.5194/egusphere-2025-413, 2025
Preprint under review for TC (discussion: open, 2 comments)
Short summary
Short summary
This work presents the first long-term (since 1962), daily, 1 km gridded dataset of snow depth and water storage for Switzerland. Its quality was assessed by comparing yearly, monthly, and weekly values to a higher-quality model and in-situ measurements. Results show good overall performance, though some limitations exist at low elevations and short timescales. Despite this, the dataset effectively captures trends, offering valuable insights for climate monitoring and elevation-based changes.
18 Feb 2025
Realistic ice-shelf/ocean state estimates (RISE) of Antarctic basal melting and drivers
Benjamin Keith Galton-Fenzi, Richard Porter-Smith, Sue Cook, Eva Cougnon, David E. Gwyther, Wilma G. C. Huneke, Madelaine G. Rosevear, Xylar Asay-Davis, Fabio Boeira Dias, Michael S. Dinniman, David Holland, Kazuya Kusahara, Kaitlin A. Naughten, Keith W. Nicholls, Charles Pelletier, Ole Richter, Helene L. Seroussi, and Ralph Timmermann
EGUsphere, https://doi.org/10.5194/egusphere-2024-4047, https://doi.org/10.5194/egusphere-2024-4047, 2025
Preprint under review for TC (discussion: open, 1 comment)
Short summary
Short summary
Melting beneath Antarctica’s floating ice shelves is key to future sea-level rise. We compare several different ocean simulations with satellite measurements, and provide the first multi-model average estimate of melting and refreezing driven by both ocean temperature and currents beneath ice shelves. The multi-model average can provide a useful tool for better understanding the role of ice shelf melting in present-day and future ice-sheet changes and informing coastal adaptation efforts.
17 Feb 2025
Gravity-derived Antarctic bathymetry using the Tomofast-x open-source code: a case study of Vincennes Bay
Lawrence A. Bird, Vitaliy Ogarko, Laurent Ailleres, Lachlan Grose, Jeremie Giraud, Felicity S. McCormack, David E. Gwyther, Jason L. Roberts, Richard S. Jones, and Andrew N. Mackintosh
EGUsphere, https://doi.org/10.5194/egusphere-2025-211, https://doi.org/10.5194/egusphere-2025-211, 2025
Preprint under review for TC (discussion: open, 2 comments)
Short summary
Short summary
The terrain of the seafloor has important controls on the access of warm water to below floating ice shelves around Antarctica. Here, we present an open-source method to infer what the seafloor looks like around the Antarctic continent, and within these ice shelf cavities, using measurements of the Earth’s gravitational field. We present an improved seafloor map for the Vincennes Bay region in East Antarctica and assess its impact on ice melt rates.
17 Feb 2025
Four-dimensional variational data assimilation with a sea-ice thickness emulator
Charlotte Durand, Tobias Sebastian Finn, Alban Farchi, Marc Bocquet, Julien Brajard, and Laurent Bertino
EGUsphere, https://doi.org/10.5194/egusphere-2024-4028, https://doi.org/10.5194/egusphere-2024-4028, 2025
Preprint under review for TC (discussion: open, 2 comments)
Short summary
Short summary
This paper presents a four-dimensional variational data assimilation system based on a neural network emulator for sea-ice thickness, learned from neXtSIM simulation outputs. Testing with simulated and real observation retrievals, the system improves forecasts and bias error, performing comparably to operational methods, demonstrating the promise of sea-ice data-driven data assimilation systems.
14 Feb 2025
Inferring Inherent Optical Properties of Sea Ice Using 360-Degree Camera Radiance Measurements
Raphaël Larouche, Bastian Raulier, Christian Katlein, Simon Lambert-Girard, Simon Thibault, and Marcel Babin
External preprint server, https://doi.org/10.31223/X5V955, https://doi.org/10.31223/X5V955, 2025
Preprint under review for TC (discussion: open, 0 comments)
Short summary
Short summary
We developed a new method to study how light interacts with sea ice using a compact 360-degree camera. By lowering this camera into drilled holes in ice, we captured detailed light patterns inside different ice layers. Our research revealed how light is absorbed and scattered in both Arctic multi-year ice and thinner, seasonal ice in Quebec. These findings improve our understanding of sea ice structure and its role in the climate system, helping representation sea ice in models.
14 Feb 2025
Exploring the sensitivity of the Northern Hemisphere ice sheets at the last two glacial maxima to coupled climate-ice sheet model parameters
Violet L. Patterson, Lauren J. Gregoire, Ruza F. Ivanovic, Niall Gandy, Stephen Cornford, Jonathan Owen, Sam Sherriff-Tadano, and Robin S. Smith
EGUsphere, https://doi.org/10.5194/egusphere-2024-3896, https://doi.org/10.5194/egusphere-2024-3896, 2025
Preprint under review for TC (discussion: open, 1 comment)
Short summary
Short summary
Simulations of the last two glacial periods are ran using a computer model in which the atmosphere and ice sheets interact. The model is able to produce ice sheet volumes, extents and dynamics in good agreement with data. Sensitivity analysis is undertaken and shows the Northern Hemisphere ice sheet size is particularly sensitive to the albedo of the ice in the model but the different ice sheets display different sensitivities to other processes.
13 Feb 2025
Drawing lessons for multi-model ensemble design from emulator experiments: application to future sea level contribution of the Greenland ice sheet
Jeremy Rohmer, Heiko Goelzer, Tamsin Edwards, Goneri Le Cozannet, and Gael Durand
EGUsphere, https://doi.org/10.5194/egusphere-2025-52, https://doi.org/10.5194/egusphere-2025-52, 2025
Preprint under review for TC (discussion: open, 0 comments)
Short summary
Short summary
Developing robust protocols to design multi-model ensembles is of primary importance for the uncertainty quantification of sea level projections. Here, we set up a series of computer experiments to reflect design decisions for the prediction of future sea level contribution of the Greenland ice sheet. We show the importance of including the most extreme climate scenario, and the benefit of having diversity in numerical models for ice sheet modelling and regional climate assessments.
13 Feb 2025
Scale invariance in kilometer-scale sea ice deformation
Matias Uusinoka, Jari Haapala, Jan Åström, Mikko Lensu, and Arttu Polojärvi
EGUsphere, https://doi.org/10.5194/egusphere-2025-311, https://doi.org/10.5194/egusphere-2025-311, 2025
Preprint under review for TC (discussion: open, 1 comment)
Short summary
Short summary
We tracked sea ice deformation over a nine-month period using high-resolution ship radar data and a state-of-the-art deep learning technique. We observe that the typically consistent scale-invariant pattern in sea ice deformation has a lower limit of about 102 meters in winter, but this behavior disappears during summer. Our findings provide critical insights for considering current modeling assumptions and for connecting the scales of interest in sea ice dynamics.
13 Feb 2025
On the seasonal variability of ocean heat transport and ice shelf melt around Antarctica
Fabio Boeira Dias, Matthew H. England, Adele K. Morrison, and Benjamin Galton-Fenzi
EGUsphere, https://doi.org/10.5194/egusphere-2024-3905, https://doi.org/10.5194/egusphere-2024-3905, 2025
Preprint under review for TC (discussion: open, 0 comments)
Short summary
Short summary
The Antarctic Ice Sheet melting dominates the sea-level projection uncertainties. Much uncertainty arises from our limited understanding of how ice shelves melt from below. Using a detailed ocean-ice shelf model, we found that East Antarctic ice shelves experience seasonal melting driven by ocean heat transport variability. In contrast, West Antarctic ice shelves show consistent melting due to a steady supply of warm, deep water, indicating potentially distinct response due to a warming climate.
12 Feb 2025
Learning to filter: Snow data assimilation using a Long Short-Term Memory network
Giulia Blandini, Francesco Avanzi, Lorenzo Campo, Simone Gabellani, Kristoffer Aalstad, Manuela Girotto, Satoru Yamaguchi, Hiroyuki Hirashima, and Luca Ferraris
EGUsphere, https://doi.org/10.5194/egusphere-2025-423, https://doi.org/10.5194/egusphere-2025-423, 2025
Preprint under review for TC (discussion: open, 1 comment)
Short summary
Short summary
Reliable SWE and snow depth estimates are key for water management in snow regions. To tackle computational challenges in data assimilation, we suggest a Long Short-Term Memory neural network for operational data assimilation in snow hydrology. Once trained, it cuts computation by 70 % versus an EnKF, with a slight RMSE increase (+6 mm SWE, +6 cm snow depth). This work advances deep learning in snow hydrology, offering an efficient, scalable, and low-cost modeling framework.
12 Feb 2025
The thermal state of permafrost in under climate change on the Qinghai-Tibet Plateau from 1980 to 2022: A case study of the West Kunlun
Jianting Zhao, Lin Zhao, Ze Sun, Guojie Hu, Defu Zou, Minxuan Xiao, Guangyue Liu, Qiangqiang Pang, Erji Du, Zhibin Li, Xiaodong Wu, Yao Xiao, Lingxiao Wang, and Wenxin Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3956, https://doi.org/10.5194/egusphere-2024-3956, 2025
Preprint under review for TC (discussion: open, 1 comment)
Short summary
Short summary
The thermal regime is a key indicator of permafrost evolution. We quantitatively analyzed the spatiotemporal dynamics of the permafrost status in western Tibet since the 1980s, based on numerical simulations using the enhanced, model-forcing-driven Moving-Grid Permafrost Model. Our simulated results indicated that slow and lagged response of permafrost to climate warming, which closely linked to historical thermal conditions.
11 Feb 2025
Enhancing sea ice knowledge through assimilation of sea ice thickness from ENVISAT and CS2SMOS
Nicholas Williams, Yiguo Wang, and François Counillon
EGUsphere, https://doi.org/10.5194/egusphere-2025-104, https://doi.org/10.5194/egusphere-2025-104, 2025
Preprint under review for TC (discussion: open, 1 comment)
Short summary
Short summary
We assimilate satellite observations of Arctic sea ice thickness to create a skillful initial sea ice state, assimilating ENVISAT-derived sea ice thickness for the first time. We produce a reanalysis and seasonal hindcasts showing that sea ice thickness and volume estimates are significantly improved in both reanalysis and prediction. Predictions of summer sea ice extent in our model are also substantially improved by reducing the high sea ice thickness bias.
10 Feb 2025
Assessing Climate Modeling Uncertainties in the Siberian Frozen Soil Regions by Contrasting CMIP6 and LS3MIP
Zhicheng Luo, Duoying Ji, and Bodo Ahrens
EGUsphere, https://doi.org/10.5194/egusphere-2025-389, https://doi.org/10.5194/egusphere-2025-389, 2025
Preprint under review for TC (discussion: open, 3 comments)
Short summary
Short summary
Climate models face challenges in accurately simulating cold regions' soil temperatures and snow conditions. By comparing different models, we found that the land surface models have a strong impact on simulation errors. Additionally, they struggle to account for snow’s insulating effect on the ground properly. Our findings highlight the need for improving frozen soil simulation, which is crucial for understanding the climate impacts of frozen soil.
10 Feb 2025
A low-cost, autonomous system for distributed snow depth measurements on sea ice
Ian A. Raphael, Donald K. Perovich, Christopher M. Polashenski, and Robert L. Hawley
EGUsphere, https://doi.org/10.5194/egusphere-2025-187, https://doi.org/10.5194/egusphere-2025-187, 2025
Preprint under review for TC (discussion: open, 1 comment)
Short summary
Short summary
Snow plays competing roles in the sea ice cycle by reflecting sunlight during summer (reducing melt) and insulating the ice from the cold atmosphere during winter (reducing growth). Observing where, when, and how much snow accumulates on sea ice is thus central to understanding the Arctic. Here, we describe a new snow depth observation system that is substantially cheaper and lighter than existing tools, and present a study demonstrating its potential to improve snow measurements on sea ice.
10 Feb 2025
Impact of non-normal flow rule on linear kinematic features in pan-Arctic ice-ocean simulations
Jean-Francois Lemieux, Mathieu Plante, Nils Hutter, Damien Ringeisen, Bruno Tremblay, Francois Roy, and Philippe Blain
EGUsphere, https://doi.org/10.5194/egusphere-2024-3831, https://doi.org/10.5194/egusphere-2024-3831, 2025
Preprint under review for TC (discussion: open, 0 comments)
Short summary
Short summary
Sea ice models simulate angles between cracks that are too wide compared to observations. Ringeisen et al. argue that this is due to the flow rule which defines the fracture deformations. We implemented a non-normal flow rule. This flow rule also leads to angles that are too wide. This is a consequence of deformations that tend to align with the grid. Nevertheless, this flow rule could be used to optimize deformations while other parameters could be used to modify landfast ice and ice drift.
10 Feb 2025
Totten Ice Shelf history over the past century interpreted from satellite imagery
Bertie W. J. Miles, Tian Li, and Robert G. Bingham
EGUsphere, https://doi.org/10.5194/egusphere-2024-3964, https://doi.org/10.5194/egusphere-2024-3964, 2025
Preprint under review for TC (discussion: open, 3 comments)
Short summary
Short summary
Totten Glacier is the largest source of mass loss in the East Antarctic Ice Sheet, with thinning detected since the 1990s, though the onset remains unclear. Ice-speed anomalies show no acceleration since 1973, confirming imbalance by the 1970s. A century-long record of surface undulations from Landsat imagery, linked to basal melt variability, reveals an anomalous mid-20th-century period with persistently high melt rates, possibly indicating the onset time of ice shelf thinning.
10 Feb 2025
Role of precipitation and extreme precipitation events in the surface mass balance variability observed in three ice cores from coastal Dronning Maud Land
Sarah Wauthy and Quentin Dalaiden
EGUsphere, https://doi.org/10.5194/egusphere-2025-192, https://doi.org/10.5194/egusphere-2025-192, 2025
Preprint under review for TC (discussion: open, 2 comments)
Short summary
Short summary
The surface mass balance (SMB) is one of the main drivers of future Antarctic mass changes. The interannual variability of the SMB is dominated by precipitation and extreme precipitation events (EPEs). In this study, we analyze the role of precipitation and EPEs in the contrasting SMB trends observed in the ice-core records of three adjacent ice rises. Our results show that precipitation and EPEs alone cannot explain the observed contrasts and suggest that other processes may be at work.
07 Feb 2025
Building multi-satellite DEM time series for insight into mélange inside large rifts in Antarctica
Menglian Xia, Rongxing Li, Marco Scaioni, Lu An, Zhenshi Li, and Gang Qiao
EGUsphere, https://doi.org/10.5194/egusphere-2025-175, https://doi.org/10.5194/egusphere-2025-175, 2025
Preprint under review for TC (discussion: final response, 2 comments)
Short summary
Short summary
We propose an innovative multi-satellite DEM adjustment model (MDAM) that removes biases in elevation between sub-DEMs across ice shelves. Our results reveal quantitative 3D structural and mélange features of a ~50 km long rift. For first time, we found that while the mélange elevation decreased from 2014–2021, the mélange inside the rift experienced a rapid expansion, attributing to newly calved shelf ice from rift walls, associated rift widening, and other rift-mélange interaction factors.
07 Feb 2025
Brief Communication: Multisource Remote Sensing Detects Growing Himalayan Glacial Lake Outburst Flood Hazards
Sonam F. Sherpa, Laurence C. Smith, Bo Wang, and Cassie Stuurman
EGUsphere, https://doi.org/10.5194/egusphere-2025-133, https://doi.org/10.5194/egusphere-2025-133, 2025
Preprint under review for TC (discussion: open, 1 comment)
Short summary
Short summary
As the climate warms, glaciers in the Himalayas are melting and retreating, creating new lakes that are often held back by ice or loose rock. These lakes can suddenly burst, causing devastating floods. On August 16, 2024, such a flood occurred unexpectedly in Nepal's Bhotekoshi River Valley, near Mount Everest. We highlight how modern technologies can play a crucial role in detecting potential dangers and helping communities prepare for risks in a changing climate.
07 Feb 2025
Loss of accumulation zone exposes dark ice and drives increased ablation at Weißseespitze, Austria
Lea Hartl, Federico Covi, Martin Stocker-Waldhuber, Anna Baldo, Davide Fugazza, Biagio Di Mauro, and Kathrin Naegeli
EGUsphere, https://doi.org/10.5194/egusphere-2025-384, https://doi.org/10.5194/egusphere-2025-384, 2025
Preprint under review for TC (discussion: final response, 2 comments)
Short summary
Short summary
Glacier albedo determines how much solar radiation is absorbed by the glacier surface and is a key driver of glacier melt. Alpine glaciers are losing their snow and firn cover and the underlying, darker ice is becoming exposed. This means that more solar radiation is absorbed by the ice, which leads to increased melt. To quantify these processes, we explore data from a high elevation, on-ice weather station that measures albedo and combine this information with satellite imagery.
06 Feb 2025
Drift-aware sea ice thickness maps from satellite remote sensing
Robert Ricker, Thomas Lavergne, Stefan Hendricks, Stephan Paul, Emily Down, Mari Anne Killie, and Marion Bocquet
EGUsphere, https://doi.org/10.5194/egusphere-2025-359, https://doi.org/10.5194/egusphere-2025-359, 2025
Preprint under review for TC (discussion: final response, 2 comments)
Short summary
Short summary
We developed a new method to map Arctic sea ice thickness daily using satellite measurements. We address a problem similar to motion blur in photography. Traditional methods collect satellite data over one month to get a full picture of Arctic sea ice thickness. But like in photos of moving objects, long exposure leads to motion blur, making it difficult to identify certain features in the sea ice maps. Our method corrects for this motion blur, providing a sharper view of the evolving sea ice.
05 Feb 2025
Updated monthly and new daily bias correction for assimilation-based passive microwave SWE retrieval
Pinja Venäläinen, Colleen Mortimer, Kari Luojus, Lawrence Mudryk, Matias Takala, and Jouni Pulliainen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3643, https://doi.org/10.5194/egusphere-2024-3643, 2025
Preprint under review for TC (discussion: open, 1 comment)
Short summary
Short summary
Satellite data-based estimation of large SWE values can be improved with bias correction. This study updates the bias correction method by using updated snow course data, extending correction to two new months. Additionally, bias correction is expanded from a monthly to a daily time scale. The daily bias correction offers more accurate hemispheric snow mass estimation, aligning well with reanalysis data.
04 Feb 2025
Spatio-temporal melt and basal channel evolution on Pine Island Glacier ice shelf from CryoSat-2
Katie Lowery, Pierre Dutrieux, Paul R. Holland, Anna E. Hogg, Noel Gourmelen, and Benjamin J. Wallis
EGUsphere, https://doi.org/10.5194/egusphere-2025-267, https://doi.org/10.5194/egusphere-2025-267, 2025
Preprint under review for TC (discussion: open, 1 comment)
Short summary
Short summary
We use CryoSat-2 to observe monthly changes in Pine Island Glacier's ice shelf (PIG) surface at 250 m resolution. We show that melt is focused on the western walls of basal channels and highlight the role of channels in grounding pinning points. PIG’s main channel geometry is inherited from the ice-bed interface upstream of the grounding line. These results highlight the importance of channels on ice shelf stability and how this can change over time.
04 Feb 2025
Ice/firn age distribution on the Elbrus Western Plateau (Caucasus) inferred from ice flow model
Gleb Chernyakov, Nelly Elagina, Taisiia Kiseleva, and Stanislav Kutuzov
EGUsphere, https://doi.org/10.5194/egusphere-2024-3955, https://doi.org/10.5194/egusphere-2024-3955, 2025
Preprint under review for TC (discussion: open, 1 comment)
Short summary
Short summary
We studied the glaciers of Mount Elbrus, a key site for understanding past climate and environmental changes in Caucasus region. Using advanced glacier numerical modeling calibrated by data from the deep ice core drilled at this site, we calculated the ice flow and age of glacier layers. Our results show detailed ice age patterns and confirm the glacier preserves climate records up to 2,000 years old.
31 Jan 2025
New insights on particle characteristics of previously characterised EGRIP ice core samples via single particle ICP-TOFMS
Nicolas Angelo Stoll, David Clases, Raquel Gonzalez de Vega, Matthias Elinkmann, Piers Michael Larkman, and Pascal Bohleber
EGUsphere, https://doi.org/10.5194/egusphere-2025-61, https://doi.org/10.5194/egusphere-2025-61, 2025
Preprint under review for TC (discussion: open, 2 comments)
Short summary
Short summary
We analyse nine samples from the EGRIP ice core, Greenland, using an underexplored method: single particle time of flight analysis. For the first time, we investigated thousands of particles from different climatic stages while applying a new approach to estimate particle sizes based on previous measurements. We characterise particles and provide new insights on trace elements in the Greenland Ice Sheet. This approach has an enormous potential for analysing million-year-old ice from Antarctica.
31 Jan 2025
Modeling L-band Microwave Brightness Temperature Time Series for Firn Aquifers
Haokui Xu, Leung Tsang, Julie Miller, Brooke Medley, and Jeol Johnson
EGUsphere, https://doi.org/10.5194/egusphere-2024-2395, https://doi.org/10.5194/egusphere-2024-2395, 2025
Preprint under review for TC (discussion: open, 1 comment)
Short summary
Short summary
This paper provides a physical model to analyze the brightness temperature time series over the firn aquifer in Greenland and Antarctica. The model can match the V and H SMAP brightness temperature time series well. This model provides a potential to study the aquifer liquid water content with radiometry.
30 Jan 2025
Modeling the impacts of climate trends and lake formation on the retreat of a tropical Andean glacier (1962–2020)
Tal Y. Shutkin, Bryan G. Mark, Nathan D. Stansell, Rolando Cruz Encarnación, Henry H. Brecher, Zhengyu Liu, Bidhyananda Yadav, and Forrest S. Schoessow
EGUsphere, https://doi.org/10.5194/egusphere-2024-3194, https://doi.org/10.5194/egusphere-2024-3194, 2025
Preprint under review for TC (discussion: open, 1 comment)
Short summary
Short summary
Queshque Glacier, a tropical glacier located in central Peru, has lost about 22.5 million cubic meters of water since 2008. Despite a possible increase in recent snowfall, our research shows that ice loss has been caused by steadily warming temperatures. We also see that the formation of a new lake at the base of the glacier has sped up Queshque’s rate of retreat. We find that changes in glacier water storage are increasingly related to conditions in the Pacific Ocean during the austral summer.
29 Jan 2025
Will landscape responses reduce glacier sensitivity to climate change in High Mountain Asia?
Stephan Harrison, Adina Racoviteanu, Sarah Shannon, Darren Jones, Karen Anderson, Neil Glasser, Jasper Knight, Anna Ranger, Arindan Mandal, Brahma Dutt Vishwakarma, Jeffrey Kargel, Dan Shugar, Umesh Haritishaya, Dongfeng Li, Aristeidis Koutroulis, Klaus Wyser, and Sam Inglis
EGUsphere, https://doi.org/10.5194/egusphere-2024-4033, https://doi.org/10.5194/egusphere-2024-4033, 2025
Preprint under review for TC (discussion: open, 2 comments)
Short summary
Short summary
Climate change is leading to a global recession of mountain glaciers, and numerical modelling suggests that this will result in the eventual disappearance of many glaciers, impacting water supplies. However, an alternative scenario suggests that increased rock fall and debris flows to valley bottoms will cover glaciers with thick rock debris, slowing melting and transforming glaciers into rock-ice mixtures called rock glaciers. This paper explores these scenarios.
28 Jan 2025
Seasonal evolution of the subglacial hydrologic system beneath the western margin of the Greenland Ice Sheet inferred from transient speed-up events
Grace P. Gjerde, Mark D. Behn, Laura A. Stevens, Sarah B. Das, and Ian R. Joughin
EGUsphere, https://doi.org/10.5194/egusphere-2024-3700, https://doi.org/10.5194/egusphere-2024-3700, 2025
Preprint under review for TC (discussion: final response, 2 comments)
Short summary
Short summary
We characterize the magnitude and variability of transient speed-ups across a GPS array in western Greenland in 2011 and 2012. While we find no relationship between speed-up and runoff, late-season events have larger speed-up amplitudes and more spatially uniform patterns of speed-up across the GPS array compared to early season events. These results reflect an evolution toward a less efficient drainage system late in the melt season, with a pervasive system of open surface-to-bed conduits.
27 Jan 2025
Assessment and comparison of thermal stabilisation measures at an Alpine permafrost site, Switzerland
Elizaveta Sharaborova, Michael Lehning, Nander Wever, Marcia Phillips, and Hendrik Huwald
EGUsphere, https://doi.org/10.5194/egusphere-2024-4174, https://doi.org/10.5194/egusphere-2024-4174, 2025
Preprint under review for TC (discussion: open, 2 comments)
Short summary
Short summary
Global warming provokes permafrost to thaw, damaging landscapes and infrastructure. This study explores methods to slow this thawing at an alpine site. We investigate different methods based on passive and active cooling system. The best approach mixes both methods and manages heat flow, potentially allowing excess energy to be used locally.
27 Jan 2025
Sub-shelf melt pattern and ice sheet mass loss governed by meltwater flow below ice shelves
Franka Jesse, Erwin Lambert, and Roderik S. W. van de Wal
EGUsphere, https://doi.org/10.5194/egusphere-2024-4058, https://doi.org/10.5194/egusphere-2024-4058, 2025
Preprint under review for TC (discussion: final response, 2 comments)
Short summary
Short summary
We introduce the coupling of a sub-shelf melt model with an ice sheet model to explore how horizontal meltwater flow below ice shelves affects ice sheet mass loss over time. We show that accurately modelling the meltwater flow direction leads to distinct feedbacks and transient volume loss, not captured by melt parameterisations that simplify flow direction. Our results highlight the importance of refining the meltwater flow representation in ice sheet models to improve sea level projections.
27 Jan 2025
Folding due to anisotropy in ice, from drill core-scale cloudy bands to km-scale internal reflection horizons
Paul Dirk Bons, Yuanbang Hu, Maria-Gema Llorens, Steven Franke, Nicolas Stoll, Ilka Weikusat, Julien Wetshoff, and Yu Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3817, https://doi.org/10.5194/egusphere-2024-3817, 2025
Preprint under review for TC (discussion: open, 2 comments)
Short summary
Short summary
What causes folds in ice layers from the km-scale down to the scale visible in drill core? Classical buckle folding due to variations in viscosity between layers, or the effect of mechanical anisotropy of ice due to an alignment of the crystal-lattice planes? Comparison of power spectra of folds in ice, a biotite schist, and numerical simulations show that folding in ice is due to the mechanical anisotropy, as there is no characteristic fold scale that would result from buckle folding.
27 Jan 2025
Distribution Patterns and Community Assembly Processes of Eukaryotic Microorganisms in Tibetan Plateau Proglacial Lakes at Different Emergence Stages
Jinlong Cui, Qianggong Zhang, Qing Yang, Fuyuan Mai, Shengnan Li, Mingyue Li, Jie Wang, Xuejun Sun, and Yindong Tong
EGUsphere, https://doi.org/10.5194/egusphere-2024-3688, https://doi.org/10.5194/egusphere-2024-3688, 2025
Preprint under review for TC (discussion: open, 3 comments)
Short summary
Short summary
Recent studies have highlighted the role of water temperature in modulating community composition and distance decay patterns, with patterns increasing with lake age, suggesting enhanced symbiotic relationships and ecosystem function. These findings improve understanding of the impacts of climate change on stability and ecosystem function in high-lying lakes.
27 Jan 2025
Influence of Snow Spatial Variability on Cosmic Ray Neutron SWE
Haejo Kim, Eric Sproles, and Samuel E. Tuttle
EGUsphere, https://doi.org/10.5194/egusphere-2025-31, https://doi.org/10.5194/egusphere-2025-31, 2025
Revised manuscript under review for TC (discussion: final response, 6 comments)
Short summary
Short summary
Monitoring of a shallow and highly variable snowpack’s water content has been shown to be reliable with Cosmic Ray Neutron Sensing (CRNS). After hundreds of simulations, we show a CRNS instrument is best placed near areas of low snow that are nearby regions of high for an accurate estimate of the prairie snowpack’s water content. The snow water equivalent from a CRNS was 2 to 5 times more likely to be representative of the prairie snow, compared to traditional snow monitoring methods.
24 Jan 2025
Capturing Solid Earth and Ice Sheet Interactions: Insights from Reinforced Ridges in Thwaites Glacier
Luc Houriez, Eric Larour, Lambert Caron, Nicole-Jeanne Schlegel, Surendra Adhikari, Erik Ivins, Tyler Pelle, Hélène Seroussi, Eric Darve, and Martin Fischer
EGUsphere, https://doi.org/10.5194/egusphere-2024-4136, https://doi.org/10.5194/egusphere-2024-4136, 2025
Preprint under review for TC (discussion: open, 1 comment)
Short summary
Short summary
We studied how interactions between the ice sheet and the Earth’s evolving surface affect the future of Thwaites Glacier in Antarctica. We find that small features in the bedrock play a major role in these interactions which can delay the glacier’s retreat by decades or even centuries. This can significantly reduce sea-level rise projections. Our work highlights resolution requirements for similar ice—earth models, and the importance of bedrock mapping efforts in Antarctica.
24 Jan 2025
Investigating seasonal and multi-decadal water/ice storage changes in the Murtèl rock glacier using time-lapse gravimetry
Landon J. S. Halloran and Dominik Amschwand
EGUsphere, https://doi.org/10.5194/egusphere-2024-3933, https://doi.org/10.5194/egusphere-2024-3933, 2025
Preprint under review for TC (discussion: final response, 3 comments)
Short summary
Short summary
Rock glaciers (RGs) are permafrost landforms occurring in many alpine regions. Gravimetry measures g (acceleration due to gravity). Decreases in water and/or ice content in the ground near a measurement point make g decrease, too. In this first study of its kind, we measured changes in g to calculate subsurface ice melt in a RG. Our approach helps measure and understand invisible underground ice and water processes in rapidly-changing permafrost environments.
23 Jan 2025
Comparing thaw probing, electrical resistivity tomography, and airborne lidar to quantify lateral and vertical thaw in rapidly degrading boreal permafrost
Thomas Douglas, Mark Jorgenson, Taylor Sullivan, and Caiyun Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3997, https://doi.org/10.5194/egusphere-2024-3997, 2025
Preprint under review for TC (discussion: open, 0 comments)
Short summary
Short summary
Permafrost thaw across earth’s high latitudes is leading to dramatic changes in vegetation and hydrology. We undertook a two-decade long study on the Tanana Flats near Fairbanks, Alaska to measure permafrost thaw and associated ground surface subsidence via field-based and remote-sensing techniques. The study identified strengths and limitations of the three methods we used to quantify permafrost thaw degradation.
23 Jan 2025
Object-based ensemble estimation of snow depth and snow water equivalent over multiple months in Sodankylä, Finland
David Brodylo, Lauren V. Bosche, Ryan R. Busby, Elias J. Deeb, Thomas A. Douglas, and Juha Lemmetyinen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3936, https://doi.org/10.5194/egusphere-2024-3936, 2025
Preprint under review for TC (discussion: open, 0 comments)
Short summary
Short summary
We combined field-based snow depth and snow water equivalent (SWE) measurements, remote sensing data, and machine learning to estimate snow depth and SWE over a 10 km2 local scale area in Sodankylä, Finland. Associations were found for snow depth and SWE with carbon- and mineral-based forest surface soils, alongside dry and wet peatbogs. This approach to upscale field-based snow depth and SWE measurements to a local scale can be used in regions that regularly experience snowfall.
23 Jan 2025
Review article: Using spaceborne lidar for snow depth retrievals: Recent findings and utility for global hydrologic applications
Zachary Fair, Carrie Vuyovich, Thomas Neumann, Justin Pflug, David Shean, Ellyn M. Enderlin, Karina Zikan, Hannah Besso, Jessica Lundquist, Cesar Deschamps-Berger, and Désirée Treichler
EGUsphere, https://doi.org/10.5194/egusphere-2024-3992, https://doi.org/10.5194/egusphere-2024-3992, 2025
Preprint under review for TC (discussion: open, 2 comments)
Short summary
Short summary
Lidar is commonly used to measure snow over global water reservoirs. However, ground-based and airborne lidar surveys are expensive, so satellite-based methods are needed. In this review, we outline the latest research using satellite-based lidar to monitor snow. Best practices for lidar-based snow monitoring are given, as is a discussion on challenges in this field of research.
23 Jan 2025
Modelling ocean melt of ice mélange at Greenland's marine-terminating glaciers
Lokesh Jain, Donald Slater, and Peter Nienow
EGUsphere, https://doi.org/10.5194/egusphere-2024-4081, https://doi.org/10.5194/egusphere-2024-4081, 2025
Revised manuscript under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
Ice mélange is a mixture of icebergs and sea ice which floats in front of Greenland’s largest glaciers. The presence of an ice mélange can have a significant impact on a glacier and its fjord, but the melting of an ice mélange by the ocean is currently poorly understood. We used computer simulations to develop an equation which describes how ice mélange melts under different environmental conditions.
23 Jan 2025
A mutlisensor C-band synthetic aperture radar (SAR) approach to retrieve freeze/thaw cycles: A case study for a low Arctic environment
Charlotte Crevier, Alexandre Langlois, Chris Derksen, and Alexandre Roy
EGUsphere, https://doi.org/10.5194/egusphere-2024-3580, https://doi.org/10.5194/egusphere-2024-3580, 2025
Preprint under review for TC (discussion: final response, 3 comments)
Short summary
Short summary
A multisensor C-Band SAR near-daily time series in an Arctic environment was developed to create a high-resolution freeze/thaw algorithm with an accuracy of 96 %. The FT detection was highly correlated to near-surface state as measured by soil temperature. Small but significant FT date differences were identified for different Arctic ecotypes, showing the spatial variability of freeze/thaw process in Arctic environment.
21 Jan 2025
Analyzing vegetation effects on snow depth variability in Alaska's boreal forests with airborne lidar
Lora May, Svetlana Stuefer, Scott Goddard, and Christopher Larsen
EGUsphere, https://doi.org/10.5194/egusphere-2024-4042, https://doi.org/10.5194/egusphere-2024-4042, 2025
Preprint under review for TC (discussion: final response, 2 comments)
Short summary
Short summary
We contribute to limited boreal forest snow remote sensing research by analyzing field snow depth and airborne lidar data. Two new lidar snow depth and canopy height products are evaluated for application at a boreal forest site in Alaska. Our results show that airborne lidar can effectively estimate snow depths in the boreal forest, should be validated and assessed for errors using ground-based measurements, and can assist water and resource managers in estimating snow depth in boreal forests.
20 Jan 2025
Ongoing firn warming at Eclipse Icefield, Yukon, indicates potential widespread meltwater percolation and retention in firn pack across the St. Elias Range
Ingalise Kindstedt, Dominic Winski, C. Max Stevens, Emma Skelton, Luke Copland, Karl Kreutz, Mikaila Mannello, Renée Clavette, Jacob Holmes, Mary Albert, and Scott N. Williamson
EGUsphere, https://doi.org/10.5194/egusphere-2024-3807, https://doi.org/10.5194/egusphere-2024-3807, 2025
Preprint under review for TC (discussion: final response, 3 comments)
Short summary
Short summary
Atmospheric warming over mountain glaciers is leading to increased warming and melting of snow as it compresses into glacier ice. This affects both regional hydrology and climate records contained in the ice. Here we use field observations and modeling to show that surface melting and percolation at Eclipse Icefield (Yukon, Canada) is increasing with an increase in extreme melt events, and that compressing snow at Eclipse is likely to continue warming even if air temperatures remain stable.
20 Jan 2025
Ice Anatomy: A Benchmark Dataset and Methodology for Automatic Ice Boundary Extraction from Radio-Echo Sounding Data
Marcel Dreier, Moritz Koch, Nora Gourmelon, Norbert Blindow, Daniel Steinhage, Fei Wu, Thorsten Seehaus, Matthias Braun, Andreas Maier, and Vincent Christlein
EGUsphere, https://doi.org/10.5194/egusphere-2024-3597, https://doi.org/10.5194/egusphere-2024-3597, 2025
Preprint under review for TC (discussion: open, 1 comment)
Short summary
Short summary
In this paper, we present a ready-to-use benchmark dataset to train machine-learning approaches for detecting ice thickness from radar data. It includes radargrams of glaciers and ice sheets alongside annotations for their air-ice and ice-bedrock boundary. Furthermore, we introduce a baseline model and evaluate the influence of several geographical and glaciological factors on the performance of our model.
20 Jan 2025
TICOI: an operational Python package to generate regularized glacier velocity time series
Laurane Charrier, Amaury Dehecq, Lei Guo, Fanny Brun, Romain Millan, Nathan Lioret, Luke Copland, Nathan Maier, Christine Dow, and Paul Halas
EGUsphere, https://doi.org/10.5194/egusphere-2024-3409, https://doi.org/10.5194/egusphere-2024-3409, 2025
Preprint under review for TC (discussion: final response, 2 comments)
Short summary
Short summary
While global annual glacier velocities are openly accessible, sub-annual velocity time series are still lacking. This hinders our ability to understand flow processes and the integration of these observations in numerical models. We introduce an open source Python package called TICOI to fuses multi-temporal and multi-sensor image-pair velocities produced by different processing chains to produce standardized sub-annual velocity products.
17 Jan 2025
A new method for large scale snow depth estimates using Sentinel-1 and ICESat-2
Rasmus Meyer, Mathias Preisler Schødt, Mikkel Lydholm Rasmussen, Jonas Kvist Andersen, Mads Dømgaard, and Anders Anker Bjørk
EGUsphere, https://doi.org/10.5194/egusphere-2024-3850, https://doi.org/10.5194/egusphere-2024-3850, 2025
Preprint under review for TC (discussion: final response, 2 comments)
Short summary
Short summary
Understanding snow accumulation is important for water resource management, but measurements of snow depth in mountainous regions are sparse. We introduce a novel satellite-based approach to estimate snow depth for deep snow in mountainous regions by combining two types of satellite data: radar images and laser surface height measurements. Results suggest that our method more accurately estimate the magnitude of snowfall compared to modelled data over the Southern Norwegian Mountains.
17 Jan 2025
The Greenland Ice Sheet Large Ensemble (GrISLENS): Simulating the future of Greenland under climate variability
Vincent Verjans, Alexander A. Robel, Lizz Ultee, Helene Seroussi, Andrew F. Thompson, Lars Ackerman, Youngmin Choi, and Uta Krebs-Kanzow
EGUsphere, https://doi.org/10.5194/egusphere-2024-4067, https://doi.org/10.5194/egusphere-2024-4067, 2025
Preprint under review for TC (discussion: open, 1 comment)
Short summary
Short summary
This study examines how random variations in climate may influence future ice loss from the Greenland Ice Sheet. We find that random climate variations are important for predicting future ice loss from the entire Greenland Ice Sheet over the next 20–30 years, but relatively unimportant after that period. Thus, uncertainty in sea level projections from the effect of climate variability on Greenland may play a role in coastal decision-making about sea level rise over the next few decades.
16 Jan 2025
A random forest derived 35-year snow phenology record reveals climate trends in the Yukon River Basin
Caleb G. Pan, Kristofer Lasko, John S. Kimball, Jinyang Du, Tate G. Meehan, Peter B. Kirchner, and Sean P. Griffin
EGUsphere, https://doi.org/10.5194/egusphere-2024-3608, https://doi.org/10.5194/egusphere-2024-3608, 2025
Preprint under review for TC (discussion: final response, 2 comments)
Short summary
Short summary
This study examines 35 years of snow cover changes in Alaska’s Yukon River Basin using machine learning to track snowmelt timing and disappearance. Results show snow is melting earlier and disappearing faster due to rising temperatures, highlighting the effects of climate change on water resources, ecosystems, and communities. The findings improve understanding of snow dynamics and provide critical insights for addressing climate-driven challenges in the region.
16 Jan 2025
Seasonal and interannual variability of freshwater sources for Greenland's fjords
Anneke Louise Vries, Willem Jan van de Berg, Brice Noël, Lorenz Meire, and Michiel R. van den Broeke
EGUsphere, https://doi.org/10.5194/egusphere-2024-3735, https://doi.org/10.5194/egusphere-2024-3735, 2025
Preprint under review for TC (discussion: final response, 2 comments)
Short summary
Short summary
Freshwater enters Greenland's fjords from various sources. Solid ice discharge dominates freshwater input into fjords in the southeast and northwest. In contrast, in the southwest, runoff from the ice sheet and tundra are most significant. Seasonally resolved data revealed that fjord precipitation and tundra runoff contribute up to 11 % and 35 % of the total freshwater influx, respectively. Our results provide valuable input for ocean models and for researchers studying fjord ecosystems.
15 Jan 2025
Wind and Topography Underlie Correlation Between Seasonal Snowpack, Mountain Glaciers, and Late-Summer Streamflow
Elijah N. Boardman, Andrew G. Fountain, Joseph W. Boardman, Thomas H. Painter, Evan W. Burgess, Laura Wilson, and Adrian A. Harpold
EGUsphere, https://doi.org/10.5194/egusphere-2024-3862, https://doi.org/10.5194/egusphere-2024-3862, 2025
Preprint under review for TC (discussion: final response, 2 comments)
Short summary
Short summary
We use repeat airborne lidar surveys (which provide high resolution topography) to map the seasonal snowpack and estimate mass loss from glaciers, snowfields, rock glaciers, and other forms of perennial snow and ice in the U.S. Rocky Mountains. Our results show that topography, especially wind drifting, is a fundamental driver of differences in snow persistence, glaciation, and streamflow across five mountain watersheds.
14 Jan 2025
Sea Ice Screening Ability in Ku Band and C Band Wind Scatterometry
Xingou Xu and Ad Stoffelen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3840, https://doi.org/10.5194/egusphere-2024-3840, 2025
Preprint under review for TC (discussion: open, 0 comments)
Short summary
Short summary
In this research, the definition of Quality Control indicators for scatterometers are reviewed, then with SIC and IBC products, their abilities of in ice screening are extensively investigated. To decimating between the rain effect, collocated rain information is also obtained for analysing. This research for the first time addresses the effective information for sea ice from sources other than the directly observed NRCS alone.
14 Jan 2025
Retrieving frozen ground surface temperature under the snowpack in Arctic permafrost area from SMOS observations
Juliette Ortet, Arnaud Mialon, Alain Royer, Mike Schwank, Manu Holmberg, Kimmo Rautiainen, Simone Bircher-Adrot, Andreas Colliander, Yann Kerr, and Alexandre Roy
EGUsphere, https://doi.org/10.5194/egusphere-2024-3963, https://doi.org/10.5194/egusphere-2024-3963, 2025
Preprint under review for TC (discussion: final response, 3 comments)
Short summary
Short summary
We propose a new method to determine the ground surface temperature under the snowpack in the Arctic area from satellite observations. The obtained ground temperatures time series were evaluated over 21 reference sites in Northern Alaska and compared with ground temperatures obtained with global models. The method is excessively promising for monitoring ground temperature below the snowpack and studying the spatiotemporal variability thanks to 15 years of observations over the whole Arctic area.
14 Jan 2025
Sea Ice Concentration Estimates from ICESat-2 Linear Ice Fraction. Part 2: Gridded Data Comparison and Bias Estimation
Christopher Horvat, Ellen M. Buckley, and Madelyn Stewart
EGUsphere, https://doi.org/10.5194/egusphere-2024-3864, https://doi.org/10.5194/egusphere-2024-3864, 2025
Preprint under review for TC (discussion: final response, 2 comments)
Short summary
Short summary
Since the late 1970s, standard methods for observing sea ice area from satellite contrast its passive microwave emissions to that of the ocean. Since 2018, a new satellite, ICESat-2, may offer a unique and independent way to sample sea ice area at high skill and resolution, using laser altimetry. We develop a new product of sea ice area for the Arctic using ICESat-2 and constrain the biases associated with the use of altimetry instead of passive microwave emissions.
13 Jan 2025
Surface nuclear magnetic resonance for studying an englacial channel on Rhonegletscher (Switzerland): Possibilities and limitations in a high-noise environment
Laura Gabriel, Marian Hertrich, Christophe Ogier, Mike Müller-Petke, Raphael Moser, Hansruedi Maurer, and Daniel Farinotti
EGUsphere, https://doi.org/10.5194/egusphere-2024-3741, https://doi.org/10.5194/egusphere-2024-3741, 2025
Preprint under review for TC (discussion: open, 1 comment)
Short summary
Short summary
Surface nuclear magnetic resonance (SNMR) is a geophysical technique directly sensitive to liquid water. We expand the limited applications of SNMR on glaciers by detecting water within Rhonegletscher, Switzerland. By carefully processing the data to reduce noise, we identified signals indicating a water layer near the base of the glacier, surrounded by ice with low water content. Our findings, validated by radar measurements, show SNMR's potential and limitations in studying water in glaciers.
10 Jan 2025
The surface mass balance and near-surface climate of the Antarctic ice sheet in RACMO2.4p1
Christiaan T. van Dalum, Willem Jan van de Berg, Michiel R. van den Broeke, and Maurice van Tiggelen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3728, https://doi.org/10.5194/egusphere-2024-3728, 2025
Preprint under review for TC (discussion: open, 1 comment)
Short summary
Short summary
In this study, we present a new surface mass balance (SMB) and near-surface climate product for Antarctica with the regional climate model RACMO2.4p1. We assess the impact of major model updates on the climate of Antarctica. Locally, the SMB has changed substantially, but also agrees well with observations. In addition, we show that the SMB components, surface energy budget, albedo, pressure, temperature and wind speed compare well with in-situ and remote sensing observations.
08 Jan 2025
Glacier inventories reveal an acceleration of Heard Island glacier loss over recent decades
Levan G. Tielidze, Andrew N. Mackintosh, and Weilin Yang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3811, https://doi.org/10.5194/egusphere-2024-3811, 2025
Preprint under review for TC (discussion: final response, 2 comments)
Short summary
Short summary
Heard Island is an UNESCO World Heritage site due to its outstanding physical and biological features which are being affected by significant on-going climatic changes. As one of the only sub-Antarctic islands mostly free of introduced species, its ecosystems are particularly at risk from the impact of glacier retreat. This glacier inventory will help in designing effective conservation strategies and managing protected areas to ensure the preservation of the biodiversity they support.
07 Jan 2025
Distribution and characteristics of supraglacial channels on mountain glaciers in Valais, Switzerland
Holly Wytiahlowsky, Chris R. Stokes, Rebecca A. Hodge, Caroline C. Clason, and Stewart S. R. Jamieson
EGUsphere, https://doi.org/10.5194/egusphere-2024-3894, https://doi.org/10.5194/egusphere-2024-3894, 2025
Preprint under review for TC (discussion: final response, 6 comments)
Short summary
Short summary
Channels on glaciers are important due to their role in transporting glacial meltwater from glaciers and into downstream river catchments. These channels have received little research in mountain environments. We manually mapped <2000 channels to determine their distribution and characteristics across 285 glaciers in Switzerland. We find that channels are mostly commonly found on large glaciers with lower relief and fewer crevasses. Most channels run off the glacier, but 20 % enter the glacier.
06 Jan 2025
Mechanisms and impacts of extreme high-salinity shelf water formation in the Ross Sea
Xiaoqiao Wang, Zhaoru Zhang, Chuan Xie, Xi Zhao, Chuning Wang, Heng Hu, and Yuanjie Chen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3786, https://doi.org/10.5194/egusphere-2024-3786, 2025
Revised manuscript under review for TC (discussion: final response, 6 comments)
Short summary
Short summary
Global bottom water originates from high-salinity shelf water (HSSW), formed by intense sea ice production (SIP) in the Southern Ocean. This study uses numerical outputs of the Ross Sea to examine the extreme HSSW event in 2007, when atmospheric circulations enhanced SIP, resulting in the highest HSSW volume in a decade. However, salinity was low due to increased meltwater. The findings highlight the complex interplay between SIP and ice shelf melting, with key implications for ocean processes.
03 Jan 2025
Impacts of Atmospheric Dynamics on Sea-Ice and Snow Thickness at a Coastal Site in East Antarctica
Diana Francis, Ricardo Fonseca, Narendra Nelli, Petra Heil, Jonathan Wille, Irina Gorodetskaya, and Robert Massom
EGUsphere, https://doi.org/10.5194/egusphere-2024-3535, https://doi.org/10.5194/egusphere-2024-3535, 2025
Preprint under review for TC (discussion: open, 1 comment)
Short summary
Short summary
This study investigates the impact of atmospheric rivers and associated atmospheric dynamics on sea-ice thickness and snow depth at a coastal site in East Antarctica during July–November 2022 using in-situ measurements and numerical modelling. The passage of an atmospheric river induced a reduction of up to 0.06 m in both fields. Precipitation occurred from the convergence of katabatic winds with advected low-latitude moist air.
03 Jan 2025
Combining the U-Net model and a Multi-textRG algorithm for fine SAR ice-water classification
Yan Sun, Shaoyin Wang, Xiao Cheng, Teng Li, Chong Liu, Yufang Ye, and Xi Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-2760, https://doi.org/10.5194/egusphere-2024-2760, 2025
Preprint under review for TC (discussion: open, 0 comments)
Short summary
Short summary
This manuscript proposes to combine semantic segmentation of ice region using a U-Net model and multi-stage detection of ice pixels using the Multi-textRG algorithm to achieve fine ice-water classification. Novel proccessings for the HV/HH polarization ratio and the GLCM textures, as well as the usage of regional growing, largely improve the method accuracy and robustness. The proposed algorithm framework achieved automated sea-ice labelling.
20 Dec 2024
Assimilation of radar freeboard and snow altimetry observations in the Arctic and Antarctic with a coupled ocean/sea ice modelling system
Aliette Chenal, Gilles Garric, Charles-Emmanuel Testut, Mathieu Hamon, Giovanni Ruggiero, Florent Garnier, and Pierre-Yves Le Traon
EGUsphere, https://doi.org/10.5194/egusphere-2024-3633, https://doi.org/10.5194/egusphere-2024-3633, 2024
Preprint under review for TC (discussion: final response, 2 comments)
Short summary
Short summary
This study proposes to improve the representation of ice and snow volumes in the Arctic and Antarctic based on a novel multivariate assimilation method using freeboard radar and snow depth satellite data. The approach leads to an improved sea ice and snow volume representation, even during summer when satellite data is limited. The performance of the assimilated system is better in the Arctic than in Antarctica, where ocean/ice interactions play a key role.
20 Dec 2024
Monitoring Shear-Zone Weakening in East Antarctic Outlet Glaciers through Differential InSAR Measurements
Christian T. Wild, Reinhard Drews, Niklas Neckel, Joohan Lee, Sihyung Kim, Hyangsun Han, Won Sang Lee, Veit Helm, Sebastian Harry Reid Rosier, Oliver J. Marsh, and Wolfgang Rack
EGUsphere, https://doi.org/10.5194/egusphere-2024-3593, https://doi.org/10.5194/egusphere-2024-3593, 2024
Preprint under review for TC (discussion: final response, 2 comments)
Short summary
Short summary
The stability of the Antarctic Ice Sheet depends on how resistance along the sides of large glaciers slows down the flow of ice into the ocean. We present a method to map ice strength using the effect of ocean tides on floating ice shelves. Incorporating weaker ice in shear zones improves the accuracy of model predictions compared to satellite observations. This demonstrates the untapped potential of radar satellites to map ice stiffness in the most critical areas for ice sheet stability.
19 Dec 2024
Sea-level rise contribution from Ryder Glacier in Northern Greenland varies by an order of magnitude by 2300 depending on future emissions
Felicity Alice Holmes, Jamie Barnett, Henning Åkesson, Mathieu Morlighem, Johan Nilsson, Nina Kirchner, and Martin Jakobsson
EGUsphere, https://doi.org/10.5194/egusphere-2024-3839, https://doi.org/10.5194/egusphere-2024-3839, 2024
Revised manuscript under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
Northern Greenland contains some of the ice sheet's last remaining glaciers with floating ice tongues. One of these is Ryder Glacier, which has been relatively stable in recent decades in contrast to nearby glaciers. Here, we use a computer model to simulate Ryder Glacier until 2300 under both a low and high emissions scenario. Very high levels of surface melt under a high emissions future leads to a sea-level rise contribution an order of magnitude higher than under a low emissions future.
19 Dec 2024
Brief communication: velocities and thinning rates for Halfar’s analytical solution to the Shallow Ice Approximation
Constantijn J. Berends
EGUsphere, https://doi.org/10.5194/egusphere-2024-3610, https://doi.org/10.5194/egusphere-2024-3610, 2024
Preprint under review for TC (discussion: final response, 2 comments)
Short summary
Short summary
Computer models of ice sheets solve mathematical equations describing the physics of flowing ice. While observations from satellites or other sources can be used to check if these equations describe the ice sheet correctly, one must first ensure the model solves the equations correctly. I here present a small extension to a previously derived solution on paper to one of those equations, so that modellers can verify their models.
17 Dec 2024
Sea Ice Concentration Estimates from ICESat-2 Linear Ice Fraction. Part 1: Multi-sensor Comparison of Sea Ice Concentration Products
Ellen M. Buckley, Christopher Horvat, and Pittayuth Yoosiri
EGUsphere, https://doi.org/10.5194/egusphere-2024-3861, https://doi.org/10.5194/egusphere-2024-3861, 2024
Preprint under review for TC (discussion: final response, 2 comments)
Short summary
Short summary
Sea ice coverage is a key indicator of changes in polar and global climate. There is a long (40+ year) record of sea ice concentration and area from passive microwave measurements. In this work we show the biases in these data based on high resolution imagery. We also suggest the use of ICESat-2, a high resolution satellite laser, that can supplement the passive microwave estimates.
17 Dec 2024
Sea Ice Freeboard Extrapolation from ICESat-2 to Sentinel-1
Karl Kortum, Suman Singha, and Gunnar Spreen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3351, https://doi.org/10.5194/egusphere-2024-3351, 2024
Preprint under review for TC (discussion: final response, 2 comments)
Short summary
Short summary
Improved sea ice observations are essential to understanding the processes that lead to the strong warming effect currently being observed in the Arctic. In this work, we combine complementary satellite measurement techniques and find remarkable correlations between the two observations. This allows us to expand the coverage of ice topography measurements to a scope and resolution that could not previously be observed.
17 Dec 2024
The impact of measurement precision on the resolvable resolution of ice core water isotope reconstructions
Fyntan Shaw, Thomas Münch, Vasileios Gkinis, and Thomas Laepple
EGUsphere, https://doi.org/10.5194/egusphere-2024-3650, https://doi.org/10.5194/egusphere-2024-3650, 2024
Preprint under review for TC (discussion: open, 0 comments)
Short summary
Short summary
Diffusion in combination with measurement noise erase high-frequency water isotope variability in ice cores, linking measurement precision to recoverable resolution. We derive expressions for this relationship, finding a resolution improvement of 1.5 times for a 10-fold measurement noise reduction. Based on the current age-depth model, our method predicts 10,000-year cycles will be recoverable in the 1.5 Myr old ice from the Oldest Ice Core δ18O record if a noise level of 0.01 ‰ is achieved.
16 Dec 2024
A history-matching analysis of the Antarctic Ice Sheet since the last interglacial – Part 2: Glacial isostatic adjustment
Benoit S. Lecavalier and Lev Tarasov
EGUsphere, https://doi.org/10.5194/egusphere-2024-3268, https://doi.org/10.5194/egusphere-2024-3268, 2024
Preprint under review for TC (discussion: final response, 2 comments)
Short summary
Short summary
To simulate the past evolution of the Antarctic ice sheet (AIS) during past warm and cold periods, a modelling analysis was performed that compared thousands of AIS simulations to a large collection of field observations. As the AIS changes, so does the surface load which leads to crustal deformation, gravitational and sea-level change. The present-day rate of bedrock deformation due to past AIS changes is used with satellite observations to infer AIS changes due to contemporary climate change.
16 Dec 2024
Seasonality in Terminus Ablation Rates for the Glaciers in Kalaallit Nunaat (Greenland)
Aman KC, Ellyn M. Enderlin, Dominik Fahrner, Twila Moon, and Dustin Carroll
EGUsphere, https://doi.org/10.5194/egusphere-2024-3543, https://doi.org/10.5194/egusphere-2024-3543, 2024
Revised manuscript under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
The sum of ice flowing towards a glacier’s terminus and changes in the position of the terminus over time collectively make up terminus ablation. We found that terminus ablation has more seasonal variability than previously estimated from flux-based estimates of ice discharge. The findings are of importance in understanding timing and location of the freshwater input to the fjords, and surrounding ocean basins affecting local and regional ecosystems and ocean properties.
16 Dec 2024
Impact of glacial isostatic adjustment on zones of potential grounding line stability in the Ross Sea Embayment (Antarctica) since the Last Glacial Maximum
Samuel T. Kodama, Tamara Pico, Alexander A. Robel, John Erich Christian, Natalya Gomez, Casey Vigilia, Evelyn Powell, Jessica Gagliardi, Slawek Tulaczyk, and Terrence Blackburn
EGUsphere, https://doi.org/10.5194/egusphere-2024-3465, https://doi.org/10.5194/egusphere-2024-3465, 2024
Preprint under review for TC (discussion: final response, 3 comments)
Short summary
Short summary
Glacial isostatic adjustment (gravitational, rotational, and solid Earth responses to changes in ice load) slows the retreat of marine-terminating ice sheets. However, the models that reveal this interaction use coarse resolution bathymetry, missing potential impacts of small length scale topographic highs. We pair a high-resolution bathymetry model with a simple model of grounding line stability to predict zones of potential grounding line stability in the Ross Sea over the past deglaciation.
13 Dec 2024
New Radar Altimetry Datasets of Greenland and Antarctic Surface Elevation, 1991–2012
Maya Raghunath Suryawanshi, Malcolm McMillan, Jennifer Maddalena, Fanny Piras, Jérémie Aublanc, Jean-Alexis Daguzé, Clara Grau, and Qi Huang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3446, https://doi.org/10.5194/egusphere-2024-3446, 2024
Revised manuscript under review for TC (discussion: final response, 8 comments)
Short summary
Short summary
Increasing melting rates of the polar Ice Sheets are contributing more and more to sea level rise. Due to the remoteness and expanse of ice sheets these changes are mainly observed using satellites. However, the accuracy of these measurements depends on the processing of these datasets. Here we use advanced algorithms to provide improved historical ice sheet elevation measurements, derived from satellite altimeters flying between 1991 and 2012, which will benefit to cryospheric applications.
10 Dec 2024
Brief communication: Improving lake ice modeling in ORCHIDEE-FLake model using MODIS albedo data
Zacharie Titus, Amélie Cuynet, Elodie Salmon, and Catherine Ottlé
EGUsphere, https://doi.org/10.5194/egusphere-2024-2907, https://doi.org/10.5194/egusphere-2024-2907, 2024
Revised manuscript under review for TC (discussion: final response, 7 comments)
Short summary
Short summary
The representation of lake ice dynamics is key to model water-atmosphere energy and mass transfers in cold environments. The use of albedo satellite products to constrain the modeling of ice coverage appears very suitable and valuable. In this work, we show how the lake albedo and ice phenology were improved by accounting for a fractional ice cover and model calibration against lake surface albedo data.
10 Dec 2024
Brief Communication: The Danish Replicate Drilling System – Results from the First Field Test
Julien Westhoff, Grant Vernon Boeckmann, Nicholas Mossor Rathmann, and Steffen Bo Hansen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3081, https://doi.org/10.5194/egusphere-2024-3081, 2024
Revised manuscript under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
We report on the successful test of a new replicate drilling system for ice cores. This system allows us to deviate the ice core drill from the parent, the original, borehole, and drill into the side of the wall. Thus, we can produce a second ice core from any desired depth, increasing the amount of sample available for scientific purposes. In the manuscript, we present the results from the first field tests and the challenges we encountered.
09 Dec 2024
The Impact of Ice Structures and Ocean Warming in Milne Fiord
Jérémie Bonneau, Bernard E. Laval, Derek Mueller, Yulia Antropova, and Andrew K. Hamilton
EGUsphere, https://doi.org/10.5194/egusphere-2024-3651, https://doi.org/10.5194/egusphere-2024-3651, 2024
Preprint under review for TC (discussion: final response, 2 comments)
Short summary
Short summary
Arctic glaciers and ice shelves are retreating due to warmer oceans, but the link between ocean warming and ice loss is complex. We used a numerical model to study these processes in Milne Fiord, a unique site with an ice shelf and a tidewater glacier. Our results show that submarine melting is an important thinning mechanism, and that glacier retreat will continue for decades. This research highlights the ongoing and future changes in Arctic ice structures.
09 Dec 2024
Stratified suppression of turbulence in an ice shelf basal melt parameterisation
Claire K. Yung, Madelaine G. Rosevear, Adele K. Morrison, Andrew McC Hogg, and Yoshihiro Nakayama
EGUsphere, https://doi.org/10.5194/egusphere-2024-3513, https://doi.org/10.5194/egusphere-2024-3513, 2024
Revised manuscript under review for TC (discussion: final response, 7 comments)
Short summary
Short summary
Ocean models are used to understand how the ocean interacts with the Antarctic Ice Sheet, but they are too coarse in resolution to capture the small-scale ocean processes driving melting and require a parameterisation to predict melt. Previous parameterisations ignore key processes occurring in some regions of Antarctica. We develop a parameterisation with the feedback of stratification on melting and test it in idealised and regional ocean models, finding changes to melt rate and circulation.
06 Dec 2024
Glacier surge monitoring from temporally dense elevation time series: application to an ASTER dataset over the Karakoram region
Luc Beraud, Fanny Brun, Amaury Dehecq, Romain Hugonnet, and Prashant Shekhar
EGUsphere, https://doi.org/10.5194/egusphere-2024-3480, https://doi.org/10.5194/egusphere-2024-3480, 2024
Revised manuscript under review for TC (discussion: final response, 6 comments)
Short summary
Short summary
This study introduces a new workflow to process the elevation change time series of glacier surges, an ice flow instability. Applied to a dense, 20-year dataset of satellite elevation data, the method filters and interpolates these changes on a monthly scale, revealing detailed patterns and estimates of mass transport. The dataset produced by this method allows for a more precise and unprecedentedly detailed description of glacier surges at the scale of a large region.
06 Dec 2024
Large interannual changes in supraglacial drainage basin areas and channels that flow downstream uphill: lessons from field surveys of moulin-connected streams on the Greenland Ice Sheet
Jessica Mejia, Jason Gulley, Celia Trunz, Charles Breithaupt, and Matthew Covington
EGUsphere, https://doi.org/10.5194/egusphere-2024-3676, https://doi.org/10.5194/egusphere-2024-3676, 2024
Preprint under review for TC (discussion: open, 3 comments)
Short summary
Short summary
This study shows that drainage catchments on the Greenland Ice Sheet can change size and shape from year to year. Snow buildup in glacier rivers can reroute meltwater, merging neighboring catchments. Over three years, three catchments combined into one large 32 km2 catchment, increasing in size by 387 %. These findings suggest that seasonal changes in snow and water flow can significantly affect how the ice sheet drains, with potential impacts on ice dynamics.
05 Dec 2024
Combining observational data and numerical models to obtain a seamless high temporal resolution seasonal cycle of snow and ice mass balance at the MOSAiC Central Observatory
Polona Itkin and Glen E. Liston
EGUsphere, https://doi.org/10.5194/egusphere-2024-3402, https://doi.org/10.5194/egusphere-2024-3402, 2024
Preprint under review for TC (discussion: final response, 5 comments)
Short summary
Short summary
The MOSAiC project provided a year of observations of Arctic snow and sea ice, though some data were interrupted, especially during summer melt onset. We developed a data-model fusion system to produce continuous, high-resolution time series of snow and sea ice parameters. On all three analyzed three ice types snow redistribution correlated with sea ice deformation and level ice thickness was governed by the thinnest fraction of snow cover.
05 Dec 2024
Leveraging Citizen Science, LiDAR, and Machine Learning for Snow Depth Estimation in Complex Terrain Environments
Dane Liljestrand, Ryan Johnson, Bethany Neilson, Patrick Strong, and Elizabeth Cotter
EGUsphere, https://doi.org/10.5194/egusphere-2024-3545, https://doi.org/10.5194/egusphere-2024-3545, 2024
Preprint under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
This work introduces a model specifically designed for high-resolution snow depth estimation, leveraging citizen-science snow observations and snow-off LiDAR terrain features to provide an accessible and cost-effective method for snowpack modeling in regions lacking high-quality data products or collection networks. This work demonstrates that reliable basin-scale snow depth estimates can be achieved in difficult environments with very few observations and low institutional costs.
03 Dec 2024
Dynamic identification of snow phenology in the Northern Hemisphere
Le Wang, Xin Miao, Xinyun Hu, Yizhuo Li, Bo Qiu, Jun Ge, and Weidong Guo
EGUsphere, https://doi.org/10.5194/egusphere-2024-3431, https://doi.org/10.5194/egusphere-2024-3431, 2024
Preprint under review for TC (discussion: final response, 8 comments)
Short summary
Short summary
Snow phenology is a crucial indicator for assessing seasonal changes in snow. In this work, we find that snow phenology is significantly impacted by datasets and methods used, and current methods often overlook the spatial and temporal variability in snow across the Northern Hemisphere. To address this, we develop a dynamic threshold method, which contributes to better representing the seasonal changes of snow cover across the Northern Hemisphere, especially on the Tibetan Plateau.
03 Dec 2024
Brief Communications: Stream Microbes Preferentially Utilize Young Carbon within the Ancient Bulk Glacier Dissolved Organic Carbon Pool
Amy D. Holt, Jason B. Fellman, Anne M. Kellerman, Eran Hood, Samantha H. Bosman, Amy M. McKenna, Jeffery P. Chanton, and Robert G. M. Spencer
EGUsphere, https://doi.org/10.5194/egusphere-2024-3636, https://doi.org/10.5194/egusphere-2024-3636, 2024
Preprint under review for TC (discussion: final response, 2 comments)
Short summary
Short summary
Glacier runoff is a source of old, bioavailable dissolved organic carbon (DOC) to downstream ecosystems. The DOC pool is composed of material of various origin, chemical character, age and bioavailability. Using bioincubation experiments we show glacier DOC bioavailability is driven by a young source, rather than ancient material which comprises the majority of the glacier carbon pool. This young, bioavailable fraction could currently be a critical carbon subsidy for recipient food webs.
03 Dec 2024
Estimation of duration and its changes in Lagrangian observations relying on ice floes in the Arctic Ocean utilizing sea ice motion product
Fanyi Zhang, Ruibo Lei, Meng Qu, Na Li, Ying Chen, and Xiaoping Pang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2723, https://doi.org/10.5194/egusphere-2024-2723, 2024
Preprint under review for TC (discussion: final response, 6 comments)
Short summary
Short summary
We reconstructed sea ice drift trajectories and identified optimal deployment areas for Lagrangian observations. It revealed a preference for ice advection towards the Transpolar Drift region over the Beaufort Gyre, with endpoints influenced by large-scale atmospheric circulation patterns. This study could help the future ice camp/buoy deployment strategies, ensuring the sustainability of crucial Arctic observations in the face of changing environmental conditions.
27 Nov 2024
Brief communication: Storstrømmen glacier, Northeast Greenland, primed for end-of-decade surge
Jonas Kvist Andersen, Rasmus Probst Meyer, Flora Salome Huiban, Mads Lykke Dømgaard, Romain Millan, and Anders Anker Bjørk
EGUsphere, https://doi.org/10.5194/egusphere-2024-3382, https://doi.org/10.5194/egusphere-2024-3382, 2024
Revised manuscript accepted for TC (discussion: final response, 4 comments)
Short summary
Short summary
Storstrømmen Glacier in northeast Greenland goes through cycles of sudden flow speed-ups (known as surges) followed by long quiet phases. Currently in its quiet phase, recent measurements suggest it may be nearing conditions for a new surge, possibly between 2027 and 2040. We also observed several lake drainages that caused brief increases in glacier flow but did not trigger a surge. Continued monitoring is essential to understand how these processes influence glacier behavior.
26 Nov 2024
Defining Antarctic polynyas in satellite observations and climate model output to support ecological climate change research
Laura L. Landrum, Alice K. DuVivier, Marika M. Holland, Kristen Krumhardt, and Zephyr Sylvester
EGUsphere, https://doi.org/10.5194/egusphere-2024-3490, https://doi.org/10.5194/egusphere-2024-3490, 2024
Preprint under review for TC (discussion: final response, 6 comments)
Short summary
Short summary
Antarctic polynyas – areas of open water surrounded by sea ice or sea ice and land – are key players in Antarctic marine ecosystems. Changes in the physical characteristics of polynyas will influence how these ecosystems respond to a changing climate. This work explores how to best compare polynyas identified in satellite data and climate model data to verify that the model captures important features of Antarctic sea ice and marine ecosystems, and we show how polynyas may change.
25 Nov 2024
Sensitivity of iceberg drift and deterioration simulations to input data from different ocean, sea ice and atmosphere models in the Barents Sea (Part II)
Lia Herrmannsdörfer, Raed Khalil Lubbad, and Knut Vilhelm Høyland
EGUsphere, https://doi.org/10.5194/egusphere-2024-3055, https://doi.org/10.5194/egusphere-2024-3055, 2024
Revised manuscript under review for TC (discussion: final response, 6 comments)
Short summary
Short summary
Numerical simulations of iceberg drift and deterioration are a useful tool to bridge the gap of otherwise scarce iceberg observations in the Barents Sea. We forced iceberg simulations with different combinations of ocean, sea ice and atmosphere models to study their impact on the simulation results. We find that especially using different sea ice models Topaz and Barents-2.5 influences the iceberg drift, deterioration and occurrence in the domain.
25 Nov 2024
InSAR sensitivity to active layer ground ice content in Adventdalen, Svalbard
Lotte Wendt, Line Rouyet, Hanne H. Christiansen, Tom Rune Lauknes, and Sebastian Westermann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2972, https://doi.org/10.5194/egusphere-2024-2972, 2024
Preprint under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
In permafrost environments, the ground surface moves due to the formation and melt of ice in the ground. This study compares ground surface displacements measured from satellite images against field data of ground ice contents. We find good agreement between the detected seasonal subsidence and observed ground ice melt. Our results show the potential of satellite remote sensing for mapping ground ice variability, but also indicate that ice in excess of the pore space must be considered.
20 Nov 2024
An assessment of the disequilibrium of Alaskan glaciers
Daniel R. Otto, Gerard H. Roe, and John Erich Christian
EGUsphere, https://doi.org/10.5194/egusphere-2024-3309, https://doi.org/10.5194/egusphere-2024-3309, 2024
Revised manuscript under review for TC (discussion: final response, 6 comments)
Short summary
Short summary
Glaciers respond slowly to changes in climate, meaning that they are not yet adjusted to the present-day level of warming. Using a simple model, we find that the median Alaskan glacier has undergone only 27 % of the retreat necessary to equilibrate to the current climate. Our findings hold even when accounting for large uncertainties, suggesting that substantial retreat is inevitable even if future warming slows or stabilizes.
19 Nov 2024
Improved modelling of mountain snowpacks with spatially distributed precipitation bias correction derived from historical reanalysis
Manon von Kaenel and Steve Margulis
EGUsphere, https://doi.org/10.5194/egusphere-2024-3389, https://doi.org/10.5194/egusphere-2024-3389, 2024
Preprint under review for TC (discussion: final response, 6 comments)
Short summary
Short summary
Accurate snow water equivalent (SWE) estimates are crucial for water management in snowmelt-dependent regions, but bias and uncertainty in precipitation data make this challenging. Here, we leverage insights from a historical SWE data product to correct these biases and yield more accurate SWE estimates and streamflow predictions. Incorporating snow depth observations further boosts accuracy. This study demonstrates an effective method to downscale and bias-correct global mountain precipitation.
15 Nov 2024
Trends in the annual snow melt-out day over the French Alps and the Pyrenees from 38 years of high resolution satellite data (1986–2023)
Zacharie Barrou Dumont, Simon Gascoin, Jordi Inglada, Andreas Dietz, Jonas Köhler, Matthieu Lafaysse, Diego Monteiro, Carlo Carmagnola, Arthur Bayle, Jean-Pierre Dedieu, Olivier Hagolle, and Philippe Choler
EGUsphere, https://doi.org/10.5194/egusphere-2024-3505, https://doi.org/10.5194/egusphere-2024-3505, 2024
Revised manuscript accepted for TC (discussion: final response, 4 comments)
Short summary
Short summary
We generated annual maps of snow melt-out day at 20 m resolution over a period of 38 years from ten different satellites. This study fills a knowledge gap on the evolution of mountain snow in Europe by covering a much longer period and by characterizing trends at much higher resolution than previous studies. We found a trend for earlier melt-out with an average reduction of 5.51 days per decade over the French Alps and of 4.04 day per decade over the Pyrenees over the period 1986–2023.
14 Nov 2024
Evaluation of the Snow CCI Snow Covered Area Product within a Mountain Snow Water Equivalent Reanalysis
Haorui Sun, Yiwen Fang, Steven Margulis, Colleen Mortimer, Lawrence Mudryk, and Chris Derksen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3213, https://doi.org/10.5194/egusphere-2024-3213, 2024
Revised manuscript accepted for TC (discussion: final response, 4 comments)
Short summary
Short summary
The European Space Agency's Snow Climate Change Initiative (Snow CCI) developed a high-quality snow cover extent and snow water equivalent (SWE) Climate Data Record. However, gaps exist in complex terrain due to challenges in using passive microwave sensing and in-situ measurements. This study presents a methodology to fill the mountain SWE gap using Snow CCI Snow Cover Fraction within a Bayesian SWE reanalysis framework, with potential applications in untested regions and with other sensors.
13 Nov 2024
How do extreme ENSO events affect Antarctic surface mass balance?
Jessica M. A. Macha, Andrew N. Mackintosh, Felicity S. Mccormack, Benjamin J. Henley, Helen V. McGregor, Christiaan T. van Dalum, and Ariaan Purich
EGUsphere, https://doi.org/10.5194/egusphere-2024-3425, https://doi.org/10.5194/egusphere-2024-3425, 2024
Revised manuscript accepted for TC (discussion: final response, 4 comments)
Short summary
Short summary
Extreme El Niño-Southern Oscillation (ENSO) events have global impacts but their Antarctic impacts are poorly understood. Examining Antarctic snow accumulation impacts of past observed extreme ENSO events, we show that accumulation changes differ between events & are unsignificant during most events. Remarkable changes occur during 2015/16 & in Enderby Land during all extreme El Niños. Historical data limits conclusions but future greater extremes could cause Antarctic accumulation changes.
13 Nov 2024
Improved Arctic Melt Pond Fraction Estimation Using Sentinel-2 Imagery
Kavya Sivaraj, Kurt Solander, Charles Abolt, and Elizabeth Hunke
EGUsphere, https://doi.org/10.5194/egusphere-2024-3315, https://doi.org/10.5194/egusphere-2024-3315, 2024
Preprint under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
Melt ponds are seasonal water bodies whose presence affect the rate of Arctic sea ice loss by increasing the absorption of solar radiation. Despite their importance, large-scale observational datasets of Melt Pond Fraction (MPF) are inadequate due to low-resolution sensors and spectral misclassifications caused by different ice types. Our novel ML-based workflow overcomes these limitations by leveraging morphological operators, resulting in an improved Sentinel-2-based mean MPF of 11% from 20%.
13 Nov 2024
Assessing spatio-temporal variability of firn volume scattering over Greenland with satellite altimeters
Weiran Li, Stef Lhermitte, Bert Wouters, Cornelis Slobbe, Max Brils, and Xavier Fettweis
EGUsphere, https://doi.org/10.5194/egusphere-2024-3251, https://doi.org/10.5194/egusphere-2024-3251, 2024
Preprint under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
Due to the melt events in recent decades, the snow condition over Greenland has been changed. To observe this, we use a parameter (leading edge width; LeW) derived from satellite altimetry, and analyse its spatial and temporal variations. By comparing the LeW variations with modelled firn parameters, we concluded that the 2012 melt event has a long-lasting impact on the volume scattering of Greenland firn. This impact cannot fully recover due to the recent and more frequent melt events.
13 Nov 2024
Satellite data reveal details of glacial isostatic adjustment in the Amundsen Sea Embayment, West Antarctica
Matthias O. Willen, Bert Wouters, Taco Broerse, Eric Buchta, and Veit Helm
EGUsphere, https://doi.org/10.5194/egusphere-2024-3086, https://doi.org/10.5194/egusphere-2024-3086, 2024
Revised manuscript under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
Collapse of the West Antarctic ice sheet in the Amundsen Sea Embayment is likely in the near future. Vertical uplift of bedrock due to glacial isostatic adjustment stabilizes the ice sheet and may delay its collapse. So far, only spatially and temporally sparse GNSS measurements have been able to observe this bedrock motion. We have combined satellite data and quantified a region-wide bedrock motion that independently matches GNSS measurements. This can improve ice-sheet predictions.
11 Nov 2024
Collision with Seamount Triggers Breakup of Antarctic Iceberg
Xianwei Wang, Hilmar Gudmundsson, and David Holland
EGUsphere, https://doi.org/10.5194/egusphere-2024-2790, https://doi.org/10.5194/egusphere-2024-2790, 2024
Preprint under review for TC (discussion: final response, 3 comments)
Short summary
Short summary
Understanding why iceberg calved during drifting in the ocean is important to understand the life cycle and the influence on the surrounding ocean of an iceberg. This study explains why iceberg A68a calved when approaching the South Georgia Island in late 2020 during its drifting in the Southern Ocean using satellite observation and modeling, which was caused by collision with seamount.
08 Nov 2024
The impact of regional-scale upper mantle heterogeneity on glacial isostatic adjustment in West Antarctica
Erica Margaret Lucas, Natalya Gomez, and Terry Wilson
EGUsphere, https://doi.org/10.5194/egusphere-2024-2957, https://doi.org/10.5194/egusphere-2024-2957, 2024
Revised manuscript under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
We investigate the effects of incorporating regional-scale lateral variability (~50–100 km) in upper mantle structure into models of Earth deformation and sea level change associated with ice mass changes in West Antarctica. Regional-scale variability in upper mantle structure is found to impact relative sea level and crustal rate predictions for modern (last ~25–125 years) and projected (next ~300 years) ice mass changes, especially in coastal regions that undergo rapid ice mass loss.
08 Nov 2024
Buoy measurements of strong waves in ice amplitude modulation: a signature of complex physics governing waves in ice attenuation
Jean Rabault, Trygve Halsne, Ana Carrasco, Anton Korosov, Joey Voermans, Patrik Bohlinger, Jens Boldingh Debernard, Malte Müller, Øyvind Breivik, Takehiko Nose, Gaute Hope, Fabrice Collard, Sylvain Herlédan, Tsubasa Kodaira, Nick Hughes, Qin Zhang, Kai Haakon Christensen, Alexander Babanin, Lars Willas Dreyer, Cyril Palerme, Lotfi Aouf, Konstantinos Christakos, Atle Jensen, Johannes Röhrs, Aleksey Marchenko, Graig Sutherland, Trygve Kvåle Løken, and Takuji Waseda
External preprint server, https://doi.org/10.48550/arXiv.2401.07619, https://doi.org/10.48550/arXiv.2401.07619, 2024
Preprint under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
We observe strongly modulated waves-in-ice significant wave height using buoys deployed East of Svalbard. We show that these observations likely cannot be explained by wave-current interaction or tide-induced modulation alone. We also demonstrate a strong correlation between the waves height modulation, and the rate of sea ice convergence. Therefore, our data suggest that the rate of sea ice convergence and divergence may modulate wave in ice energy dissipation.
08 Nov 2024
Comparing High-Resolution Snow Mapping Approaches in Palsa Mires: UAS LiDAR vs. Machine Learning
Alexander Störmer, Timo Kumpula, Miguel Villoslada, Pasi Korpelainen, Henning Schumacher, and Benjamin Burkhard
EGUsphere, https://doi.org/10.5194/egusphere-2024-2862, https://doi.org/10.5194/egusphere-2024-2862, 2024
Revised manuscript under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
Snow has a major impact on palsa development, yet understanding its distribution at small scale remains limited. We used LiDAR UAS and ground truth data in combination with machine learning to model snow distribution at three palsa sites. We identified extremes in snow depth corresponding to palsa topography, providing insights into the influence of snow distribution on their formation. The results demonstrate the applicability of machine learning for modeling snow distribution at a small scale.
08 Nov 2024
Quantifying degradation of the Imja Lake moraine dam with fused InSAR and SAR feature tracking time series
George Brencher, Scott Henderson, and David Shean
EGUsphere, https://doi.org/10.5194/egusphere-2024-3196, https://doi.org/10.5194/egusphere-2024-3196, 2024
Preprint under review for TC (discussion: final response, 7 comments)
Short summary
Short summary
Glacial lakes are often dammed by moraines, which can fail, causing floods. Traditional methods of measuring moraine dam structure are not feasible for thousands of lakes. We instead developed a method to measure moraine dam movement with satellite radar data and applied this approach to the Imja Lake moraine dam in Nepal. We found that the moraine dam moved ~90 cm from 2017–2024, providing information about its internal structure. These data can help guide limited hazard remediation resources.
07 Nov 2024
Evaluating sensitivity of optical snow grain size retrievals to radiative transfer models, shape parameters, and inversion techniques
James W. Dillon, Christopher P. Donahue, Evan N. Schehrer, and Kevin D. Hammonds
EGUsphere, https://doi.org/10.5194/egusphere-2024-3141, https://doi.org/10.5194/egusphere-2024-3141, 2024
Preprint under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
The optical grain size of snow controls albedo, playing a key role in Earth's energy balance. This parameter varies substantially in time and space, and thus accurate estimates are vital. Reflectance measurements can be used to map grain size, although results differ considerably depending on the algorithm and model used during retrieval. We perform a novel laboratory comparison to determine the optimal model, shape parameters, and retrieval algorithm for accurately estimating grain size.
06 Nov 2024
High frequency broadband acoustic systems as a tool for high latitude glacial fjord research
Elizabeth Weidner, Grant Deane, Arnaud Le Boyer, Matthew H. Alford, Hari Vishnu, Mandar Chitre, M. Dale Stokes, Oskar Głowacki, Hayden Johnson, and Fiammetta Straneo
EGUsphere, https://doi.org/10.5194/egusphere-2024-3025, https://doi.org/10.5194/egusphere-2024-3025, 2024
Preprint under review for TC (discussion: open, 1 comment)
Short summary
Short summary
Tidewater glaciers play a central role in polar dynamics, but their study is limited by harsh and isolated conditions. Here, we introduce broadband echosounders as an tool for the study of high latitude fjords through the rapid collection of calibrated high resolution, near-synoptic observations. Using a data set collected in Hornsund fjord we illustrate the potential of broadband echosounders as a relatively low-cost, low-effort tool, well suited for field deployment in high-latitude fjords.
05 Nov 2024
A Mathematical Model of Microbially-Induced Convection in Sea Ice
Noa Kraitzman, Jean-David Grattepanche, Robert Sanders, and Isaac Klapper
EGUsphere, https://doi.org/10.5194/egusphere-2024-2696, https://doi.org/10.5194/egusphere-2024-2696, 2024
Preprint under review for TC (discussion: open, 0 comments)
Short summary
Short summary
We propose here that the resident microbial community can influence the structure of sea ice, particularly near the ocean interface, by lowering the local freezing point through production of, effectively, antifreeze compounds. The result is improved environmental conditions for growth and, possibly, changes to heat transport through the ice. A mathematical model together with laboratory measurements are used to illustrate and support the hypothesis.
30 Oct 2024
Brief Communication: annual large-scale atmospheric circulation reconstructed from a data assimilation framework cannot explain local East Antarctic ice rises’ surface mass balance records
Marie Genevieve Paule Cavitte, Hugues Goosse, Quentin Dalaiden, and Nicolas Ghilain
EGUsphere, https://doi.org/10.5194/egusphere-2024-3140, https://doi.org/10.5194/egusphere-2024-3140, 2024
Preprint under review for TC (discussion: final response, 2 comments)
Short summary
Short summary
Ice cores in East Antarctica show contrasting records of past snowfall. We tested if large-scale weather patterns could explain this by combining ice core data with an atmospheric model and radar-derived errors. However, the reconstruction produced unrealistic wind patterns to fit the ice core records. We suggest that uncertainties are not fully captured and that small-scale local wind effects, not represented in the model, could significantly influence snowfall records in the ice cores.
30 Oct 2024
Multi-annual patterns of rapidly draining supraglacial lakes in Northeast Greenland
Katrina Lutz, Ilaria Tabone, Angelika Humbert, and Matthias Braun
EGUsphere, https://doi.org/10.5194/egusphere-2024-3056, https://doi.org/10.5194/egusphere-2024-3056, 2024
Preprint under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
Supraglacial lakes develop from meltwater collecting on the surface of glaciers. These lakes can drain rapidly, discharging meltwater to the glacier bed. In this study, we assess the spatial and temporal distribution of rapid drainages in Northeast Greenland using optical satellite images. After comparing rapid drainage occurrence with several environmental and geophysical parameters, little indication of the influencing conditions for a rapid drainage was found.
30 Oct 2024
Approximating ice sheet – bedrock interaction in Antarctic ice sheet projections
Caroline Jacoba van Calcar, Pippa L. Whitehouse, Roderik S. W. van de Wal, and Wouter van der Wal
EGUsphere, https://doi.org/10.5194/egusphere-2024-2982, https://doi.org/10.5194/egusphere-2024-2982, 2024
Preprint under review for TC (discussion: final response, 2 comments)
Short summary
Short summary
The bedrock response to a melting Antarctic ice sheet delays grounding line retreat by up to 130 years and reduces sea level rise by up to 23% compared to excluding this effect. Current ice sheet models often use computationally fast but simplified Earth models that do not capture this feedback well. We recommend parameters for simple Earth models that approximate bedrock uplift and ice sheet evolution from a complex ice sheet - Earth model to improve sea level projections of the next centuries.
29 Oct 2024
Glacial erosion and history of Inglefield Land, northwest Greenland
Caleb K. Walcott-George, Allie Balter-Kennedy, Jason P. Briner, Joerg M. Schaefer, and Nicolás E. Young
EGUsphere, https://doi.org/10.5194/egusphere-2024-2983, https://doi.org/10.5194/egusphere-2024-2983, 2024
Revised manuscript accepted for TC (discussion: final response, 5 comments)
Short summary
Short summary
Understanding the history and drivers of Greenland Ice Sheet change is important to forecast future ice sheet retreat. We combined geologic mapping and cosmogenic nuclide measurements to investigate how the Greenland Ice Sheet formed the landscape of Inglefield Land, northwest Greenland. We found that Inglefield Land was covered by warm- and cold-based ice during multiple glacial cycles and that much of Inglefield Land is an ancient landscape.
25 Oct 2024
Assessment of Sentinel-3 Altimeter Performance over Antarctica using High Resolution Digital Elevation Models
Joe Phillips and Malcolm McMillan
EGUsphere, https://doi.org/10.5194/egusphere-2024-3054, https://doi.org/10.5194/egusphere-2024-3054, 2024
Revised manuscript under review for TC (discussion: final response, 7 comments)
Short summary
Short summary
This study explores how well the Sentinel-3 satellites measure Antarctic ice sheet elevation, using new, detailed maps of slopes and roughness created using the Reference Elevation Model of Antarctica. We found that while the satellites tend to perform well over smoother terrain, they can struggle over more complex surfaces. These findings can improve how we track ice sheet changes and guide future satellite missions, helping us better understand the impact of climate change on polar regions.
25 Oct 2024
4D imaging of a near-terminus glacier collapse feature through high-density GPR acquisitions
Bastien Ruols, Johanna Klahold, Daniel Farinotti, and James Irving
EGUsphere, https://doi.org/10.5194/egusphere-2024-3074, https://doi.org/10.5194/egusphere-2024-3074, 2024
Preprint under review for TC (discussion: final response, 2 comments)
Short summary
Short summary
We demonstrate the use of a drone-based ground-penetrating radar (GPR) system to gather high-resolution, high-density 4D data over a near-terminus glacier collapse feature. We monitor the growth of an air cavity and the evolution of the subglacial drainage system, providing new insights into the dynamics of collapse events. This work highlights potential future applications of drone-based GPR for monitoring glaciers, in particular in regions which are inaccessible with surface-based methods.
25 Oct 2024
Data-driven emulation of melt ponds on Arctic sea ice
Simon Driscoll, Alberto Carrassi, Julien Brajard, Laurent Bertino, Einar Ólason, Marc Bocquet, and Amos Lawless
EGUsphere, https://doi.org/10.5194/egusphere-2024-2476, https://doi.org/10.5194/egusphere-2024-2476, 2024
Preprint under review for TC (discussion: final response, 3 comments)
Short summary
Short summary
The formation and evolution of sea ice melt ponds (ponds of melted water) are complex, insufficiently understood and represented in models with considerable uncertainty. These uncertain representations are not traditionally included in climate models potentially causing the known underestimation of sea ice loss in climate models. Our work creates the first observationally based machine learning model of melt ponds that is also a ready and viable candidate to be included in climate models.
25 Oct 2024
Radar Equivalent Snowpack: reducing the number of snow layers while retaining its microwave properties and bulk snow mass
Julien Meloche, Nicolas R. Leroux, Benoit Montpetit, Vincent Vionnet, and Chris Derksen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3169, https://doi.org/10.5194/egusphere-2024-3169, 2024
Preprint under review for TC (discussion: final response, 2 comments)
Short summary
Short summary
Measuring the snow mass from radar measurements is possible with information on the snow and a radar model to link the measurements to snow. A key variable in a retrieval is the number of snow layers, with more layer yielding richer information but at increased computational cost. Here, we show the capabilities of a new method to simplify a complex snowpack, while preserving the scattering behavior of the snowpack and conserving the mass.
24 Oct 2024
Brief Communications: Tides and Damage as Drivers of Lake Drainages on Shackleton Ice Shelf
Julius Sommer, Maaike Izeboud, Sophie de Roda Husman, Bert Wouters, and Stef Lhermitte
EGUsphere, https://doi.org/10.5194/egusphere-2024-3105, https://doi.org/10.5194/egusphere-2024-3105, 2024
Revised manuscript under review for TC (discussion: final response, 6 comments)
Short summary
Short summary
Ice shelves, the floating extensions of Antarctica’s ice sheet, play a crucial role in preventing mass ice loss, and understanding their stability is crucial. If surface meltwater lakes drain rapidly through fractures, the ice shelf can destabilize. We analyzed satellite images of three years from the Shackleton Ice Shelf and found that lake drainages occurred in areas where damage is present and developing, and coincided with rising tides, offering insights into the drivers of this process.
24 Oct 2024
Retrieval and Validation of Total Seasonal Liquid Water Amounts in the Percolation Zone of Greenland Ice Sheet Using L-band Radiometry
Alamgir Hossan, Andreas Colliander, Baptiste Vandecrux, Nicole-Jeanne Schlegel, Joel Harper, Shawn Marshall, and Julie Z. Miller
EGUsphere, https://doi.org/10.5194/egusphere-2024-2563, https://doi.org/10.5194/egusphere-2024-2563, 2024
Preprint under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
We used L-band observations from the SMAP mission to quantify the surface and subsurface liquid water amounts (LWA) in the percolation zone of the Greenland ice sheet. The algorithm is described, and the validation results are provided. The results demonstrate the potential for creating an LWA data product across GrIS, which will advance our understanding of ice sheet physical processes for better projection of Greenland’s contribution to global sea level rise.
23 Oct 2024
Groundwater dynamics beneath a marine ice sheet
Gabriel Cairns, Graham Benham, and Ian Hewitt
EGUsphere, https://doi.org/10.5194/egusphere-2024-2880, https://doi.org/10.5194/egusphere-2024-2880, 2024
Preprint under review for TC (discussion: final response, 8 comments)
Short summary
Short summary
Thick layers of porous rock known as sedimentary basins lie underneath many glaciers in Antarctica that flow into the sea. These layers contain large amounts of groundwater, some of which is seawater. We use a mathematical model to predict how groundwater flows through these basins, finding that seawater can become trapped due to changes in the ice sheet over time. We also predict where water flows out of (or into) these basins, and we discuss possible implications for the glacier.
21 Oct 2024
Factors influencing lake surface water temperature variability in West Greenland and the role of the ice sheet
Laura Carrea, Christopher J. Merchant, Richard I. Woolway, and Niall McCarroll
EGUsphere, https://doi.org/10.5194/egusphere-2024-2926, https://doi.org/10.5194/egusphere-2024-2926, 2024
Preprint under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
Lakes in Greenland serve as sentinel of climate change. Satellites can be used to monitor water temperature and ice. Using 28 years measurements from satellite, we conclude that lakes are overall warmer than previously thought. The lakes connected to the ice sheet are cooler than the rest because of cold glacial meltwater inflow. Change in water temperature can impact light availability, nutrient cycling, and oxygen levels crucial for lake ecosystem but can also have influence on the ice sheet.
18 Oct 2024
A comparative study of fabric evolution models and anisotropic rheologies
Daniel H. Richards, Elisa Mantelli, Samuel S. Pegler, and Sandra Piazolo
EGUsphere, https://doi.org/10.5194/egusphere-2024-3067, https://doi.org/10.5194/egusphere-2024-3067, 2024
Revised manuscript under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
Ice behaves differently depending on its crystal orientation, but how this affects its flow is unclear. We combine a range of previous models into a common equation to better understand crystal alignment. We tested a range of previous models on ice streams and divides, discovering that the best fit to observations comes from a) assuming neighbouring crystals have the same stress, and b) through describing the effect of crystal orientation on the flow in a way that allows directional variation.
18 Oct 2024
Simple analytical–statistical models (ASMs) for mean annual permafrost table temperature and active-layer thickness estimates
Tomáš Uxa, Filip Hrbáček, and Michaela Kňažková
EGUsphere, https://doi.org/10.5194/egusphere-2024-2989, https://doi.org/10.5194/egusphere-2024-2989, 2024
Preprint under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
We devised two simple models for estimating the mean annual permafrost table temperature and active-layer thickness, which are driven solely by temperatures measured in the active layer; no ground physical properties are required. The models showed deviations of less than 0.03 °C and 5 %, and can therefore be useful tools for permafrost modelling under a wide range of environmental conditions.
17 Oct 2024
Recent observations and glacier modeling point towards near complete glacier loss in western Austria (Ötztal and Stubai mountain range) if 1.5 °C is not met
Lea Hartl, Patrick Schmitt, Lilian Schuster, Kay Helfricht, Jakob Abermann, and Fabien Maussion
EGUsphere, https://doi.org/10.5194/egusphere-2024-3146, https://doi.org/10.5194/egusphere-2024-3146, 2024
Revised manuscript accepted for TC (discussion: final response, 4 comments)
Short summary
Short summary
We use regional observations of glacier area and volume change to inform glacier evolution modeling in the Ötztal and Stubai range (Austrian Alps) until 2100 in different climate scenarios. Glaciers in the region lost 23 % of their volume between 2006 and 2017. Under current warming trajectories, glacier loss in the region is expected to be near total by 2075. We show that integrating regional calibration and validation data in glacier models is important to improve confidence in projections.
17 Oct 2024
Calving from horizontal forces in a revised crevasse-depth framework
Donald A. Slater and Till J. W. Wagner
EGUsphere, https://doi.org/10.5194/egusphere-2024-2927, https://doi.org/10.5194/egusphere-2024-2927, 2024
Revised manuscript under review for TC (discussion: final response, 5 comments)
Short summary
Short summary
Calving is when icebergs break off glaciers and fall into the ocean. It is an important process determining how ice sheets will respond to change in climate, but it is currently poorly understood and hard to include in numerical models that are used for sea level projections. We revised an existing theory for how this process works, overcoming shortcomings of the existing theory and explaining observations showing that calving style depends on how thick the ice is.
16 Oct 2024
Damage strength increases ice mass loss from Thwaites Glacier, Antarctica
Yanjun Li, Violaine Coulon, Javier Blasco, Gang Qiao, Qinghua Yang, and Frank Pattyn
EGUsphere, https://doi.org/10.5194/egusphere-2024-2916, https://doi.org/10.5194/egusphere-2024-2916, 2024
Preprint under review for TC (discussion: final response, 2 comments)
Short summary
Short summary
We incorporate ice damage processes into an ice-sheet model and apply the new model to Thwaites Glacier. The upgraded model more accurately captures the observed ice geometry and mass balance of Thwaites Glacier over 1990–2020. Our simulations show that ice damage has a notable impact on the ice sheet evolution, ice mass loss and the resulted sea-level rise. This study highlights the necessity for incorporating ice damage into ice-sheet models.
16 Oct 2024
Emulating the future distribution of perennial firn aquifers in Antarctica
Sanne B. M. Veldhuijsen, Willem Jan van de Berg, Peter Kuipers Munneke, Nicolaj Hansen, Fredrik Boberg, Christoph Kittel, Charles Amory, and Michiel R. van den Broeke
EGUsphere, https://doi.org/10.5194/egusphere-2024-2855, https://doi.org/10.5194/egusphere-2024-2855, 2024
Revised manuscript under review for TC (discussion: final response, 6 comments)
Short summary
Short summary
Perennial firn aquifers (PFAs), year-round bodies of liquid water within firn, can potentially impact ice-shelf and ice-sheet stability. We developed a fast XGBoost firn emulator to predict 21st-century distribution of PFAs in Antarctica for 12 climatic forcings datasets. Our findings suggest that under low emission scenarios, PFAs remain confined to the Antarctic Peninsula. However, under a high-emission scenario, PFAs are projected to expand to a region in West Antarctica and East Antarctica.
15 Oct 2024
Thermal diffusivity of permafrost in the Swiss Alps determined from borehole temperature data
Samuel Weber and Alessandro Cicoira
EGUsphere, https://doi.org/10.5194/egusphere-2024-2652, https://doi.org/10.5194/egusphere-2024-2652, 2024
Preprint under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
The properties of the permafrost ground depend on its temperature and composition. We used temperature data from 29 boreholes in Switzerland to study how heat moves through different types of mountain permafrost landforms. We found that it depends on where you are, whether there is water in the ground and what time of year it is. Understanding these changes is important because they can affect how stable mountain slopes are and how easy it is to build things in mountain areas.
14 Oct 2024
Optical images reveal the role of high temperatures in triggering the 2021 Chamoli landslide
Jing Tian, Wentao Yang, Jian Fang, and Chong Xu
EGUsphere, https://doi.org/10.5194/egusphere-2024-2786, https://doi.org/10.5194/egusphere-2024-2786, 2024
Preprint under review for TC (discussion: open, 2 comments)
Short summary
Short summary
Shadows in optical images will deteriorate deformation measures in the pixel offset tracking method. We proposed a simple method to correct mismatches in deformation time series between Sentinel-2 and Landsat 8. We found high temperatures accelerated the landslide deformation in summers 2017/18, because rising temperatures weakened the ice strength on the sliding plane. Climate warming will result in more similar hazard chains in deglaciating mountains.
09 Oct 2024
Volumetric evolution of supraglacial lakes in southwestern Greenland using ICESat-2 and Sentinel-2
Tiantian Feng, Xinyu Ma, and Xiaomin Liu
EGUsphere, https://doi.org/10.5194/egusphere-2024-2195, https://doi.org/10.5194/egusphere-2024-2195, 2024
Revised manuscript under review for TC (discussion: final response, 6 comments)
Short summary
Short summary
During the melting season, substantial quantities of surface meltwater converge in topographically depressed regions, forming supraglacial lakes (SGLs). We extract SGLs area and profile depth using remote sensing data, and then inversion the depth of entire SGLs based on machine learning method. By applying above-mentioned methods, we capture the volumetric evolution of SGLs throughout the entire melt season of 2022 in southwestern Greenland.
07 Oct 2024
A Prototype Passive Microwave Retrieval Algorithm for Tundra Snow Density
Jeffrey J. Welch and Richard E. J. Kelly
EGUsphere, https://doi.org/10.5194/egusphere-2024-2928, https://doi.org/10.5194/egusphere-2024-2928, 2024
Preprint under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
Snow density plays an important role in natural and human systems but current methods for estimating snow density are limited, especially in the Arctic. This work presents a new method using satellite data to estimate snow density in remote areas. An experiment was conducted in the Canadian Arctic to evaluate this method and it appears to replicate density estimates from manual sampling well. With more work this method could be applied to estimate snow density across large areas of the Arctic.
07 Oct 2024
Quantifying permafrost ground ice contents in the Tien Shan and Pamir (Central Asia): A Petrophysical Joint Inversion approach using the Geometric Mean model
Tamara Mathys, Muslim Azimshoev, Zhoodarbeshim Bektursunov, Christian Hauck, Christin Hilbich, Murataly Duishonakunov, Abdulhamid Kayumov, Nikolay Kassatkin, Vassily Kapitsa, Leo C. P. Martin, Coline Mollaret, Hofiz Navruzshoev, Eric Pohl, Tomas Saks, Intizor Silmonov, Timur Musaev, Ryskul Usubaliev, and Martin Hoelzle
EGUsphere, https://doi.org/10.5194/egusphere-2024-2795, https://doi.org/10.5194/egusphere-2024-2795, 2024
Revised manuscript under review for TC (discussion: final response, 6 comments)
Short summary
Short summary
This study provides a comprehensive geophysical dataset on permafrost in the data-scarce Tien Shan and Pamir mountain regions of Central Asia. It also introduces a novel modeling method to quantify ground ice content across different landforms. The findings indicate that this approach is well-suited for characterizing ice-rich permafrost, which is crucial for evaluating future water availability and assessing risks associated with thawing permafrost.
07 Oct 2024
Snow Particle Motion in Process of Cornice Formation
Hongxiang Yu, Michael Lehning, Guang Li, Benjamin Walter, Jianping Huang, and Ning Huang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2458, https://doi.org/10.5194/egusphere-2024-2458, 2024
Revised manuscript under review for TC (discussion: final response, 8 comments)
Short summary
Short summary
Cornices are overhanging snow accumulations that form on mountain crests. Previous studies focused on how cornices collapse, little is known about why they form in the first place, specifically how snow particles adhere together to form the front end of the cornice. This study looked at the movement of snow particles around a developing cornice to understand how they gather, the speed and angle at which the snow particles hit the cornice surface, and how this affects the shape of the cornice.
02 Oct 2024
Fine-scale variability in iceberg velocity fields and implications for an ice-associated pinniped
Lynn M. Kaluzienski, Jason M. Amundson, Jamie N. Womble, Andrew K. Bliss, and Linnea E. Pearson
EGUsphere, https://doi.org/10.5194/egusphere-2024-2950, https://doi.org/10.5194/egusphere-2024-2950, 2024
Revised manuscript accepted for TC (discussion: final response, 4 comments)
Short summary
Short summary
Icebergs in fjords serve as important habitat for marine mammals. This study examines the dynamics of iceberg habit in a glacier-fjord system and its impact on harbor seal life-history events such as pupping and molting (shedding). By combining velocity tracking from time-lapse cameras with aerial surveys, we analyzed iceberg movement and linked it to seal abundance and distribution in the fjord. Our work reveals that plume dynamics can influence seal populations over daily to annual timescales.
01 Oct 2024
Review Article: Antarctica’s internal architecture: Towards a radiostratigraphically-informed age–depth model of the Antarctic ice sheets
Robert G. Bingham, Julien A. Bodart, Marie G. P. Cavitte, Ailsa Chung, Rebecca J. Sanderson, Johannes C. R. Sutter, Olaf Eisen, Nanna B. Karlsson, Joseph A. MacGregor, Neil Ross, Duncan A. Young, David W. Ashmore, Andreas Born, Winnie Chu, Xiangbin Cui, Reinhard Drews, Steven Franke, Vikram Goel, John W. Goodge, A. Clara J. Henry, Antoine Hermant, Benjamin H. Hills, Nicholas Holschuh, Michelle R. Koutnik, Gwendolyn J.-M. C. Leysinger Vieli, Emma J. Mackie, Elisa Mantelli, Carlos Martín, Felix S. L. Ng, Falk M. Oraschewski, Felipe Napoleoni, Frédéric Parrenin, Sergey V. Popov, Therese Rieckh, Rebecca Schlegel, Dustin M. Schroeder, Martin J. Siegert, Xueyuan Tang, Thomas O. Teisberg, Kate Winter, Shuai Yan, Harry Davis, Christine F. Dow, Tyler J. Fudge, Tom A. Jordan, Bernd Kulessa, Kenichi Matsuoka, Clara J. Nyqvist, Maryam Rahnemoonfar, Matthew R. Siegfried, Shivangini Singh, Verjan Višnjević, Rodrigo Zamora, and Alexandra Zuhr
EGUsphere, https://doi.org/10.5194/egusphere-2024-2593, https://doi.org/10.5194/egusphere-2024-2593, 2024
Revised manuscript under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
The ice sheets covering Antarctica have built up over millenia through successive snowfall events which become buried and preserved as internal surfaces of equal age detectable with ice-penetrating radar. This paper describes an international initiative to work together on this archival data to build a comprehensive 3-D picture of how old the ice is everywhere across Antarctica, and how this will be used to reconstruct past and predict future ice and climate behaviour.
01 Oct 2024
EastGRIP ice core reveals the exceptional evolution of crystallographic preferred orientation throughout the Northeast Greenland Ice Stream
Nicolas Stoll, Ilka Weikusat, Daniela Jansen, Paul Bons, Kyra Darányi, Julien Westhoff, Mária-Gema Llorens, David Wallis, Jan Eichler, Tomotaka Saruya, Tomoyuki Homma, Martyn Drury, Frank Wilhelms, Sepp Kipfstuhl, Dorthe Dahl-Jensen, and Johanna Kerch
EGUsphere, https://doi.org/10.5194/egusphere-2024-2653, https://doi.org/10.5194/egusphere-2024-2653, 2024
Revised manuscript under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
A better understanding of ice flow requires more observational data. The EastGRIP core is the first ice core through an active ice stream. We discuss crystal orientation data to determine the present deformation regimes. A comparison with other deep ice cores shows the unique properties of EastGRIP and that deep ice originates from the Eemian. We further show that the overall plug flow of NEGIS is characterised by many small-scale variations, which remain to be considered in ice-flow models.
30 Sep 2024
Modelling Cold Firn Evolution at Colle Gnifetti, Swiss/Italian Alps
Marcus Gastaldello, Enrico Mattea, Martin Hoelzle, and Horst Machguth
EGUsphere, https://doi.org/10.5194/egusphere-2024-2892, https://doi.org/10.5194/egusphere-2024-2892, 2024
Preprint under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
Inside the highest glaciers of the Alps lies an invaluable archive of data revealing the Earth's historic climate. However, as the atmosphere warms due to climate change, so does the glaciers' internal temperature – threatening the future longevity of these records. Using our customised Python model, validated by on-site measurements, we show how a doubling in surface melt has caused a warming of 1.5 °C in the past 21 years and explore the challenges of modelling in complex mountainous terrain.
30 Sep 2024
Thermal State of Permafrost in the Central Andes (27° S–34° S)
Cassandra E.M. Koenig, Christin Hilbich, Christian Hauck, Lukas U. Arenson, and Pablo Wainstein
EGUsphere, https://doi.org/10.5194/egusphere-2024-2244, https://doi.org/10.5194/egusphere-2024-2244, 2024
Revised manuscript under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
This study presents an analysis of ground temperature data from 53 high-altitude boreholes in permafrost regions of the Central Andes. Results show that thermal characteristics of the region align with other mountain permafrost areas, while also showing unique features. The dataset could improve permafrost models and monitoring efforts, and inform mitigation strategies. The study highlights a notable collaboration between industry, academia, and regulators for advancing climate change research.
27 Sep 2024
Observations of creep of polar firn at different temperatures
Yuan Li, Kaitlin Keegan, and Ian Baker
EGUsphere, https://doi.org/10.5194/egusphere-2024-2337, https://doi.org/10.5194/egusphere-2024-2337, 2024
Preprint under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
The compaction of firn is helpful to have new insight into the physical mechanisms of the snow-ice transition. Here, the relevant tests on the effect of temperature on firn deformation from the firn samples at different depths are indicative of different microstructural characteristics in densities and other parameters. As a result, firn deformation shows different mechanical behaviors from full-density ice, due to lower densities, higher temperatures, and greater effective stresses.
26 Sep 2024
A thicker, rather than thinner, East Antarctic Ice Sheet plateau during the Last Glacial Maximum
Cari Rand, Richard S. Jones, Andrew N. Mackintosh, Brent Goehring, and Kat Lilly
EGUsphere, https://doi.org/10.5194/egusphere-2024-2674, https://doi.org/10.5194/egusphere-2024-2674, 2024
Preprint under review for TC (discussion: final response, 6 comments)
Short summary
Short summary
In this study, we determine how recently samples from a mountain in East Antarctica were last covered by the East Antarctic ice sheet. By examining concentrations of carbon-14 in rock samples, we determined that all but the summit of the mountain was buried under glacial ice within the last 15 thousand years. Other methods of estimating past ice thicknesses are not sensitive enough to capture ice cover this recent, so we were previously unaware that ice at this site was thicker at this time.
25 Sep 2024
Anticipating CRISTAL: An exploration of multi-frequency satellite altimeter snow depth estimates over Arctic sea ice, 2018–2023
Jack C. Landy, Claude de Rijke-Thomas, Carmen Nab, Isobel Lawrence, Isolde A. Glissenaar, Robbie D. C. Mallett, Renée M. Fredensborg Hansen, Alek Petty, Michel Tsamados, Amy R. Macfarlane, and Anne Braakmann-Folgmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2904, https://doi.org/10.5194/egusphere-2024-2904, 2024
Preprint under review for TC (discussion: open, 4 comments)
Short summary
Short summary
In this study we use three satellites to test the planned remote sensing approach of the upcoming mission CRISTAL over sea ice: that its dual radars will accurately measure the heights of the top and base of snow sitting atop floating sea ice floes. Our results suggest that CRISTAL's dual radars won’t necessarily measure the snow top and base under all conditions. We find that accurate height measurements depend much more on surface roughness than on snow properties, as is commonly assumed.
25 Sep 2024
Ground penetrating radar on Rutor temperate glacier supported by ice-thickness modeling algorithms for bedrock detection
Andrea Vergnano, Diego Franco, and Alberto Godio
EGUsphere, https://doi.org/10.5194/egusphere-2024-2569, https://doi.org/10.5194/egusphere-2024-2569, 2024
Preprint under review for TC (discussion: final response, 7 comments)
Short summary
Short summary
We used radar to measure ice thickness in mountain glaciers, but it is challenging when the ice is temperate, or warm, due to signal scattering. Radar surveys of Rutor Glacier were inaccurate, so we used computer models to better estimate its thickness. Comparing estimates from computer models with radar measurements gave us a more accurate map, revealing more ice than previously thought. This combined method can improve future ice surveys and planning.
23 Sep 2024
Predicting Avalanche Danger in Northern Norway Using Statistical Models
Kai-Uwe Eiselt and Rune Grand Graversen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2865, https://doi.org/10.5194/egusphere-2024-2865, 2024
Revised manuscript accepted for TC (discussion: final response, 7 comments)
Short summary
Short summary
In this study we optimise and train a random forest model to predict avalanche danger in northern Norway based on meteorological reanalysis data. A 4-level and a binary case are considered. The model performance in the 4-level case is at the low end compared to recent similar studies. A hindcast of a measure for avalanche activity is performed from 1970-2023 and a correlation is found with the Arctic Oscillation. This has potential implications for longer-term avalanche predictability.
23 Sep 2024
Brief Communication: Sensitivity of Antarctic ice-shelf melting to ocean warming across basal melt models
Erwin Lambert and Clara Burgard
EGUsphere, https://doi.org/10.5194/egusphere-2024-2358, https://doi.org/10.5194/egusphere-2024-2358, 2024
Revised manuscript under review for TC (discussion: final response, 8 comments)
Short summary
Short summary
The effect of ocean warming on Antarctic ice sheet melting is a major source of uncertainty in estimates of future sea-level rise. We compare five melt models to show that ocean warming strongly increases melting. Despite their calibration on present-day melting, the models disagree on the amount of melt increase. In some important regions, the difference reaches a factor 100. We conclude that using various melt models is important to accurately estimate uncertainties in future sea-level rise.
20 Sep 2024
Runoff from Greenland's firn area – why do MODIS, RCMs and a firn model disagree?
Horst Machguth, Andrew Tedstone, Peter Kuipers Munneke, Max Brils, Brice Noël, Nicole Clerx, Nicolas Jullien, Xavier Fettweis, and Michiel van den Broeke
EGUsphere, https://doi.org/10.5194/egusphere-2024-2750, https://doi.org/10.5194/egusphere-2024-2750, 2024
Preprint under review for TC (discussion: final response, 6 comments)
Short summary
Short summary
Due to increasing air temperatures, surface melt expands to higher elevations on the Greenland ice sheet. This is visible on satellite imagery in the form of rivers of meltwater running across the surface of the ice sheet. We compare model results of meltwater at high elevations on the ice sheet to satellite observations. We find that each of the models shows strengths and weaknesses. A detailed look into the model results reveals potential reasons for the differences between models.
18 Sep 2024
Estimating seasonal bulk density of level sea ice using the data derived from in situ and ICESat-2 synergistic observations during MOSAiC
Yi Zhou, Xianwei Wang, Ruibo Lei, Arttu Jutila, Donald K. Perovich, Luisa von Albedyll, Dmitry V. Divine, Yu Zhang, and Christian Haas
EGUsphere, https://doi.org/10.5194/egusphere-2024-2821, https://doi.org/10.5194/egusphere-2024-2821, 2024
Revised manuscript under review for TC (discussion: final response, 7 comments)
Short summary
Short summary
This study examines how the bulk density of Arctic sea ice varies seasonally, a factor often overlooked in satellite measurements of sea ice thickness. From October to April, we found significant seasonal variations in sea ice bulk density at different spatial scales using direct observations as well as airborne and satellite data. New models were then developed to indirectly predict sea ice bulk density. This advance can improve our ability to monitor changes in Arctic sea ice.
18 Sep 2024
Evidence suggesting frazil ice crystal formation at the front of Hisinger Glacier in Dickson Fjord, Northeast Greenland
Fleur Juliëtte Rooijakkers, Ebbe Poulsen, Eugenio Ruiz-Castillo, and Søren Rysgaard
EGUsphere, https://doi.org/10.5194/egusphere-2024-2168, https://doi.org/10.5194/egusphere-2024-2168, 2024
Revised manuscript under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
Glacier melting contributes to global sea level rise, largely because of interactions between the ocean and glacier fronts. Understanding these interactions is crucial. This study explores these processes in a fjord in the understudied Northeast Greenland, using a drone to collect data near the glacier. We discovered that meltwater refreezes when it meets the cold polar water and forms ice crystals, which then float to the surface and melt when exposed to warmer ocean temperatures.
18 Sep 2024
Brief Communication: Mimicking periglacial landforms and processes in an ice-rich layered permafrost system with polydispersed melamine materials: a new concept
Emmanuel Léger, François Costard, Rémi Lambert, Albane Saintenoy, Antoine Séjourné, and Maxime Leblanc
EGUsphere, https://doi.org/10.5194/egusphere-2024-2690, https://doi.org/10.5194/egusphere-2024-2690, 2024
Revised manuscript accepted for TC (discussion: final response, 8 comments)
Short summary
Short summary
This study explores the use of lightweight plastic particles for reproducing terrestrial geomorphological cryo-induced features at laboratory scale within permafrost/active layer thawing experiment. We show that, due to their small density and peculiar hydrodynamic parameters, these lightweight particles, originally designed for river sediment deposit and erosion are suitable for re-creating cryo-induced 3D geomorphological features found in terrestrial Retrogressive Thaw Slump.
18 Sep 2024
Retrieval of Atmospheric Water Vapor and Temperature Profiles over Antarctica through Iterative Approach
Zhimeng Zhang, Shannon Brown, and Andreas Colliander
EGUsphere, https://doi.org/10.5194/egusphere-2024-2578, https://doi.org/10.5194/egusphere-2024-2578, 2024
Preprint under review for TC (discussion: final response, 2 comments)
Short summary
Short summary
Retrieving accurate water vapor and temperature profiles over land is challenging due to uncertainties in estimating surface emissions. To address this, we've developed an iterative method that combines atmospheric retrieval with surface emissions estimation. Using ATMS data across various microwave frequencies, we successfully tracked atmospheric temperature and humidity changes. Testing against Radiosonde data showed our method is efficient and accurate, especially in detecting melting events.
18 Sep 2024
Exploring microwave penetration into snow on Antarctic summer sea ice along CryoSat-2 and ICESat-2 (CRYO2ICE) orbit from multi-frequency air- and spaceborne altimetry
Renée M. Fredensborg Hansen, Henriette Skourup, Eero Rinne, Arttu Jutila, Isobel R. Lawrence, Andrew Shepherd, Knut V. Høyland, Jilu Li, Fernando Rodriguez-Morales, Sebastian B. Simonsen, Jeremy Wilkinson, Gaelle Veyssiere, Donghui Yi, René Forsberg, and Taniâ G. D. Casal
EGUsphere, https://doi.org/10.5194/egusphere-2024-2854, https://doi.org/10.5194/egusphere-2024-2854, 2024
Revised manuscript under review for TC (discussion: final response, 6 comments)
Short summary
Short summary
In December 2022, an airborne campaign collected unprecedented coincident multi-frequency radar and lidar data over sea ice along a CryoSat-2 and ICESat-2 (CRYO2ICE) orbit in the Weddell Sea useful for evaluating microwave penetration. We found limited snow penetration at Ka- and Ku-bands, with significant contributions from the air-snow interface, contradicting traditional assumptions. These findings challenge current methods for comparing air- and spaceborne altimeter estimates of sea ice.
11 Sep 2024
Subglacial and subaerial fluvial sediment transport capacity respond differently to water discharge variations
Ian Delaney, Andrew Tedstone, Mauro A. Werder, and Daniel Farinotti
EGUsphere, https://doi.org/10.5194/egusphere-2024-2580, https://doi.org/10.5194/egusphere-2024-2580, 2024
Revised manuscript under review for TC (discussion: final response, 6 comments)
Short summary
Short summary
Sediment transport in rivers and under glaciers depends on water velocity and channel width. In rivers, water discharge changes affect flow depth, width, and velocity. Under glaciers, pressurized water changes velocity more than shape. Due to these differences, this study shows that sediment transport under glaciers varies widely and peaks before water flow does, creating a complex relationship. Understanding these dynamics helps interpret sediment discharge from glaciers in different climates.
09 Sep 2024
Brief communication: Reduced bandwidth improves the depth limit of the radar coherence method for detecting ice crystal fabric asymmetry
Ole Zeising, Álvaro Arenas-Pingarrón, Alex M. Brisbourne, and Carlos Martín
EGUsphere, https://doi.org/10.5194/egusphere-2024-2519, https://doi.org/10.5194/egusphere-2024-2519, 2024
Revised manuscript under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
Ice crystal orientation influence how glacier ice deforms. Radar polarimetry is commonly used to study the bulk ice crystal orientation, but the often used coherence method only provides information of the shallow ice in fast-flowing areas. This study shows that reducing the bandwidth of high-bandwidth radar data significantly enhances the depth limit of the coherence method. This improvement helps us to better understand ice dynamics in fast-flowing ice streams.
09 Sep 2024
How to reduce sampling errors in spaceborne cloud radar-based snowfall estimates
Filippo Emilio Scarsi, Alessandro Battaglia, Maximilian Maahn, and Stef Lhermitte
EGUsphere, https://doi.org/10.5194/egusphere-2024-1917, https://doi.org/10.5194/egusphere-2024-1917, 2024
Preprint under review for TC (discussion: final response, 6 comments)
Short summary
Short summary
Snowfall measurements at high latitudes are crucial for estimating ice sheet mass balance. Spaceborne radar and radiometer missions help estimate snowfall but face uncertainties. This work evaluates uncertainties in snowfall estimates from a fixed near-nadir radar (CloudSat-like) and a conically scanning radar (WIVERN-like), determining that WIVERN will provide much better estimates than CloudSat, and at much smaller spatial and temporal scales.
06 Sep 2024
Anisotropic Scattering in Radio-Echo Sounding: Insights from Northeast Greenland
Tamara Annina Gerber, David A. Lilien, Niels F. Nymand, Daniel Steinhage, Olaf Eisen, and Dorthe Dahl-Jensen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2276, https://doi.org/10.5194/egusphere-2024-2276, 2024
Revised manuscript accepted for TC (discussion: final response, 4 comments)
Short summary
Short summary
This study explores how anisotropic scattering and birefringence affect radar signals in ice sheets. Analyzing data from Northeast Greenland, we found anisotropic scattering, caused by small changes in ice crystals, dominates the azimuthal power response. We observe a strong link between scattering strength, orientation, and ice-sheet stratigraphy. Anisotropic scattering can thus be used to determine ice crystal orientation and distinguish ice units from different climatic periods.
06 Sep 2024
Using observations of surface fracture to address ill-posed ice softness estimation over Pine Island Glacier
Trystan Surawy-Stepney, Stephen L. Cornford, and Anna E. Hogg
EGUsphere, https://doi.org/10.5194/egusphere-2024-2438, https://doi.org/10.5194/egusphere-2024-2438, 2024
Revised manuscript under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
The speed at which Antarctic ice flows is dependent on its viscosity and the sliperiness of the ice/bedrock interface. Often, these unknown variables are inferred from observations of ice speed. This article presents an attempt to make this difficult procedure easier by making use of additional information in the form of observations of crevasses, which make ice appear less viscous to numerical models. We find in some circumstances that this leads to more appealing solutions to this problem.
05 Sep 2024
Assimilation of L-band InSAR snow depth retrievals for improved snowpack quantification
Prabhakar Shrestha and Ana P. Barros
EGUsphere, https://doi.org/10.5194/egusphere-2024-2644, https://doi.org/10.5194/egusphere-2024-2644, 2024
Preprint under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
The study presents first assimilation of snow depth obtained from repeat-pass airborne L-band Synthetic Aperture Radar with a snow hydrology model. The assimilation of snow depth was found to be equivalent to downscaling of precipitation forcing with a bias correction, which improved the snowpack simulation compared to ground based observations.
04 Sep 2024
Detection and reconstruction of rock glaciers kinematic over 24 years (2000–2024) from Landsat imagery
Diego Cusicanqui, Pascal Lacroix, Xavier Bodin, Benjamin Aubrey Robson, Andreas Kääb, and Shelley MacDonell
EGUsphere, https://doi.org/10.5194/egusphere-2024-2393, https://doi.org/10.5194/egusphere-2024-2393, 2024
Preprint under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
This study presents for the first time a robust methodological approach to detect and analyse rock glacier kinematics using 24 years of Landsat 7/8 imagery. Within a small region in the semi-arid andes, 382 movements were monitored showing an average velocity of 0.3 ± 0.07 m yr-1, with rock glaciers moving faster. We highlight the value of integrating optical imagery and radar interferometry supporting monitoring of rock glacier kinematics, using available medium-resolution optical imagery.
04 Sep 2024
Warm proglacial lake temperatures and thermal undercutting drives rapid retreat of an Arctic glacier
Adrian Dye, Robert Bryant, Francesca Falcini, Joseph Mallalieu, Miles Dimbleby, Michael Beckwith, David Rippin, and Nina Kirchner
EGUsphere, https://doi.org/10.5194/egusphere-2024-2510, https://doi.org/10.5194/egusphere-2024-2510, 2024
Preprint under review for TC (discussion: final response, 6 comments)
Short summary
Short summary
Thermal undercutting of the terminus has driven recent rapid retreat of an Arctic glacier. Water temperatures (~4 °C) at the ice front were warmer than previously assumed and thermal undercutting was over several metres deep. This triggered phases of high calving activity, playing a substantial role in the rapid retreat of Kaskasapakte glacier since 2012, with important implications for processes occurring at glacier-water contact points and implications for hydrology and ecology downstream.
02 Sep 2024
Improved permafrost modeling in mountain environments by including air convection in a hydrological model
Gerardo Zegers, Masaki Hayashi, and Rodrigo Pérez-Illanes
EGUsphere, https://doi.org/10.5194/egusphere-2024-2575, https://doi.org/10.5194/egusphere-2024-2575, 2024
Preprint under review for TC (discussion: final response, 3 comments)
Short summary
Short summary
This research showed that airflow within sediment accumulations promotes cooling and sustains mountain permafrost. By enhancing a numerical model, we showed that natural air movement, driven by temperature differences between sediments and external air, allows permafrost to survive. Our work aids in predicting where and how permafrost exists, which is essential for understanding its role in mountain water systems and its response to climate change.
02 Sep 2024
Investigating the impact of reanalysis snow input on an observationally calibrated snow-on-sea-ice reconstruction
Alex Cabaj, Paul J. Kushner, and Alek A. Petty
EGUsphere, https://doi.org/10.5194/egusphere-2024-2562, https://doi.org/10.5194/egusphere-2024-2562, 2024
Revised manuscript under review for TC (discussion: final response, 6 comments)
Short summary
Short summary
The output of snow-on-sea-ice models is influenced by the choice of snowfall input used. We ran such a model with different snowfall inputs and calibrated it to observations, produced a new calibrated snow product, and regionally compared the model outputs to another snow-on-sea-ice model. The two models agree best on the seasonal cycle of snow in the central Arctic Ocean. However, estimated snow trends in some regions can depend more on the snowfall input than on the choice of model.
02 Sep 2024
Advancing interpretation of incoherent scattering in ice penetrating radar data used for ice core site selection
Ellen Lucinda Mutter and Nicholas Holschuh
EGUsphere, https://doi.org/10.5194/egusphere-2024-2450, https://doi.org/10.5194/egusphere-2024-2450, 2024
Preprint under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
“Ice Penetrating Radar” is a technology that lets us see through ice sheets, capturing their organized, layered structure. But near the ice bottom, radar data are much more complicated, with signals that are disordered and often ignored. Here, we work to better understand these complex signals by comparing radar data to measurements of ice structure from ice cores. We show these signals reflect structural changes in the ice itself, and can inform our search for ancient climate records.
27 Aug 2024
The source, quantity, and spatial distribution of interfacial water during glide-snow avalanche release: experimental evidence from field monitoring
Amelie Fees, Michael Lombardo, Alec van Herwijnen, Peter Lehmann, and Jürg Schweizer
EGUsphere, https://doi.org/10.5194/egusphere-2024-2485, https://doi.org/10.5194/egusphere-2024-2485, 2024
Revised manuscript accepted for TC (discussion: final response, 4 comments)
Short summary
Short summary
Glide-snow avalanches release at the soil-snow interface due to a loss of friction which is suspected to be linked to interfacial water. The importance of the interfacial water was investigated with a spatio-temporal soil and local snow monitoring setup in an avalanche-prone slope. Seven glide-snow avalanches released on the monitoring grid (season 2021/22 to 2023/24) and provided insights into the source, quantity, and spatial distribution of interfacial water before avalanche release.
26 Aug 2024
Separating the albedo reducing effect of different light absorbing particles on snow using deep learning
Lou-Anne Chevrollier, Adrien Wehrlé, Joseph M. Cook, Norbert Pirk, Liane G. Benning, Alexandre M. Anesio, and Martyn Tranter
EGUsphere, https://doi.org/10.5194/egusphere-2024-2583, https://doi.org/10.5194/egusphere-2024-2583, 2024
Revised manuscript accepted for TC (discussion: final response, 6 comments)
Short summary
Short summary
Light absorbing particles (LAPs) are often present as a mixture on snow surfaces, and are important to disentangle because their darkening effect varies, but also because the processes governing their presence and accumulation on snow surfaces are different. This study presents a novel method to retrieve the concentration and albedo reducing effect of different LAPs present at the snow surface from surface spectral albedo. The method is then successfully applied to observations on seasonal snow.
26 Aug 2024
Comprehensive Assessment of Stress Calculations for Crevasse Depths and Testing with Crevasse Penetration as Damage
Benjamin Reynolds, Sophie Nowicki, and Kristin Poinar
EGUsphere, https://doi.org/10.5194/egusphere-2024-2424, https://doi.org/10.5194/egusphere-2024-2424, 2024
Preprint under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
Stress in glaciers, ice sheets, and ice shelves causes crevasses, which are important drivers of retreat and sea level rise. We find that different assumptions found in the literature lead to significantly (up to a factor of two) different crevasse depths and recommend a calculation based on observed ice flow patterns. We find that other stress calculations likely overpredict ice shelf vulnerability to hydrofracture.
23 Aug 2024
Aspect Controls on the Spatial Re-Distribution of Snow Water Equivalence in a Subalpine Catchment
Kori L. Mooney and Ryan W. Webb
EGUsphere, https://doi.org/10.5194/egusphere-2024-2364, https://doi.org/10.5194/egusphere-2024-2364, 2024
Preprint under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
This study observes the movement of snow water equivalence (SWE) during mid-winter surface melt and spring snowmelt periods. We observed the south facing slope that experienced mid-winter surface melt events, showed meltwater flowing downslope through the snow. The north facing slope saw similar redistribution of meltwater during the spring snowmelt period.
15 Aug 2024
Projecting the Response of Greenland's Peripheral Glaciers to Future Climate Change: Glacier Losses, Sea Level Impact, Freshwater Contributions, and Peak Water Timing
Muhammad Shafeeque, Jan-Hendrik Malles, Anouk Vlug, Marco Möller, and Ben Marzeion
EGUsphere, https://doi.org/10.5194/egusphere-2024-2184, https://doi.org/10.5194/egusphere-2024-2184, 2024
Preprint under review for TC (discussion: open, 1 comment)
Short summary
Short summary
The study explores how Greenland's peripheral glaciers will change due to future climate change using OGGM. They might lose 52 % of ice mass. We predict changes in ice discharge versus melting, affecting fjords, sea levels, and ocean currents. Freshwater runoff composition, seasonality, and peak water timing vary by regions and scenarios. Our findings stress the importance of reducing greenhouse gases to minimize impacts on these glaciers, which influence local ecosystems and global sea level.
14 Aug 2024
The demise of the world's largest piedmont glacier: a probabilistic forecast
Douglas Brinkerhoff, Brandon Tober, Michael Daniel, Victor Devaux-Chupin, Michael Christoffersen, John W. Holt, Christopher F. Larsen, Mark Fahnestock, Michael G. Loso, Kristin M. F. Timm, Russell Mitchell, and Martin Truffer
EGUsphere, https://doi.org/10.5194/egusphere-2024-2354, https://doi.org/10.5194/egusphere-2024-2354, 2024
Revised manuscript accepted for TC (discussion: final response, 4 comments)
Short summary
Short summary
Sít' Tlein is one of the largest glaciers in the world outside of the polar regions, and we know that it has been rapidly thinning. To forecast how this glacier will change in the future, we combine a computer model of ice flow with measurements from many different sources. Our model tells us that with high probability, Sít' Tlein's lower reaches are going to disappear in the next century and a half, creating a new bay or lake along Alaska's coastline.
12 Aug 2024
Brief Communication: Representation of heat conduction into the ice in marine ice shelf melt modeling
Jonathan Wiskandt and Nicolas Jourdain
EGUsphere, https://doi.org/10.5194/egusphere-2024-2239, https://doi.org/10.5194/egusphere-2024-2239, 2024
Revised manuscript under review for TC (discussion: final response, 6 comments)
Short summary
Short summary
In ocean models, submarine melt of ice shelves is parameterized based on the heat budget at the interface. The heat budget includes the ocean heat transport, the heat conducted into the ice and the heat available for melting. Here we compare three different approaches to estimate the heat conduction. We show that the most accurate approximation is not the one used most, despite it overestimating the melt by up to 25 % and not being computationally more expensive.
09 Aug 2024
Glacier damage evolution over ice flow timescales
Meghana Ranganathan, Alexander A. Robel, Alexander Huth, and Ravindra Duddu
EGUsphere, https://doi.org/10.5194/egusphere-2024-1850, https://doi.org/10.5194/egusphere-2024-1850, 2024
Revised manuscript accepted for TC (discussion: final response, 4 comments)
Short summary
Short summary
The rate of ice loss from ice sheets is controlled by the flow of ice from the center of the ice sheet and internal fracturing of the ice. These are coupled – fractures can reduce the viscosity of ice and enable more rapid flow, and rapid flow can cause fracturing of ice. We present a simplified way of representing damage that is applicable to long-timescale flow estimates. Using this model, we find that including fracturing into an ice sheet simulation can increase the loss of ice by 13–29 %.
08 Aug 2024
An ice-sheet modelling framework for leveraging sub-ice drilling to assess sea level potential applied to Greenland
Benjamin A. Keisling, Joerg M. Schaefer, Robert M. DeConto, Jason P. Briner, Nicolás E. Young, Caleb K. Walcott, Gisela Winckler, Allie Balter-Kennedy, and Sridhar Anandakrishnan
EGUsphere, https://doi.org/10.5194/egusphere-2024-2427, https://doi.org/10.5194/egusphere-2024-2427, 2024
Preprint under review for TC (discussion: final response, 2 comments)
Short summary
Short summary
Understanding how much the Greenland ice sheet melted in response to past warmth helps better predicting future sea-level change. Here we present a framework for using numerical ice-sheet model simulations to provide constraints on how much mass the ice sheet loses before different areas become ice-free. As observations from subglacial archives become more abundant, this framework can guide subglacial sampling efforts to gain the most robust information about past ice-sheet geometries.
07 Aug 2024
Projected climate change will double the Late Holocene maximum to present ice loss in Central-Western Greenland by 2070
Josep Bonsoms, Marc Oliva, Juan Ignacio López-Moreno, and Guillaume Jouvet
EGUsphere, https://doi.org/10.5194/egusphere-2024-1770, https://doi.org/10.5194/egusphere-2024-1770, 2024
Revised manuscript accepted for TC (discussion: final response, 4 comments)
Short summary
Short summary
The extent to which Greenland's peripheral glaciers and ice caps current and future ice loss rates are unprecedented within the Holocene is poorly understood. This study connects the maximum ice extent of the Late Holocene with present and future glacier evolution in the Nuussuaq Peninsula (Central-Western Greenland). By > 2070 glacier mass loss may double the rate from the Late Holocene to the present, highlighting significant impacts of anthropogenic climate change.
07 Aug 2024
Contrasting patterns of change in snowline altitude across five Himalayan catchments
Orie Sasaki, Evan Stewart Miles, Francesca Pellicciotti, Akiko Sakai, and Koji Fujita
EGUsphere, https://doi.org/10.5194/egusphere-2024-2026, https://doi.org/10.5194/egusphere-2024-2026, 2024
Preprint under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
This study proposes a new method to detect snowline altitude (SLA) using the Google Earth Engine platform with high-resolution satellite imagery, applicable anywhere in the world. Applying this method to five glaciated watersheds in the Himalayas reveals regional consistencies and differences in snow dynamics. We also investigate the primary controls of these dynamics by analyzing climatic factors and topographic characteristics.
06 Aug 2024
Finely-resolved along-track wave attenuation estimates in the Antarctic marginal ice zone from ICESat-2
Joey J. Voermans, Alexander D. Fraser, Jill Brouwer, Michael H. Meylan, Qingxiang Liu, and Alexander V. Babanin
EGUsphere, https://doi.org/10.5194/egusphere-2024-2104, https://doi.org/10.5194/egusphere-2024-2104, 2024
Preprint under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
Limited measurements of waves in sea ice exist, preventing our understanding of wave attenuation in sea ice under a wide range of ice conditions. Using satellite observations from ICESat-2 we observe an overall linear increase of the wave attenuation rate with distance into the marginal ice zone. While attenuation may vary greatly locally, this finding may provide opportunities for the modelling of waves in sea ice at global and climate scales when such fine detail may not be needed.
02 Aug 2024
Weakening of meltwater plume reduces basal melting in summer at Ekström Ice Shelf, Antarctica
Ole Zeising, Tore Hattermann, Lars Kaleschke, Sophie Berger, Reinhard Drews, M. Reza Ershadi, Tanja Fromm, Frank Pattyn, Daniel Steinhage, and Olaf Eisen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2109, https://doi.org/10.5194/egusphere-2024-2109, 2024
Preprint under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
Basal melting of ice shelves impacts the mass loss of the Antarctic Ice Sheet. This study focuses on the Ekström Ice Shelf in East Antarctica, using multi-year data from an autonomous radar system. Results show a surprising seasonal pattern of high melt rates in winter and spring. Sea-ice growth correlates with melt rates, indicating that in winter, dense water enhances plume activity and melt rates. Understanding these dynamics is crucial for improving future mass balance projections.
01 Aug 2024
Sentinel-1 cross-polarization ratio as a proxy for surface mass balance across east Antarctic ice rises
Thore Kausch, Stef Lhermitte, Marie G. P. Cavitte, Eric Keenan, and Shashwat Shukla
EGUsphere, https://doi.org/10.5194/egusphere-2024-2077, https://doi.org/10.5194/egusphere-2024-2077, 2024
Revised manuscript under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
Determining the net balance of snow accumulation on the surface of Antarctica is challenging. Sentinel-1 satellite sensors, which can see through snow, offer a promising method. However, linking their signals to snow amounts is complex due to snow's internal structure and limited on-the-ground data. This study found a connection between satellite signals and snow levels at three locations in Dronning Maud Land. Using models and field data, the method shows potential for wider use in Antarctica.
29 Jul 2024
A reconstruction of the ice thickness of the Antarctic Peninsula Ice Sheet north of 70º S
Kaian Shahateet, Johannes J. Fürst, Francisco Navarro, Thorsten Seehaus, Daniel Farinotti, and Matthias Braun
EGUsphere, https://doi.org/10.5194/egusphere-2024-1571, https://doi.org/10.5194/egusphere-2024-1571, 2024
Revised manuscript accepted for TC (discussion: final response, 4 comments)
Short summary
Short summary
In the present work, we provide a new ice-thickness reconstruction of the Antarctic Peninsula Ice Sheet north of 70º S by using inversion modeling. This model consists of two steps; the first takes basic assumptions of the rheology of the glacier, and the second uses mass conservation to improve the reconstruction where the previously made assumptions are expected to fail. Validation with independent data showed that our reconstruction improved compared to other reconstruction available.
25 Jul 2024
Brief communication: Not as dirty as they look, flawed airborne and satellite snow spectra
Edward H. Bair, Dar A. Roberts, David R. Thompson, Philip G. Brodrick, Brenton A. Wilder, Niklas Bohn, Chris J. Crawford, Nimrod Carmon, Carrie M. Vuyovich, and Jeff Dozier
EGUsphere, https://doi.org/10.5194/egusphere-2024-1681, https://doi.org/10.5194/egusphere-2024-1681, 2024
Revised manuscript under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
Key to the success of future satellite missions is understanding snowmelt in our warming climate, having implications for nearly 2 billion people. An obstacle is that an artifact, called the hook, is often mistaken for soot or dust. Instead it is caused by 3 amplifying effects: 1) a background reflectance that is too dark; 2) level terrain assumptions; 3) and differences in optical constants of ice. Sensor calibration and directional effects may also contribute. Solutions are presented.
24 Jul 2024
Modeled Greenland Ice Sheet evolution constrained by ice-core-derived Holocene elevation histories
Mikkel Langgaard Lauritzen, Anne Munck Solgaard, Nicholas Mossor Rathmann, Bo Møllesøe Vinther, Aslak Grindsted, Brice Noël, Guðfinna Aðalgeirsdóttir, and Christine Schøtt Hvidberg
EGUsphere, https://doi.org/10.5194/egusphere-2024-2223, https://doi.org/10.5194/egusphere-2024-2223, 2024
Revised manuscript under review for TC (discussion: final response, 11 comments)
Short summary
Short summary
We study the Holocene period, which started about 11,700 years ago, through 841 computer simulations to better understand the history of the Greenland Ice Sheet. We accurately match historical surface elevation records, verifying our model. The simulations show that an ice bridge that used to connect the Greenland ice sheet to Canada collapsed around 4,900 years ago and still influences the ice sheet. Over the past 500 years, the Greenland ice sheet has contributed 12 millimeters to sea levels.
24 Jul 2024
Time Series Analysis of C-Band Sentinel-1 SAR Over Mountainous Snow with Physical Models of Volume and Surface Scattering
Firoz Kanti Borah, Jonas-Fredrick Jans, Zhenming Huang, Leung Tsang, Hans Lievens, and Edward Kim
EGUsphere, https://doi.org/10.5194/egusphere-2024-1825, https://doi.org/10.5194/egusphere-2024-1825, 2024
Preprint under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
In this paper, we study radar data collected by Sentinel-1 over mountain regions of Alps. Using physical models of snow and soil surface scattering, we show the reasons for the high sensitivity of cross-polarized observations with snow depth. This accurate modelling for cross-pol using physical models can be then used to retrieve snow depth at for very deep snow at mountain regions using the cross-pol signal.
22 Jul 2024
Improved basal drag of the West Antarctic Ice Sheet from L-curve analysis of inverse models utilizing subglacial hydrology simulations
Lea-Sophie Höyns, Thomas Kleiner, Andreas Rademacher, Martin Rückamp, Michael Wolovick, and Angelika Humbert
EGUsphere, https://doi.org/10.5194/egusphere-2024-1251, https://doi.org/10.5194/egusphere-2024-1251, 2024
Revised manuscript under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
Glaciers' sliding over bedrock is governed by water pressure in the hydrological system underneath the glacier and the roughness of the land underneath the glacier. We estimate this roughness using a modelling approach, which optimises this unknown parameter. The water pressure is simulated, too, which improves the robustness of the computed drag at the ice sheet base. We provide this data to other modellers and scientists doing geophysical field observations.
22 Jul 2024
Unseasonal atmospheric river drives anomalous glacier accumulation in the ablation season of the subtropical Andes
Claudio Bravo, Sebastián Cisternas, Maximiliano Viale, Pablo Paredes, Deniz Bozkurt, and Nicolás García-Lee
EGUsphere, https://doi.org/10.5194/egusphere-2024-1958, https://doi.org/10.5194/egusphere-2024-1958, 2024
Revised manuscript accepted for TC (discussion: final response, 4 comments)
Short summary
Short summary
We analysed the impact of a summer snow accumulation event, linked to an atmospheric river in Central Chile. Using observational and remote sensing data, we show that accumulation prevails in all the glaciers of the Maipo River basin and this sole event defines that the Olivares Alfa glacier mass balance was close to equilibrium, despite being a dry year. This demonstrates that an unseasonal accumulation event can counteract the seasonal trends affecting subtropical Andean glaciers
19 Jul 2024
Ice sheet model simulations reveal polythermal ice conditions existed across the NE USA during the Last Glacial Maximum
Joshua Cuzzone, Aaron Barth, Kelsey Barker, and Mathieu Morlighem
EGUsphere, https://doi.org/10.5194/egusphere-2024-2091, https://doi.org/10.5194/egusphere-2024-2091, 2024
Revised manuscript accepted for TC (discussion: final response, 4 comments)
Short summary
Short summary
We use an ice sheet model to simulate the Last Glacial Maximum conditions of the Laurentide Ice Sheet (LIS) across the Northeast United States. A complex thermal history existed for the (LIS), that allowed for high erosion across most of the NE USA, but prevented erosion across high elevation mountain peaks and areas where ice flow was slow. This has implications for geologic studies which rely on the erosional nature of the LIS to reconstruct its glacial history and landscape evolution.
17 Jul 2024
Increased Grounding Zone Ice Flux and Dynamic Thinning Creates Vulnerable Regions on George VI Ice Shelf, Antarctic Peninsula
Indrani Das, Jowan Barnes, James Smith, Renata Constantino, Sidney Hemming, and Laurie Padman
EGUsphere, https://doi.org/10.5194/egusphere-2024-1564, https://doi.org/10.5194/egusphere-2024-1564, 2024
Preprint under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
George VI Ice Shelf (GVIIS) on the Antarctic Peninsula is currently thinning and the glaciers feeding it are accelerating. Geologic evidence indicates that GVIIS had disintegrated several thousand years ago due to ocean and atmosphere warming. Here, we use remote sensing and numerical modeling to show that strain thinning reduces buttressing of grounded ice, creating a positive feedback of accelerated ice inflow to the southern GVIIS, likely making it more vulnerable than the northern sector.
16 Jul 2024
Optimizing rock glaciers activity classification in South Tyrol (North-East Italy): integrating multisource data with statistical modelling
Chiara Crippa, Stefan Steger, Giovanni Cuozzo, Francesca Bearzot, Volkmar Mair, and Claudia Notarnicola
EGUsphere, https://doi.org/10.5194/egusphere-2024-1511, https://doi.org/10.5194/egusphere-2024-1511, 2024
Revised manuscript under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
Our study, focused on South Tyrol (NE Italy), develops an updated and comprehensive activity classification system for all rock glaciers in the current regional inventory. Using multisource products, we integrate climatic, morphological and DInSAR data in replicable routines and multivariate statistical methods producing a comprehensive classification based on the updated RGIK 2023 guidelines. Results leave only 3.5% of the features non-classified respect to the 13–18.5% of the previous studies.
15 Jul 2024
Multiple modes of shoreline change along the Alaskan Beaufort Sea observed using ICESat-2 altimetry and satellite imagery
Marnie B. Bryant, Adrian A. Borsa, Claire C. Masteller, Roger J. Michaelides, Matthew R. Siegfried, Adam P. Young, and Eric J. Anderson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1656, https://doi.org/10.5194/egusphere-2024-1656, 2024
Revised manuscript accepted for TC (discussion: final response, 10 comments)
Short summary
Short summary
We measure shoreline change across a 7-km stretch of coastline on the Alaskan Beaufort Sea Coast between 2019–2022 using multispectral imagery from Planet and satellite altimetry from ICESat-2. We find that shoreline change rates are high and variable, and that different shoreline types show distinct patterns of change in shoreline position and topography. We discuss how the observed changes may be driven by both time-varying ocean and air conditions and spatial variations in morphology.
12 Jul 2024
Calibrating calving parameterizations using graph neural network emulators: Application to Helheim Glacier, East Greenland
Younghyun Koo, Gong Cheng, Mathieu Morlighem, and Maryam Rahnemoonfar
EGUsphere, https://doi.org/10.5194/egusphere-2024-1620, https://doi.org/10.5194/egusphere-2024-1620, 2024
Revised manuscript under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
Calving, the breaking of ice bodies from the terminus of a glacier, plays an important role in the mass losses of Greenland ice sheets. However, calving parameters have been poorly understood because of the intensive computational demands of traditional numerical models. To address this issue and find the optimal calving parameter that best represents real observations, we develop deep-learning emulators based on graph neural network architectures.
11 Jul 2024
What does the impurity variability at the microscale represent in ice cores? Insights from a conceptual approach
Piers Larkman, Rachael H. Rhodes, Nicolas Stoll, Carlo Barbante, and Pascal Bohleber
EGUsphere, https://doi.org/10.5194/egusphere-2024-1723, https://doi.org/10.5194/egusphere-2024-1723, 2024
Revised manuscript accepted for TC (discussion: final response, 4 comments)
Short summary
Short summary
Impurities in ice cores can be preferentially located at the boundaries between crystals of ice, impacting the interpretation of high-resolution data collected from ice core samples. This work finds that one dimensional signals can be significantly effected by this association, meaning experiments collecting data at high resolution must be carefully designed. Accounting for this effect is important for interpreting ice core data, especially for deep ice samples.
08 Jul 2024
High-Fidelity Modeling of Turbulent Mixing and Basal Melting in Seawater Intrusion Under Grounded Ice
Madeline S. Mamer, Alexander A. Robel, Chris C. K. Lai, Earle Wilson, and Peter Washam
EGUsphere, https://doi.org/10.5194/egusphere-2024-1970, https://doi.org/10.5194/egusphere-2024-1970, 2024
Revised manuscript under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
In this work, we simulate estuary-like seawater intrusions into the subglacial hydrologic system for marine outlet glaciers. We find the largest controls on seawater intrusion are the subglacial space geometry and meltwater discharge velocity. Further, we highlight the importance of extending ocean-forced ice loss to grounded portions of the ice sheet, which is currently not represented in models coupling ice sheets to ocean dynamics.
08 Jul 2024
Sea ice in the Baltic Sea during 1993/94–2020/21 ice seasons from satellite observations and model reanalysis
Shakti Singh, Ilja Maljutenko, and Rivo Uiboupin
EGUsphere, https://doi.org/10.5194/egusphere-2024-1701, https://doi.org/10.5194/egusphere-2024-1701, 2024
Revised manuscript under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
The sea ice statistics study highlights the bias in model estimations compared to satellite data and provides a simple approach to minimise that. During the study period, the model estimates sea ice forming slightly earlier but aligns well with the satellite data for ice season's end. Rapid decrease in the sea ice parameters is observed across the Baltic Sea, especially the ice thickness in the Bothnian Bay sub-basin. These statistics could be crucial for regional adaptation strategies.
04 Jul 2024
Calibrated sea level contribution from the Amundsen Sea sector, West Antarctica, under RCP8.5 and Paris 2C scenarios
Sebastian H. R. Rosier, G. Hilmar Gudmundsson, Adrian Jenkins, and Kaitlin A. Naughten
EGUsphere, https://doi.org/10.5194/egusphere-2024-1838, https://doi.org/10.5194/egusphere-2024-1838, 2024
Revised manuscript under review for TC (discussion: final response, 6 comments)
Short summary
Short summary
Glaciers in the Amundsen Sea region of Antarctica have been retreating and losing mass, but their future contribution to global sea level rise remains highly uncertain. We use an ice sheet model and uncertainty quantification methods to evaluate the probable range of mass loss from this region for two future climate scenarios and find that the rate of ice loss until 2100 will likely remain similar to present-day observations, with little sensitivity to climate scenario over this short timeframe.
02 Jul 2024
Rapid regional assessment of rock glacier activity based on DInSAR wrapped phase signal
Federico Agliardi, Chiara Crippa, Daniele Codara, and Federico Franzosi
EGUsphere, https://doi.org/10.5194/egusphere-2024-1589, https://doi.org/10.5194/egusphere-2024-1589, 2024
Preprint under review for TC (discussion: open, 1 comment)
Short summary
Short summary
We propose a novel, semi-automatic methodology that combines DInSAR wrapped phase deformation signals, available information on permafrost extent, geomorphological data and multivariate statistics to characterize the state of activity of 514 periglacial landforms over 1000 km2 in Upper Valtellina (Italian Central Alps). We demonstrate the potential of raw SAR interferometric data to rapidly update periglacial landform inventories and track the evolution of the alpine cryosphere.
01 Jul 2024
Seasonality and scenario dependence of rapid Arctic sea ice loss events in CMIP6 simulations
Annelies Sticker, François Massonnet, Thierry Fichefet, Patricia DeRepentigny, Alexandra Jahn, David Docquier, Christopher Wyburn-Powell, Daphne Quint, Erica Shivers, and Makayla Ortiz
EGUsphere, https://doi.org/10.5194/egusphere-2024-1873, https://doi.org/10.5194/egusphere-2024-1873, 2024
Preprint under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
Our study analyses rapid Arctic sea ice loss events (RILEs), which are significant reductions in sea ice extent. RILEs are expected throughout the year, varying in frequency and duration with the seasons. Our research gives a year-round analysis of their characteristics in climate models and suggests that summer RILEs could begin before the mid-century. Understanding these events is crucial as they can have profound impacts on the Arctic environment.
01 Jul 2024
Grounded Ridge Detection and Characterization along the Alaskan Arctic Coastline using ICESat-2 Surface Height Retrievals
Kennedy A. Lange, Alice C. Bradley, Kyle Duncan, and Sinéad L. Farrell
EGUsphere, https://doi.org/10.5194/egusphere-2024-1885, https://doi.org/10.5194/egusphere-2024-1885, 2024
Revised manuscript accepted for TC (discussion: final response, 4 comments)
Short summary
Short summary
Grounded sea ice ridges stabilize nearshore sea ice by anchoring it in the seafloor. In this study, we develop a method to identify grounded ridges in satellite data, and measure the height, depth, distance from shore, and width of a thousand ridges across the Alaskan Arctic, finding regional differences in these metrics across the coastline. This method lays the groundwork for a better understanding of nearshore ice stability, holding importance for Arctic community food security and safety.
28 Jun 2024
Review article: Feature tracing in radio-echo sounding products of terrestrial ice sheets and planetary bodies
Hameed Moqadam and Olaf Eisen
EGUsphere, https://doi.org/10.5194/egusphere-2024-1674, https://doi.org/10.5194/egusphere-2024-1674, 2024
Revised manuscript under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
This is an overview on methodologies that have been applied to map the internal reflection horizons, or ice-layer boundaries, of ice sheets on earth and other planets. We briefly explain radar applications in glaciology and the methods which have been used and published. There are summaries of the published work of the last two decades. Finally, we conclude by introducing the gaps and opportunities for further advancement in this field, and present possible future directions.
25 Jun 2024
Modulating surface heat flux through sea ice leads improves Arctic sea ice simulation in the coupled EC-Earth3
Tian Tian, Richard Davy, Leandro Ponsoni, and Shuting Yang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1865, https://doi.org/10.5194/egusphere-2024-1865, 2024
Revised manuscript under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
We introduced a modulating factor to the surface heat flux in the EC-Earth3 model to address the lack of parameterization for turbulent exchange over sea ice leads and correct the bias in Arctic sea ice. Three pairwise experiments showed that the amplified heat flux effectively reduces the overestimated sea ice, especially during cold periods, thereby improving agreement with observed and reanalysis data for sea ice area, volume, and ice edge, particularly in the North Atlantic Sector.
24 Jun 2024
Impact of shrub branches on the shortwave vertical irradiance profile in snow
Florent Domine, Mireille Quémener, Ludovick Bégin, Benjamin Bouchard, Valérie Dionne, Sébastien Jerczynski, Raphaël Larouche, Félix Lévesque-Desrosiers, Simon-Olivier Philibert, Marc-André Vigneault, Ghislain Picard, and Daniel C. Côté
EGUsphere, https://doi.org/10.5194/egusphere-2024-1582, https://doi.org/10.5194/egusphere-2024-1582, 2024
Revised manuscript accepted for TC (discussion: final response, 4 comments)
Short summary
Short summary
Shrubs buried in snow absorb solar radiation and reduce irradiance in the snowpack. This decreases photochemical reactions rates and emissions to the atmosphere. By monitoring irradiance in snowpacks with and without shrubs, we conclude that shrubs absorb solar radiation as much as 140 ppb of soot and reduce irradiance by a factor of two. Shrub expansion in the Arctic may therefore affect tropospheric composition during the snow season, with climatic effects.
21 Jun 2024
Monitoring snow wetness evolution from satellite with Sentinel-1 multi-track composites
Gwendolyn Dasser, Valentin T. Bickel, Marius Rüetschi, Mylène Jacquemart, Mathias Bavay, Elisabeth D. Hafner, Alec van Herwijnen, and Andrea Manconi
EGUsphere, https://doi.org/10.5194/egusphere-2024-1510, https://doi.org/10.5194/egusphere-2024-1510, 2024
Preprint under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
Understanding snowpack wetness is crucial for predicting wet snow avalanches, but detailed data is often limited to certain locations. Using satellite radar, we monitor snow wetness spatially continuously. By combining different radar tracks from Sentinel-1, we improved spatial resolution and tracked snow wetness over several seasons. Our results indicate higher snow wetness to correlate with increased wet snow avalanche activity, suggesting our method can help identify potential risk areas.
21 Jun 2024
Inter-model differences in 21st Century Glacier Runoff for the World’s Major River Basins
Finn Wimberly, Lizz Ultee, Lilian Schuster, Matthias Huss, David R. Rounce, Fabien Maussion, Sloan Coats, Jonathan Mackay, and Erik Holmgren
EGUsphere, https://doi.org/10.5194/egusphere-2024-1778, https://doi.org/10.5194/egusphere-2024-1778, 2024
Revised manuscript accepted for TC (discussion: final response, 4 comments)
Short summary
Co-editor-in-chief
Short summary
Glacier models have historically been used to understand glacier melt’s contribution to sea level rise. The capacity to project seasonal glacier runoff is a relatively recent development for these models. In this study we provide the first model intercomparison of runoff projections for the glacier evolution models capable of simulating future runoff globally. We compare model projections from 2000 to 2100 for all major river basins larger than 3000 km2 with over 1 % of initial glacier cover.
Co-editor-in-chief
This study explores how choice of glacier and GCM model can impact prediction of future runoff for 75 of the world's major river basins. It is a very timely piece of research given ongoing pressures on river flow in glaciated regions which are on track to worsen, and offers a framework from which modellers can produce policy-relevant information related to future contribution of glaciers to freshwater resources, including consideration of uncertainty.
Hide
20 Jun 2024
National Weather Service Alaska Sea Ice Program: Gridded ice concentration maps for the Alaskan Arctic
Astrid Pacini, Michael Steele, and Mary-Beth Schreck
EGUsphere, https://doi.org/10.5194/egusphere-2024-1813, https://doi.org/10.5194/egusphere-2024-1813, 2024
Revised manuscript accepted for TC (discussion: final response, 4 comments)
Short summary
Short summary
While sea ice concentration data are critically important for climate research, obtaining high-resolution data remains a challenge. Here we present and validate the US National Weather Service Alaska Sea Ice Program ice maps (ASIP). These ice maps are shown to be highly accurate, and when compared against existing datasets, are shown to outperform other products in low concentration regions. Therefore, ASIP data provide an exciting new tool to study ice conditions in the Pacific Arctic.
18 Jun 2024
Supraglacial lake drainage through gullies and fractures
Angelika Humbert, Veit Helm, Ole Zeising, Niklas Neckel, Matthias H. Braun, Shfaqat Abbas Khan, Martin Rückamp, Holger Steeb, Julia Sohn, Matthias Bohnen, and Ralf Müller
EGUsphere, https://doi.org/10.5194/egusphere-2024-1151, https://doi.org/10.5194/egusphere-2024-1151, 2024
Revised manuscript under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
We study the evolution of a massive lake on the Greenland Ice Sheet using satellite and airborne data and some modelling. The lake is emptying rapidly. The water flows to the base of the glacier through cracks and gullies that remain visible over years. Some of them become reactive. We find features inside the glacier that stem from the drainage events with even 1 km width. These features are persistent over the years, although they are changing in shape.
17 Jun 2024
Current reversal leads to regime change in Amery Ice Shelf cavity in the twenty-first century
Jing Jin, Antony J. Payne, and Christopher Y. S. Bull
EGUsphere, https://doi.org/10.5194/egusphere-2024-1287, https://doi.org/10.5194/egusphere-2024-1287, 2024
Revised manuscript accepted for TC (discussion: final response, 6 comments)
Short summary
Short summary
The Amery Ice Shelf cavity is one of the largest cold cavities filled by relatively cold Dense Shelf Water. However, in this study, we show that warm intrusion of modified Circumpolar Deep Water flushes the Amery cavity, which changes it from a cold cavity to a warm cavity and leads to an abrupt increase in basal melt rate in the 2060s. The shift to the warm cavity is attributed to a freshening-driven current reversal in front of the ice shelf.
14 Jun 2024
Age, thinning and spatial origin of the Beyond EPICA ice from a 2.5D ice flow model
Ailsa Chung, Frédéric Parrenin, Robert Mulvaney, Luca Vittuari, Massimo Frezzotti, Antonio Zanutta, David A. Lilien, Marie G. P. Cavitte, and Olaf Eisen
EGUsphere, https://doi.org/10.5194/egusphere-2024-1650, https://doi.org/10.5194/egusphere-2024-1650, 2024
Revised manuscript under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
We applied an ice flow model to a flow line from the summit of Dome C to the Beyond EPICA ice core drill site on Little Dome C in Antarctica. Results show that the oldest ice at the drill site may be 1.12 Ma (at age density of 20 kyr/m) and originate from around 15 km upstream. We also discuss the nature of the 200–250 m thick basal layer which could be composed of accreted ice, stagnant ice, or even disturbed ice containing debris.
12 Jun 2024
Impact of Snow Thermal Conductivity Schemes on pan-Arctic Permafrost Dynamics in CLM5.0
Adrien Damseaux, Heidrun Matthes, Victoria R. Dutch, Leanne Wake, and Nick Rutter
EGUsphere, https://doi.org/10.5194/egusphere-2024-1412, https://doi.org/10.5194/egusphere-2024-1412, 2024
Revised manuscript accepted for TC (discussion: final response, 4 comments)
Short summary
Short summary
Models often underestimate the role of snow cover in permafrost regions, leading to soil temperatures and permafrost dynamics inaccuracies. Through the use of a snow thermal conductivity scheme better adapted to this region, we mitigated soil temperature biases and permafrost extent overestimation within a land surface model. Our study sheds light on the importance of refining snow-related processes in models to enhance our understanding of permafrost dynamics in the context of climate change.
11 Jun 2024
Model-based analysis of solute transport and potential carbon mineralization in a permafrost catchment under seasonal variability and climate change
Alexandra Hamm, Erik Schytt Mannerfelt, Aaron A. Mohammed, Scott L. Painter, Ethan T. Coon, and Andrew Frampton
EGUsphere, https://doi.org/10.5194/egusphere-2024-1606, https://doi.org/10.5194/egusphere-2024-1606, 2024
Revised manuscript under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
The fate of thawing permafrost carbon is essential to our understanding of the permafrost-climate feedback and projections of future climate. Here, we modeled the transport of carbon in the groundwater within the active layer. We find that carbon transport velocities and potential microbial mineralization rates are strongly dependent on liquid saturation in the seasonally thawed active layer. In a warming climate, the rate at which permafrost thaws determines how fast carbon can be transported.
10 Jun 2024
Disentangling the drivers behind the post-2000 retreat of Sermeq Kujalleq, Greenland (Jakobshavn Isbrae)
Ziad Rashed, Alexander Robel, and Helene Seroussi
EGUsphere, https://doi.org/10.5194/egusphere-2024-1435, https://doi.org/10.5194/egusphere-2024-1435, 2024
Revised manuscript accepted for TC (discussion: final response, 4 comments)
Short summary
Short summary
Sermeq Kujalleq, Greenland's largest glacier, has significantly retreated since the late 1990s in response to warming ocean temperatures. Using a large ensemble approach, our simulations show that the retreat is mainly initiated by the arrival of warm water but sustained and accelerated by the glacier's position over deeper bed troughs and vigorous calving. We highlight the need for models of ice mélange to project glacier behavior under rapid calving regimes.
10 Jun 2024
Ground ice estimation in permafrost samples using industrial Computed Tomography
Mahya Roustaei, Joel Pumple, Jordan Harvey, and Duane Froese
EGUsphere, https://doi.org/10.5194/egusphere-2024-1353, https://doi.org/10.5194/egusphere-2024-1353, 2024
Revised manuscript under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
This study investigated the application of CT scanning to tackle the limitations of traditional destructive methods in characterization of permafrost cores. Five different permafrost cores were scanned at resolutions of 65 and 25 μm with new calibration method. The identification of different materials from CT images showed air(gas), ice(excess and pore), and sediments using an Otsu segmentation method. The results were validated by a destructive method(cuboid) and also a non-destructive method.
10 Jun 2024
A facet based numerical model to retrieve ice sheet topography from Sentinel-3 altimetry
Jérémie Aublanc, François Boy, Franck Borde, and Pierre Féménias
EGUsphere, https://doi.org/10.5194/egusphere-2024-1323, https://doi.org/10.5194/egusphere-2024-1323, 2024
Revised manuscript accepted for TC (discussion: final response, 6 comments)
Short summary
Short summary
In this study we developed an innovative algorithm to derive the ice sheet topography from Sentinel-3 altimetry measurements. The processing chain is named the “Altimeter data Modelling and Processing for Land Ice” (AMPLI). The performance improvement is substantial compared to the official data generated by the ESA ground segment. With AMPLI, we show that Sentinel-3 is able to estimate the Surface Elevation Change of the Antarctic ice sheet with a high level of agreement to ICESat-2.
06 Jun 2024
Bias in modeled Greenland ice sheet melt revealed by ASCAT
Anna Puggaard, Nicolaj Hansen, Ruth Mottram, Thomas Nagler, Stefan Scheiblauer, Sebastian B. Simonsen, Louise S. Sørensen, Jan Wuite, and Anne M. Solgaard
EGUsphere, https://doi.org/10.5194/egusphere-2024-1108, https://doi.org/10.5194/egusphere-2024-1108, 2024
Preprint under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
Regional climate models are currently the only source for assessing the melt volume on a global scale of the Greenland Ice Sheet. This study compares the modeled melt volume with observations from weather stations and melt extent observed from ASCAT to assess the performance of the models. It highlights the importance of critically evaluating model outputs with high-quality satellite measurements to improve the understanding of variability among models.
03 Jun 2024
Extended seasonal prediction of Antarctic sea ice using ANTSIC-UNet
Ziying Yang, Jiping Liu, Mirong Song, Yongyun Hu, Qinghua Yang, and Ke Fan
EGUsphere, https://doi.org/10.5194/egusphere-2024-1001, https://doi.org/10.5194/egusphere-2024-1001, 2024
Preprint under review for TC (discussion: final response, 7 comments)
Short summary
Short summary
Antarctic sea ice has changed rapidly in recent years. Here we developed a deep learning model trained by multiple climate variables for extended seasonal Antarctic sea ice prediction. Our model shows high predictive skills up to 6 months in advance, particularly in predicting extreme events. It also shows skillful predictions at the sea ice edge and year-to-year sea ice changes. Variable importance analyses suggest what variables are more important for prediction at different lead times.
31 May 2024
Speed-up, slowdown, and redirection of ice flow on neighbouring ice streams in the Pope, Smith and Kohler region of West Antarctica
Heather Louise Selley, Anna E. Hogg, Benjamin J. Davison, Pierre Dutrieux, and Thomas Slater
EGUsphere, https://doi.org/10.5194/egusphere-2024-1442, https://doi.org/10.5194/egusphere-2024-1442, 2024
Revised manuscript accepted for TC (discussion: final response, 4 comments)
Short summary
Co-editor-in-chief
Short summary
We used satellite observations to measure recent changes in ice speed and flow direction in the Pope, Smith and Kohler Region of West Antarctica (2005–2022). We found substantial speed up on seven ice streams of up to 87 %. However, Kohler West Glacier has slowed by 10%, due to the redirection of ice flow into its rapidly thinning neighbour. This process of ‘ice piracy’ hasn’t previously been directly observed on this rapid timescale and may influence future ice shelf and sheet mass changes.
Co-editor-in-chief
Ice streams are dynamical features that control the ice flow from an ice sheet's interior to its margin. Due to their dynamical nature, ice streams may change flow speed and direction in response to external forcing or due to internal variability. This study investigates the interplay between neighbouring ice streams that feed the Dotson and Crosson Ice Shelves in West Antarctica. The authors use satellite observations to measure the change in ice speed and flow direction from 2005 to 2022, and their observations reveal a highly complex pattern of dynamical changes and the redirection of ice flow from one stream to another. These observations reveal previously undocumented impacts of spatially varying ice flow, which may influence the ice shelf and ice sheet.
28 May 2024
Sensitivity of Totten Glacier dynamics to sliding parameterizations and ice shelf basal melt rates
Yiliang Ma, Liyun Zhao, Rupert Gladstone, Thomas Zwinger, Michael Wolovick, and John C. Moore
EGUsphere, https://doi.org/10.5194/egusphere-2024-1102, https://doi.org/10.5194/egusphere-2024-1102, 2024
Revised manuscript under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
Totten Glacier in Antarctica holds a sea level potential of 3.85 m. Basal sliding and sub-shelf melt rate have important impact on ice sheet dynamics. We simulate the evolution of Totten Glacier using an ice flow model with different basal sliding parameterizations as well as sub-shelf melt rates to quantify their effect on the projections. We found the modelled glacier retreat and mass loss is sensitive to the choice of basal sliding parameterizations and maximal sub-shelf melt rate.
27 May 2024
Antarctic Subglacial Trace Metal Mobility Linked to Climate Change Across Termination III
Gavin Piccione, Terrence Blackburn, Paul Northrup, Slawek Tulaczyk, and Troy Rasbury
EGUsphere, https://doi.org/10.5194/egusphere-2024-1359, https://doi.org/10.5194/egusphere-2024-1359, 2024
Revised manuscript accepted for TC (discussion: final response, 6 comments)
Short summary
Short summary
Growth of microorganisms in the Southern Ocean is limited by low iron levels. Iron delivered from beneath the Antarctic Ice Sheet is one agent that fertilizes these ecosystems, but it is unclear how this nutrient source changes through time. Here, we measured the age and chemistry of a rock that records the iron concentration of Antarctic basal water. We show that increased dissolution of iron from rocks below the ice sheet can substantially enhance iron discharge during cold climate periods.
24 May 2024
Spatio-temporal snow data assimilation with the ICESat-2 laser altimeter
Marco Mazzolini, Kristoffer Aalstad, Esteban Alonso-González, Sebastian Westermann, and Désirée Treichler
EGUsphere, https://doi.org/10.5194/egusphere-2024-1404, https://doi.org/10.5194/egusphere-2024-1404, 2024
Revised manuscript under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
In this work, we use the satellite laser altimeter ICESat-2 to retrieve snow depth in areas where snow amounts are still poorly estimated despite the high societal importance. We explore how to update snow models with these observations through algorithms that spatially propagate the information beyond the narrow satellite profiles. The positive results show the potential of this approach for improving snow simulations, both in terms of average snow depth and spatial distribution.
22 May 2024
Spatiotemporal variations in the East Antarctic Ice Sheet during the Holocene
Takeshige Ishiwa, Jun’ichi Okuno, Yuki Tokuda, Satoshi Sasaki, Takuya Itaki, and Yusuke Suganuma
EGUsphere, https://doi.org/10.5194/egusphere-2024-275, https://doi.org/10.5194/egusphere-2024-275, 2024
Revised manuscript under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
Changes in the East Antarctic Ice Sheet are key to understanding ice sheet behavior and climate response. Recent studies show ice thinning in East Antarctica around 9,000 to 6,000 years ago, revealing the temporal gap with a widely used model. Our refined model matches sea-level reconstructions, showing different sea-level peaks in East Antarctica. This suggests that ice changes in East Antarctica vary across the region, challenging the idea of simultaneous ice growth and decay.
22 May 2024
Long-term development of a perennial firn aquifer on the Lomonosovfonna ice cap, Svalbard
Tim van den Akker, Ward van Pelt, Rickard Petterson, and Veijo A. Pohjola
EGUsphere, https://doi.org/10.5194/egusphere-2024-1345, https://doi.org/10.5194/egusphere-2024-1345, 2024
Revised manuscript accepted for TC (discussion: final response, 4 comments)
Short summary
Short summary
Liquid water can persist within old snow on glaciers and ice caps, if it can percolate into it before it refreezes. Snow is a good insulator, and snow is porous where the percolated water can be stored. If this happens, the water piles up and forms a groundwater-like system. Here, we show observations of such a groundwater-like system found in Svalbard. We demonstrate that it behaves like a groundwater system, and use that to model the development of the water table from 1957 until present day.
16 May 2024
River ice analyses and roughness calculations using underwater drones and photogrammetric approach
Reeta Vaahtera, Juha-Matti Välimäki, Tuure Takala, and Eliisa Lotsari
EGUsphere, https://doi.org/10.5194/egusphere-2024-1247, https://doi.org/10.5194/egusphere-2024-1247, 2024
Revised manuscript under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
River ice cover has a significant effect on flow and related processes in a river and the effect can last for months yearly. This impact is dependent on the properties of the ice, particularly its underside. Our study introduces a new approach to studying the underside of river ice, which is typically challenging. The approach allows gaining more information and new insights on river ice and flow during winters which is especially important under environmental change.
15 May 2024
Snow and glacier melt contributions to streamflow on James Ross Island, Antarctic Peninsula
Ondřej Nedělčev, Michael Matějka, Kamil Láska, Zbyněk Engel, Jan Kavan, and Michal Jenicek
EGUsphere, https://doi.org/10.5194/egusphere-2024-1185, https://doi.org/10.5194/egusphere-2024-1185, 2024
Revised manuscript under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
The annual variability of the runoff process has not been analysed in the Maritime Antarctic. Thus, we simulated and analysed rain, snow and glacier contributions to runoff related to climate variability in a small catchment over 11 years. Snowmelt runoff (77 % of the total runoff) is controlled by precipitation anomalies, while glacier runoff (10 % of the total runoff) is controlled by air temperature anomalies. There were significant runoff events outside the usual runoff measurement season.
14 May 2024
Glacier geometry limits the propagation of thinning in Patagonian Icefields
Bastian Morales, Marcelo Somos-Valenzuela, Mario Lillo, Iñigo Irarrazaval, David Farias, Elizabet Lizama, Diego Rivera, and Alfonso Fernández
EGUsphere, https://doi.org/10.5194/egusphere-2024-1053, https://doi.org/10.5194/egusphere-2024-1053, 2024
Revised manuscript under review for TC (discussion: final response, 6 comments)
Short summary
Short summary
Through a physical model, we explored how lacier geometry and topography configuration constrains glacier thinning in the Patagonian Icefields, the world's main glacial freshwater reservoir after Antarctica and Greenland. Our results indicate that about 53 % of the Patagonian Icefield ice flow is susceptible to thinning. Our findings allow for identifying priority glaciers for future research considering climate change projections.
13 May 2024
Projected changes of Active layer thickness over permafrost under 1.5~5.0 °C climate warming on the Qinghai-Tibet Plateau
Zhenjie Li, Buda Su, Jinlong Huang, Peni Hausia Havea, Runhong Xu, Cheng Jing, Yu Gong, and Tong Jiang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1169, https://doi.org/10.5194/egusphere-2024-1169, 2024
Preprint under review for TC (discussion: open, 1 comment)
Short summary
Short summary
Use the soil zero-degree layer as an index to investigate the changes in permafrost and the active layer thickness. The observed and projected permafrost and active layer thickness were estimated by the summer, revealed that the active layer thickness is deeper in summer across the Qinghai-Tibetan Plateau. The active layer thickness was increased of 53.9 % during observed period, and it will continue to increase in the future.
13 May 2024
Effect of elevation feedbacks and climate mitigation on future Greenland ice sheet melt
Thirza Feenstra, Miren Vizcaino, Bert Wouters, Michele Petrini, Raymond Sellevold, and Katherine Thayer-Calder
EGUsphere, https://doi.org/10.5194/egusphere-2024-1126, https://doi.org/10.5194/egusphere-2024-1126, 2024
Discussion: final response, 6 comments
Short summary
Short summary
We present the first evaluation of Greenland ice sheet (GrIS) and climate feedbacks with a CMIP model. Under 4xCO2 forcing, lower elevations reduce GrIS summer blocking and incoming solar radiation, and increase precipitation. Simulated increases of near-surface summer temperature are much lower than the 6 K km-1 lapse rate that is commonly used in non-coupled simulations. CO2 reduction to pre-industrial (PI) halts GrIS mass loss regardless of higher global warming and albedo than PI control.
13 May 2024
Snow depth derived from Sentinel-1 compared to in-situ observations in northern Finland
Adriano Lemos and Aku Riihelä
EGUsphere, https://doi.org/10.5194/egusphere-2024-869, https://doi.org/10.5194/egusphere-2024-869, 2024
Preprint under review for TC (discussion: open, 1 comment)
Short summary
Short summary
Here we used satellite imagery to measure snow depth in northern Finland and compared to on-site weather stations from 2019–2022. We correlated snow depths and vegetation coverage, and found thicker snow over non-vegetated areas and frozen water bodies due to the satellite's sensitivity. Our estimates showed underestimated results of snow depth and need further investigation, but they highlight the potential in monitoring seasonal snow changes, particularly where direct measurements are lacking.
07 May 2024
Spectral characteristics of seismic ambient vibrations reveal subglacial hydraulic changes beneath Glacier de la Plaine Morte, Switzerland
Janneke van Ginkel, Fabian Walter, Fabian Lindner, Miroslav Hallo, Matthias Huss, and Donat Fäh
EGUsphere, https://doi.org/10.5194/egusphere-2024-646, https://doi.org/10.5194/egusphere-2024-646, 2024
Revised manuscript accepted for TC (discussion: final response, 4 comments)
Short summary
Short summary
This study on Glacier de la Plaine Morte in Switzerland employs various passive seismic analysis methods to identify complex hydraulic behaviours at the ice-bedrock interface. In 4 months of seismic records, we detect spatiotemporal variations in the glacier's basal interface, following the drainage of an ice-marginal lake. We identify a low-velocity layer, whose properties are determined using modeling techniques. This low-velocity layer results from temporary water storage within the glacier.
29 Apr 2024
A Novel Transformation of the Ice Sheet Stokes Equations and Some of its Properties and Applications
John K. Dukowicz
EGUsphere, https://doi.org/10.5194/egusphere-2024-1052, https://doi.org/10.5194/egusphere-2024-1052, 2024
Revised manuscript under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
A novel transformation of the Stokes ice sheet equations is presented that expands the scope of traditional methods. The new formulation is closely related to a widely used Stokes approximation, the Blatter-Pattyn model, such that an ice sheet model may be easily switched between the two formulations, allowing for adaptive applications. The new formulation also facilitates new approximations that improve on the Blatter-Pattyn model, heretofore the best approximate ice sheet model.
29 Apr 2024
The atmosphere-land/ice-ocean system in the region near the 79N Glacier in Northeast Greenland: Synthesis and key findings from GROCE
Torsten Kanzow, Angelika Humbert, Thomas Mölg, Mirko Scheinert, Matthias Braun, Hans Burchard, Francesca Doglioni, Philipp Hochreuther, Martin Horwath, Oliver Huhn, Jürgen Kusche, Erik Loebel, Katrina Lutz, Ben Marzeion, Rebecca McPherson, Mahdi Mohammadi-Aragh, Marco Möller, Carolyne Pickler, Markus Reinert, Monika Rhein, Martin Rückamp, Janin Schaffer, Muhammad Shafeeque, Sophie Stolzenberger, Ralph Timmermann, Jenny Turton, Claudia Wekerle, and Ole Zeising
EGUsphere, https://doi.org/10.5194/egusphere-2024-757, https://doi.org/10.5194/egusphere-2024-757, 2024
Revised manuscript accepted for TC (discussion: final response, 6 comments)
Short summary
Co-editor-in-chief
Short summary
The Greenland Ice Sheet represents the second-largest contributor to global sea-level rise. We quantify atmosphere, ice and ocean-based processes related to the mass balance of glaciers in Northeast Greenland, focusing on Greenland’s largest floating ice tongue, the 79N Glacier. We find that together, the different in situ and remote sensing observations and model simulations to reveal a consistent picture of a coupled atmosphere-ice sheet-ocean system, that has entered a phase of major change.
Co-editor-in-chief
The Northeast Greenland is one of the most remote and inaccessible areas in the world. This study presents a comprehensive overview of numerous observations from the region as well as results from numerical model simulations. The results highlight the dynamics of Greenland's largest marine-terminating glacier, revealing key differences between the two neighbouring glacier outlets. The authors also discuss the impact of glacier melt on the ocean, including the potential impact on the Atlantic meridional overturning circulation - a key topic of concern in the community and the general public.
22 Apr 2024
Mapping Seasonal Snow Melting in Karakoram Using SAR and Topographic Data
Shiyi Li, Lanqing Huang, Philipp Bernhard, and Irena Hajnsek
EGUsphere, https://doi.org/10.5194/egusphere-2024-942, https://doi.org/10.5194/egusphere-2024-942, 2024
Revised manuscript accepted for TC (discussion: final response, 4 comments)
Short summary
Short summary
This work presented an improved method for seasonal wet snow mapping in Karakoram. SAR and topographic data were effectively integrated for robust wet snow classification in complex mountainous terrain. Applying the method to large scale Sentinel-1 imagery, we have generated wet snow maps covering the three major water basins in Karakraom over four years (2017–2021). Critical snow variables were further derived from the maps and provided valuable insights on regional snow melting dynamics.
22 Apr 2024
Spring 2021 sea ice transport in the southern Beaufort Sea occurred during coastal ice opening events
MacKenzie E. Jewell, Jennifer K. Hutchings, and Angela C. Bliss
EGUsphere, https://doi.org/10.5194/egusphere-2024-1097, https://doi.org/10.5194/egusphere-2024-1097, 2024
Revised manuscript accepted for TC (discussion: final response, 4 comments)
Short summary
Short summary
We quantify the contribution of coastal sea ice fracturing events to patterns of sea ice motion in the Beaufort Sea. Data from GPS tracker buoys deployed as part of the Sea Ice Dynamic Experiment (SIDEx) in spring 2021 show that sea ice in the southern Beaufort Sea became more responsive to wind forcing during fracturing events detected from satellite observations. Nearly all the sea ice transport in spring 2021 occurred during these events, highlighting their importance at seasonal time scales.
17 Apr 2024
Viscoelastic mechanics of tidally induced lake drainage in the Amery grounding zone
Hanwen Zhang, Richard F. Katz, and Laura A. Stevens
External preprint server, https://doi.org/10.48550/arXiv.2311.01249, https://doi.org/10.48550/arXiv.2311.01249, 2024
Revised manuscript accepted for TC (discussion: final response, 7 comments)
Short summary
Short summary
In Antarctica, supraglacial lakes are formed by melting near the grounding lines, where grounded ice sheets transition to floating ice shelves. We model the tidal flexure near the grounding lines and analyse its contribution to lake drainage through hydrofracturing. We show that tidal flexure and lake water pressure together control lake drainage in the Amery Ice Shelf, which indicates the importance of tidal stress to processes associated with hydrofracturing near the grounding lines.
15 Apr 2024
Importance of ice elasticity in simulating tide-induced grounding line variations along prograde bed slopes
Natalya Maslennikova, Pietro Milillo, Kalyana Babu Nakshatrala, Roberto Ballarini, Aaron Stubblefield, and Luigi Dini
EGUsphere, https://doi.org/10.5194/egusphere-2024-875, https://doi.org/10.5194/egusphere-2024-875, 2024
Revised manuscript accepted for TC (discussion: final response, 6 comments)
Short summary
Short summary
Analyzing remote sensing radar data over three Antarctic glaciers, we observe short-term grounding line migrations. We simulate this phenomenon using viscous and viscoelastic continuum mechanics models. We quantify the sensitivity of the grounding zone width to bedrock slope, glacier thickness, and ice flow speed. Comparisons of the models’ predictions with the observations highlight the necessity of including ice elasticity in non-Newtonian models of glacier ice.
22 Mar 2024
Decadal re-forecasts of glacier climatic mass balance
Larissa van der Laan, Anouk Vlug, Adam A. Scaife, Fabien Maussion, and Kristian Förster
EGUsphere, https://doi.org/10.5194/egusphere-2024-387, https://doi.org/10.5194/egusphere-2024-387, 2024
Preprint under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
Usually, glacier models are supplied with climate information from long (e.g. 100 year) simulations by global climate models. In this paper, we test the feasibility of supplying glacier models with shorter simulations, to get more accurate information on 5–10 year time scales. Reliable information on these time scales is very important, especially for water management experts to know how much meltwater to expect, for rivers, agriculture and drinking water.
11 Mar 2024
Deep learning based automatic grounding line delineation in DInSAR interferograms
Sindhu Ramanath Tarekere, Lukas Krieger, Dana Floricioiu, and Konrad Heidler
EGUsphere, https://doi.org/10.5194/egusphere-2024-223, https://doi.org/10.5194/egusphere-2024-223, 2024
Revised manuscript under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
Grounding lines are geophysical features that divide ice masses on the bedrock and floating ice shelves. Their accurate location is required for calculating the mass balance of ice sheets and glaciers in Antarctica and Greenland. Human experts still manually detect them in satellite-based interferometric radar images, which is inefficient given the growing volume of data. We have developed an artificial intelligence-based automatic detection algorithm to generate Antarctic-wide grounding lines.
29 Feb 2024
Automated snow cover detection on mountain glaciers using space-borne imagery
Rainey Aberle, Ellyn Enderlin, Shad O'Neel, Caitlyn Florentine, Louis Sass, Adam Dickson, Hans-Peter Marshall, and Alejandro Flores
EGUsphere, https://doi.org/10.5194/egusphere-2024-548, https://doi.org/10.5194/egusphere-2024-548, 2024
Revised manuscript accepted for TC (discussion: final response, 4 comments)
Short summary
Short summary
Tracking seasonal snow on glaciers is critical for understanding glacier health. However, current snow detection methods struggle to distinguish seasonal snow from glacier ice. To address this, we developed a new automated workflow for tracking seasonal snow on glaciers using satellite imagery and machine learning. Applying this method can help provide insights into glacier health, water resources, and the effects of climate change on snow cover over broad spatial scales.
20 Feb 2024
Quantifying the Impacts of Atmospheric Rivers on the Surface Energy Budget of the Arctic Based on Reanalysis
Chen Zhang, John J. Cassano, Mark Seefeldt, Hailong Wang, Weiming Ma, and Wen-wen Tung
EGUsphere, https://doi.org/10.5194/egusphere-2024-320, https://doi.org/10.5194/egusphere-2024-320, 2024
Revised manuscript under review for TC (discussion: final response, 6 comments)
Short summary
Short summary
An atmospheric river (AR) is a long, narrow corridor of moisture transport in the atmosphere. ARs are crucial for moisture and heat transport into the polar regions. Our study examines the role of ARs on the surface energy budget (SEB) in the Arctic. The results reveal distinct seasonality and land-sea-sea ice contrasts due to the impacts of ARs on the SEB. The conclusions provide greater insights into the current and future role of ARs on the Arctic climate system.
16 Feb 2024
Developing a deep learning forecasting system for short-term and high-resolution prediction of sea ice concentration
Are Frode Kvanum, Cyril Palerme, Malte Müller, Jean Rabault, and Nick Hughes
EGUsphere, https://doi.org/10.5194/egusphere-2023-3107, https://doi.org/10.5194/egusphere-2023-3107, 2024
Revised manuscript under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
Recent studies have shown that machine learning models are effective at predicting sea ice concentration, yet few have explored the development of such models in an operational context. In this study, we present the development of a machine learning forecasting system which can predict sea ice concentration at 1 km resolution, up to 3 days ahead using real time operational data. The developed forecasts predict the sea ice edge position with a better accuracy than physical and baseline forecasts.
08 Feb 2024
Glacial Vermicular Ridge Features on Axel Heiberg Island, Nunavut, Canada
Shannon M. Hibbard, Gordon R. Osinski, Etienne Godin, Antero Kukko, Chimira Andres, Shawn Chartrand, Anna Grau Galofre, A. Mark Jellinek, and Wendy Boucher
EGUsphere, https://doi.org/10.5194/egusphere-2024-227, https://doi.org/10.5194/egusphere-2024-227, 2024
Revised manuscript accepted for TC (discussion: final response, 9 comments)
Short summary
Short summary
This study investigates a new landform found on Axel Heiberg Island in Nunavut, Canada. Vermicular Ridge Features (VRFs) are comprised of a series of ridges and troughs creating a unique brain-like pattern. We aim to identify how VRFs form and assess the past climate conditions necessary for their formation. We use surface elevation and subsurface data to infer a formation mechanism. We propose VRFs were formed from the burial and removal of glacier ice as the glaciers were retreating.
08 Feb 2024
Changes in Antarctic surface conditions and potential for ice shelf hydrofracturing from 1850 to 2200
Nicolas C. Jourdain, Charles Amory, Christoph Kittel, and Gaël Durand
EGUsphere, https://doi.org/10.5194/egusphere-2024-58, https://doi.org/10.5194/egusphere-2024-58, 2024
Revised manuscript accepted for TC (discussion: final response, 4 comments)
Short summary
Short summary
A mixed statistical-physical approach is used to reproduce the behaviour of a regional climate model. From that, we estimate the contribution of snowfall and melting at the surface of the Antarctic Ice Sheet to changes in global mean sea level. We also investigate the impact of surface melting in a warmer climate on the stability of the Antarctic ice shelves that provide a back stress on the ice flow to the ocean.
05 Jan 2024
Development of deformational regimes and microstructures in the deep sections and overall layered structures of the Dome Fuji ice core, Antarctica
Tomotaka Saruya, Atsushi Miyamoto, Shuji Fujita, Kumiko Goto-Azuma, Motohiro Hirabayashi, Akira Hori, Makoto Igarashi, Yoshinori Iizuka, Takao Kameda, Hiroshi Ohno, Wataru Shigeyama, and Shun Tsutaki
EGUsphere, https://doi.org/10.5194/egusphere-2023-3146, https://doi.org/10.5194/egusphere-2023-3146, 2024
Revised manuscript under review for TC (discussion: final response, 5 comments)
Short summary
Short summary
Crystal orientation fabrics (COF) and microstructures in the deep sections of the Dome Fuji ice core were investigated using innovative methods with unprecedentedly high statistical significance and dense depth coverage. Together with our previous studies, we have obtained a whole layer profile of the COF and physical properties of the Dome Fuji ice core. COF profile and its fluctuation were found to be highly dependent on impurities concentrations and recrystallization processes.
04 Jan 2024
Inland migration of near-surface crevasses in the Amundsen Sea Sector, West Antarctica
Andrew O. Hoffman, Knut Christianson, Ching-Yao Lai, Ian Joughin, Nicholas Holschuh, Elizabeth Case, Jonathan Kingslake, and the GHOST science team
EGUsphere, https://doi.org/10.5194/egusphere-2023-2956, https://doi.org/10.5194/egusphere-2023-2956, 2024
Revised manuscript accepted for TC (discussion: final response, 12 comments)
Short summary
Short summary
We use satellite and ice-penetrating radar technology to segment crevasses in the Amundsen Sea Embayment. Inspection of satellite time series reveals inland expansion of crevasses where surface stresses have increased. We develop a simple model for the strength of densifying snow and show that these crevasses are likely restricted to the near surface. This result bridges discrepancies between satellite and lab experiments and reveals the importance of porosity on surface crevasse formation.
21 Dec 2023
Investigating the spatiotemporal features of glacier elevation changes over the southeastern Tibetan Plateau using multisource satellite data
Xin Luo, Hongping Zeng, and Zhen Ye
EGUsphere, https://doi.org/10.5194/egusphere-2023-2389, https://doi.org/10.5194/egusphere-2023-2389, 2023
Preprint under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
To better understand the glacier melting features in the SETP, multisource satellite observations including ASTER DEM, ICESat, ICESat-2 and CryoSat-2 are used in this study. We found the glacier melting rate of the entire SETP is during 2000–2022. And the glacier melting has accelerated at a rate of 31.2 % in the recent decade. A comprehensive comparison among the related existing studies revealed that our estimates have a finer temporal scale and less estimation uncertainty.
27 Nov 2023
Oceanic gateways to Antarctic grounding lines – Impact of critical access depths on sub-shelf melt
Lena Nicola, Ronja Reese, Moritz Kreuzer, Torsten Albrecht, and Ricarda Winkelmann
EGUsphere, https://doi.org/10.5194/egusphere-2023-2583, https://doi.org/10.5194/egusphere-2023-2583, 2023
Revised manuscript accepted for TC (discussion: final response, 7 comments)
Short summary
Short summary
We identify potential oceanic gateways to Antarctic grounding lines based on high-resolution bathymetry data and examine the effect of critical access depths on basal melt rates. These gateways manifest the deepest topographic features that connect the deeper open ocean and the ice-shelf cavity. We detect 'prominent' oceanic gateways in some Antarctic regions and estimate an upper limit of melt rate changes in case all warm water masses gain access to the cavities.
27 Nov 2023
Numerical study of the error sources in the experimental estimation of thermal diffusivity: an application to debris-covered glaciers
Calvin Beck and Lindsey Nicholson
EGUsphere, https://doi.org/10.5194/egusphere-2023-2766, https://doi.org/10.5194/egusphere-2023-2766, 2023
Preprint under review for TC (discussion: final response, 6 comments)
Short summary
Short summary
A glacier’s debris cover strongly modified its mass balance in contrast to a clean ice glacier. A key parameter for calculating sub-debris melt is the thermal diffusivity of the debris layer. Conway and Rasmussen (2000) present a method to estimate this value based on simple heat diffusion principles. Our analysis shows that the selected temporal and spatial sampling intervals effects the estimated value of thermal diffusivity, resulting in glacier melt being systematically underestimated.
02 Nov 2023
Sublimation Measurements of Tundra and Taiga Snowpack in Alaska
Kelsey Spehlmann, Eugénie Euskirchen, and Svetlana Stuefer
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-153, https://doi.org/10.5194/tc-2023-153, 2023
Revised manuscript accepted for TC (discussion: closed, 4 comments)
Short summary
Short summary
Sublimation is the hidden portion of the water cycle where snow changes phase directly to water vapor, skipping the liquid state. Though sublimation is difficult to measure, especially in remote regions such as arctic and subarctic Alaska where this study took place, our measurements confirm that sublimation is a substantial component of the annual water cycle. Results from this research contribute to knowledge of how site conditions affect sublimation rates and the winter hydrologic cycle.
24 Aug 2023
Persistent warming of the ground on the Earth’s Third Pole
Yuyang Wang, Jinzhi Ding, and Shilong Piao
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-125, https://doi.org/10.5194/tc-2023-125, 2023
Manuscript not accepted for further review (discussion: closed, 3 comments)
Short summary
Short summary
Shallow soil layers experienced significant warming from 1981 to 2021, with decreasing rates at greater depths. Snow-cover days and downward longwave radiation were significant factors influencing soil warming rates. Magnitude and depth-dependent variation of permafrost profile warming are influenced by multiple factors, including local climate, lithology, and elevation.
02 Aug 2023
Measurement of spatio-temporal changes of cave ice using geodetic and geophysical methods: Dobšiná Ice Cave, Slovakia
Katarína Pukanská, Karol Bartoš, Juraj Gašinec, Roman Pašteka, Pavol Zahorec, Juraj Papčo, Ľubomír Kseňak, Pavel Bella, Erik Andrássy, Laura Dušeková, and Diana Bobíková
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-110, https://doi.org/10.5194/tc-2023-110, 2023
Manuscript not accepted for further review (discussion: closed, 2 comments)
Short summary
Short summary
The study reviews methodologies for surveying the ice filling and its dynamics in Dobšiná Ice Cave. We evaluated the suitability of using geodetic (tacheometry, laser scanning, digital photogrammetry) and geophysical (microgravimetry, georadar) technologies depending on the expected results. The cave ice is characterized by its dynamic inter-annual changes, dependent on the climate and anthropogenic factors. There is a constant need for regular monitoring to preserve this natural phenomenon.
27 Jul 2023
Global vs local glacier modelling: a comparison in the Tien Shan
Lander Van Tricht, Harry Zekollari, Matthias Huss, Daniel Farinotti, and Philippe Huybrechts
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-87, https://doi.org/10.5194/tc-2023-87, 2023
Manuscript not accepted for further review (discussion: closed, 3 comments)
Short summary
Short summary
Detailed 3D models can be applied for well-studied glaciers, whereas simplified approaches are used for regional/global assessments. We conducted a comparison of six Tien Shan glaciers employing different models and investigated the impact of in-situ measurements. Our results reveal that the choice of mass balance and ice flow model as well as calibration have minimal impact on the projected volume. The initial ice thickness exerts the greatest influence on the future remaining ice volume.
17 Jul 2023
Revisiting ice sheet mass balance: insights into changing dynamics in Greenland and Antarctica from ICESat-2
Nicolaj Hansen, Louise Sandberg Sørensen, Giorgio Spada, Daniele Melini, Rene Forsberg, Ruth Mottram, and Sebastian B. Simonsen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-104, https://doi.org/10.5194/tc-2023-104, 2023
Preprint withdrawn (discussion: closed, 4 comments)
Short summary
Short summary
We use ICESat-2 to estimate the surface elevation change over Greenland and Antarctica in the period of 2018 to 2021. Numerical models have been used the compute the firn compaction and the vertical bedrock movement so non-mass-related elevation changes can be taken into account. We have made a parameterization of the surface density so we can convert the volume change to mass change. We find that Antarctica has lost 135.7±27.3 Gt per year, and the Greenland ice sheet 237.5±14.0 Gt per year.
20 Jun 2023
Toward a marginal Arctic sea ice cover: changes to freezing, melting and dynamics
Rebecca Caitlin Frew, Daniel Feltham, David Schroeder, and Adam William Bateson
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-91, https://doi.org/10.5194/tc-2023-91, 2023
Revised manuscript accepted for TC (discussion: closed, 4 comments)
Short summary
Short summary
As summer Arctic sea ice extent has retreated, the marginal ice zone (MIZ) has been widening and making up an increasing percentage of the summer sea ice. The MIZ is projected to become a larger percentage of the summer ice cover, as the Arctic transitions to ice free summers. Using a sea ice model we find that the processes and timing of sea ice loss differ in the MIZ to the rest of the sea cover.
19 Jun 2023
Review Article: Earth observations of Melt Ponds on Sea Ice
Sara Aparício
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-75, https://doi.org/10.5194/tc-2023-75, 2023
Manuscript not accepted for further review (discussion: closed, 2 comments)
Short summary
Short summary
Melt ponds are melted water pools that form in the sea ice, playing a major role in the Arctic's energy budget. Yet, they are not well-incorporated into climate models and limited observations hinder understanding of their spatial and temporal characteristics. Satellite (optical and radar) imagery present both opportunities and considerable drawbacks, but recent AI advancements have been showing promise in improving melt pond mapping/estimation supporting a better knowledge at pan-Artic scale.
10 May 2023
Measurement of Ice Shelf Rift Width with ICESat-2 Laser Altimetry: Automation, Validation, and the behavior of Halloween Crack, Brunt Ice Shelf, East Antarctica
Ashley Morris, Bradley P. Lipovsky, Catherine C. Walker, and Oliver J. Marsh
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-63, https://doi.org/10.5194/tc-2023-63, 2023
Revised manuscript under review for TC (discussion: final response, 4 comments)
Short summary
Short summary
Floating ice shelves hold back Antarctic ice flow, but they are thinning and retreating. To help predict future mass loss we need a better understanding of the behavior of the rifts from which icebergs detach. We automate rift width measurement using surface elevation data from the ICESat-2 laser altimetry satellite, and validate using satellite images and GPS receivers placed around the "Halloween Crack" on Brunt Ice Shelf. We find rift opening stagnated following calving from an adjacent rift.
28 Mar 2023
Improving Arctic sea ice thickness retrieved from CryoSat-2: A comprehensive optimization of a retracking algorithm, radar penetration rate, and snow depth
Yi Zhou, Yu Zhang, Changsheng Chen, Lele Li, Danya Xu, Robert C. Beardsley, and Weizeng Shao
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-40, https://doi.org/10.5194/tc-2023-40, 2023
Revised manuscript not accepted (discussion: closed, 5 comments)
Short summary
Short summary
This study used an improved retracking algorithm, considered the corrected radar penetration rates, and included the new snow depth from the Feng Yun-3B satellite to enhance the accuracy of Arctic sea ice thickness derived from the CryoSat-2 satellite. This comprehensive optimization was the first to improve the sea ice thickness retrieval. Compared with the sea ice product derived by the Alfred Wegener Institute, the optimization cases could successfully reduce the errors above 20 %.
21 Mar 2023
The Ability of Hydrologic-Land Surface Models to Concurrently Simulate Permafrost and Hydrology
Mohamed S. Abdelhamed, Mohamed E. Elshamy, Saman Razavi, and Howard S. Wheater
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-20, https://doi.org/10.5194/tc-2023-20, 2023
Preprint withdrawn (discussion: closed, 3 comments)
Short summary
Short summary
Prior to any climate change assessment, it is necessary to assess the ability of available models to reliably reproduce observed permafrost and hydrology. Following a progressive approach, various model set-ups were developed and evaluated against different data sources. The study shows that different model set-ups favour different sources of data and it is challenging to configure a model faithful to all data sources, which are at times inconsistent with each other.
15 Mar 2023
Surface mass balance modelling of the Juneau Icefield highlights the potential for rapid ice loss by the mid-21st century
Ryan N. Ing, Jeremy C. Ely, Julie M. Jones, and Bethan J. Davies
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-33, https://doi.org/10.5194/tc-2023-33, 2023
Preprint withdrawn (discussion: closed, 6 comments)
Short summary
Short summary
Many of the glaciers in Alaska are losing ice, contributing to sea-level rise. Here, we study the inputs and outputs for the Juneau Icefield. We first model the historical changes to snowfall and melt, constraining our model with observations. We then project future changes to the icefield, which show that icefield-wide loss of ice is likely. Losses are driven by rising temperatures, and less snowfall. The exposure of ice, and the break-up of glaciers due to thinning may accelerate ice loss.
24 Feb 2023
The porosity effect on the mechanical properties of summer sea ice in the Arctic
Qingkai Wang, Yubo Liu, Peng Lu, and Zhijun Li
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-31, https://doi.org/10.5194/tc-2023-31, 2023
Revised manuscript not accepted (discussion: closed, 9 comments)
Short summary
Short summary
We intended to bring a new sight for the Arctic sea ice change by updating the knowledge of mechanical properties of summer Arctic sea ice. We find the flexural strength of summer Arctic sea ice was dependent on sea ice porosity rather than brine volume fraction, which unified the physical parameter affecting sea ice mechanical properties to sea ice porosity. Arctic sea ice strength has been weakening in recent summers by evaluating the strength using the previously published sea ice porosities.
21 Feb 2023
Sea ice in the Arctic Transpolar Drift in 2020/21: thermodynamic evolution of different ice types
Ruibo Lei, Mario Hoppmann, Bin Cheng, Marcel Nicolaus, Fanyi Zhang, Benjamin Rabe, Long Lin, Julia Regnery, and Donald K. Perovich
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-25, https://doi.org/10.5194/tc-2023-25, 2023
Manuscript not accepted for further review (discussion: closed, 3 comments)
Short summary
Short summary
To characterize the freezing and melting of different types of sea ice, we deployed four IMBs during the MOSAiC second drift. The drifting pattern, together with a large snow accumulation, relatively warm air temperatures, and a rapid increase in oceanic heat close to Fram Strait, determined the seasonal evolution of the ice mass balance. The refreezing of ponded ice and voids within the unconsolidated ridges amplifies the anisotropy of the heat exchange between the ice and the atmosphere/ocean.
13 Feb 2023
Variations of ice thickness in a reservoir along Irtysh River: field measurement and regression analysis
Chuntan Han, Chao Kang, Chengxian Zhao, Jianhua Luo, and Rensheng Chen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-241, https://doi.org/10.5194/tc-2022-241, 2023
Manuscript not accepted for further review (discussion: closed, 6 comments)
Short summary
Short summary
This paper presents analysis results of temperatures collected at three monitoring stations on a reservoir along Irtysh River. Temperatures close to ice surface were analyzed and correlated with air temperature. Ice thickness was correlated with temperatures, variations of temperature and AFDD. Regression models were proposed and compared using the dataset in this study which was then validated using data from stations in Russia and Finland.
07 Feb 2023
Frontal collapse of San Quintín glacier (Northern Patagonia Icefield), the last piedmont glacier lobe in the Andes
Michał Pętlicki, Andrés Rivera, Jonathan Oberreuter, José Uribe, Johannes Reinthaler, and Francisca Bown
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-10, https://doi.org/10.5194/tc-2023-10, 2023
Manuscript not accepted for further review (discussion: closed, 2 comments)
Short summary
Short summary
The terminus of San Quintín glacier, the largest of the Northern Patagonia Icefield in southern Chile, is rapidly disintegrating with large tabular icebergs into a proglacial lake left behind by this retreating glacier. We show that the ongoing retreat is caused by recent detachment of a floating terminus from the glacier bed. This process may lead to the disappearance of the last existing piedmont lobe in Patagonia, and one of the few remaining glaciers of this type in the world.
07 Feb 2023
Brief Communication: Effects of different saturation vapor pressure calculations on simulated surface-subsurface hydrothermal regimes at a permafrost field site
Xiang Huang, Charles J. Abolt, and Katrina E. Bennett
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-8, https://doi.org/10.5194/tc-2023-8, 2023
Manuscript not accepted for further review (discussion: closed, 3 comments)
Short summary
Short summary
Near-surface humidity is a sensitive parameter for predicting snow depth. Greater values of the relative humidity are obtained if the saturation vapor pressure was calculated with over-ice correction compared to without during the winter. During the summer thawing period, the choice of whether or not to employ an over-ice correction corresponds to significant variability in simulated thaw depths.
23 Jan 2023
Recent Evolution of Supraglacial Lakes on ice shelves in Dronning Maud Land, East Antarctica
Anirudha Mahagaonkar, Geir Moholdt, and Thomas V. Schuler
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-4, https://doi.org/10.5194/tc-2023-4, 2023
Revised manuscript not accepted (discussion: closed, 4 comments)
Short summary
Short summary
Surface meltwater lakes along the margins of the Antarctic Ice Sheet can be important for ice shelf dynamics and stability. We used optical satellite imagery to study seasonal evolution of meltwater lakes in Dronning Maud Land. We found large interannual variability in lake extents, but with consistent seasonal patterns. Although correlation with summer air temperature was strong locally, other climatic and environmental factors need to be considered to explain the large regional variability.
19 Dec 2022
Review of snow phenology variation in the Northern Hemisphere and its relationship with climate and vegetation
Hui Guo, Xiaoyan Wang, Zecheng Guo, Gaofeng Zhu, Tao Che, Jian Wang, Xiaodong Huang, Chao Han, and Zhiqi Ouyang
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-229, https://doi.org/10.5194/tc-2022-229, 2022
Revised manuscript not accepted (discussion: closed, 7 comments)
Short summary
Short summary
Snow phenology is a seasonal pattern in snow cover and snowfall. In this review, we found that during the past 50 years in the Northern Hemisphere, the snow cover end date has shown a significantly advanced change trend. Eurasia contributes more to the snow phenology in the Northern Hemisphere than does North America. Snow phenology is related to climate and atmospheric circulation, and the response to vegetation phenology depends on geographical regions, temperature and precipitation gradients.
02 Dec 2022
Light absorbing particles and snow aging feedback enhances albedo reduction on the Southwest Greenland ice sheet
Isatis M. Cintron-Rodriguez, Åsa K. Rennermalm, Susan Kaspari, and Sasha Leidman
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-195, https://doi.org/10.5194/tc-2022-195, 2022
Revised manuscript not accepted (discussion: closed, 5 comments)
Short summary
Short summary
Snow and ice melt driven by solar absorption is enhanced by the presence of light-absorbing particles (LAPs), such as black carbon (BC) and dust. Previous studies have ruled out LAP as an important Greenland's albedo reduction and accelerated mass loss rate factor. However, most simulations only take into consideration LAP direct effects. This study shows that taking into account LAP impact on snow metamorphism leads to albedo reductions 4 to 10 times larger than previously thought.
01 Nov 2022
Induced Electromagnetic prospecting for the characterization of the European southernmost glacier: the Calderone Glacier, Apennines, Italy
Mirko Pavoni, Jacopo Boaga, Alberto Carrera, Stefano Urbini, Fabrizio de Blasi, and Jacopo Gabrieli
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-190, https://doi.org/10.5194/tc-2022-190, 2022
Revised manuscript not accepted (discussion: closed, 4 comments)
Short summary
Short summary
The Ice Memory project aims to extract, analyze, and store ice cores from worldwide retreating glaciers. One of the selected sites is the last remaining ice body in the Apennines, the Calderone Glacier. To assess the most suitable drilling position, geophysical surveys were performed. Reliable ground penetrating radar measurements have been positively combined with a geophysical technique rarely applied in glacier environments, the Frequency Domain Electro-Magnetic prospection.
04 Oct 2022
Sentinel-1 detection of seasonal and perennial firn aquifers in the Antarctic Peninsula
Lena G. Buth, Bert Wouters, Sanne B. M. Veldhuijsen, Stef Lhermitte, Peter Kuipers Munneke, and Michiel R. van den Broeke
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-127, https://doi.org/10.5194/tc-2022-127, 2022
Manuscript not accepted for further review (discussion: closed, 3 comments)
Short summary
Short summary
Liquid meltwater which is stored in air bubbles in the compacted snow near the surface of Antarctica can affect ice shelf stability. In order to detect the presence of such firn aquifers over large scales, satellite remote sensing is needed. In this paper, we present our new detection method using radar satellite data as well as the results for the whole Antarctic Peninsula. Firn aquifers are found in the north and northwest of the peninsula, in agreement with locations predicted by models.
30 Sep 2022
Comprehensive evaluation of black carbon effect on glacier melting on the Laohugou Glacier No. 12, Western Qilian Mountains
Jizu Chen, Wentao Du, Shichang Kang, Xiang Qin, Weijun Sun, Yang Li, Yushuo Liu, Lihui Luo, and Youyan Jiang
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-179, https://doi.org/10.5194/tc-2022-179, 2022
Preprint withdrawn (discussion: closed, 4 comments)
Short summary
Short summary
This study developed a dynamic deposition model of light absorbing particles (LAPs), which coupled with a surface energy and mass balance model. Based on the coupled model, we assessed atmospheric deposited BC effect on glacier melting, and quantified global warming and increment of emitted black carbon respective contributions to current accelerated glacier melting.
26 Sep 2022
The stable water isotopes and snow accumulation from Weddell Sea sector imprint the large-scale atmospheric circulation variability
Andressa Marcher, Jefferson Cardia Simões, Ronaldo Torma Bernardo, Francisco Eliseu Aquino, Isaías Ullmann Thoen, Pedro Teixeira Valente, and Venisse Schossler
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-161, https://doi.org/10.5194/tc-2022-161, 2022
Publication in TC not foreseen (discussion: closed, 3 comments)
Short summary
Short summary
We investigated the stable water isotopes and snow accumulation records from the upper reaches of the Weddell Sea sector. Our findings revealed that these records are strongly influenced by large-scale modes of climate variability (SAM and ENSO) and synoptic scale events (both extreme precipitation and wind events). They also provide valuable information to understand mass balance on the basin scale in this sector.
25 Aug 2022
Brooks Range Perennial Snowfields: Extent Detection from the Field and via Satellite
Molly E. Tedesche, Erin D. Trochim, Steven R. Fassnacht, and Gabriel J. Wolken
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-143, https://doi.org/10.5194/tc-2022-143, 2022
Publication in TC not foreseen (discussion: closed, 2 comments)
Short summary
Short summary
Perennial snowfields in the Brooks Range of Alaska are critical for the ecosystem and provide caribou habitat. Caribou are a crucial food source for rural hunters. The purpose of this research is to map perennial snowfield extents using several remote sensing techniques with Sentinel-1 and 2. These include analysis of Synthetic Aperture Radar backscatter change and of optical satellite imagery. Results are compared with field data and appear to effectively detect perennial snowfield locations.
06 Jul 2022
Physical Experiments on the Development of an Ice Tunnel from an Upstream Water Reservoir through Simulated Glacier Dam
Chengbin Zou, Paul Carling, Zetao Feng, Daniel Parsons, and Xuanmei Fan
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-119, https://doi.org/10.5194/tc-2022-119, 2022
Manuscript not accepted for further review (discussion: closed, 2 comments)
Short summary
Short summary
Climate change is causing mountain lakes behind glacier barriers to drain through ice tunnels as catastrophe floods, threatening people and infrastructure downstream. Understanding of how process works can mitigate the impacts by providing advanced warnings. A laboratory study of ice tunnel development improved understanding of how floods evolve. The principles of ice tunnel development were defined numerically and can be used to better model natural floods leading to improved prediction.
20 Jun 2022
Validation of a fully-coupled radiative transfer model for sea ice with albedo and transmittance measurements
Zhonghai Jin, Matteo Ottaviani, and Monika Sikand
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-106, https://doi.org/10.5194/tc-2022-106, 2022
Revised manuscript not accepted (discussion: closed, 6 comments)
Short summary
Short summary
A rigorous treatment of the sea ice medium has been incorporated in an advanced radiative transfer model. The inherent optical properties of brine pockets and air bubbles are parameterized as a function of the vertical profile of the sea ice physical properties (temperature, salinity and density). We test the model performance using available albedo and transmittance measurements collected during the ICESCAPE and the SHEBA field campaigns.
02 Jun 2022
Reconstruction of Arctic sea ice thickness and its impact on sea ice forecasting in the melting season
Lu Yang, Hongli Fu, Xiaofan Luo, Shaoqing Zhang, and Xuefeng Zhang
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-92, https://doi.org/10.5194/tc-2022-92, 2022
Revised manuscript not accepted (discussion: closed, 4 comments)
Short summary
Short summary
During the melting season in Arctic, sea ice thickness is difficult to detect directly by the satellite remote sensing. A bivariate regression model is put forward in this study to construct sea ice thickness. Comparisons with observations show that the new sea ice thickness data has some advantages over other data sets. The experiment shows that the model is expected to provide an available data for improving the forecast accuracy of sea ice variables in the Arctic sea ice melting season.
13 May 2022
Comment on: Macroscopic water vapor diffusion is not enhanced in snow
Andrew Hansen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-83, https://doi.org/10.5194/tc-2022-83, 2022
Manuscript not accepted for further review (discussion: closed, 4 comments)
Short summary
Short summary
This paper shows that mass transfer in a layered ice/humid air microstructure resulting from the synchronous sublimation and deposition of water vapor across ice grains, known as hand-to-hand water vapor transport, leads to enhanced mass diffusion. Hand-to-hand mass transport modeling has been criticized as being "not physical." The paper presents an entirely different approach to diffusion by showing diffusion enhancement can be predicted with no reference to hand-to-hand vapor transport.
28 Apr 2022
Arctic sea ice and snow from different ice models: A CICE–SI3 intercomparison study
Imke Sievers, Andrea M. U. Gierisch, Till A. S. Rasmussen, Robinson Hordoir, and Lars Stenseng
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-84, https://doi.org/10.5194/tc-2022-84, 2022
Preprint withdrawn (discussion: closed, 9 comments)
Short summary
Short summary
To predict Arctic sea ice models are used. Many ice models exists. They all are skill full, but give different results. Often this differences result from forcing as for example air temperature. Other differences result from the way the physical equations are solved in the model. In this study two commonly used models are compared under equal forcing, to find out how much the models differ under similar external forcing. The results are compared to observations and to eachother.
11 Apr 2022
Brief communication: Hydrologic connectivity of a tidewater glacier characterized with Sentinel-2 satellite images – a case study of Nordenskiöldbreen, Svalbard
Jan Kavan and Vincent Haagmans
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-54, https://doi.org/10.5194/tc-2022-54, 2022
Revised manuscript not accepted (discussion: closed, 4 comments)
Short summary
Short summary
The direct observation of hydrologic processes within a large glacier is rather difficult, therefore we used publicly available remote sensing data in order to describe hydrologic processes of a marine terminating glacier and demonstrated that such tools and data can be easily used. Spatial and temporal pattern of melting dynamics during five consecutive years was described through mapping of supraglacial lakes and sediment plumes areal extent.
05 Apr 2022
Comparing rain-on-snow representation across different observational methods and a regional climate model
Hannah Ming Siu Vickers, Priscilla Mooney, Eirik Malnes, and Hanna Lee
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-57, https://doi.org/10.5194/tc-2022-57, 2022
Manuscript not accepted for further review (discussion: closed, 2 comments)
Short summary
Short summary
Rain-on-snow (ROS) events are becoming more frequent as a result of a warming climate, and can have significant impacts on nature and society. Accurate representation of ROS events is need to identify where impacts are greatest both now and in the future. We compare rain-on-snow climatologies from a climate model, ground and satellite radar observations and show how different methods can lead to contrasting conclusions and interpretation of the results should take into account their limitations.
22 Mar 2022
Late Holocene glacier variations in the central Tibetan Plateau indicated by the δ18O of ice core enclosed gaseous oxygen
Jiule Li, Baiqing Xu, Ninglian Wang, Ping Yao, and Xiangke Xu
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-43, https://doi.org/10.5194/tc-2022-43, 2022
Manuscript not accepted for further review (discussion: closed, 6 comments)
Short summary
Short summary
The air bubbles enclosed in the alpine glacier ice could be used to reveal regional climate changes. Thus, we analyzed the δ18O of gaseous oxygen in the ice core air bubbles (δ18Obub) from a glacier in the Tibetan Plateau (TP). We find that there is a good correlation between the variation of the δ18Obub and the accumulation or melting of the glacier. Combined with the chronology of the ice core air bubbles, we reconstruct the glacier variations since the late Holocene in the central TP.
11 Mar 2022
Sublimation of frozen CsCl solutions in ESEM: determining the number and size of salt particles relevant to sea-salt aerosols
Ľubica Vetráková, Vilém Neděla, Jiří Runštuk, Xin Yang, and Dominik Heger
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-376, https://doi.org/10.5194/tc-2021-376, 2022
Manuscript not accepted for further review (discussion: closed, 2 comments)
Short summary
Short summary
In polar regions, sea salt aerosols are important to polar atmospheric chemistry, yet their mechanism of formation is not well understood. We inspected the sublimation residues of salty ices in a unique electron microscope and sought for small salt particles, proxies of sea salt aerosols. Our experiments showed that aerosolizable salt particles are preferably generated from low-concentrated ices and at low temperatures. This condition favors salty snow as an efficient source of the aerosols.
25 Feb 2022
Visual Interpretation of Synthetic Aperture Radar Sea Ice Imagery by Expert and Novice Analysts: An Eye Tracking Study
Alexandru Gegiuc, Juha Karvonen, Jouni Vainio, Eero Rinne, Roman Bednarik, and Marko Mäkynen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-8, https://doi.org/10.5194/tc-2022-8, 2022
Publication in TC not foreseen (discussion: closed, 4 comments)
Short summary
Short summary
Current users of operational ice charts call for quantitative uncertainty information, which the current ice charts lack. In this work we demonstrate for the first time the use of eye tracking methodology as a non-invasive way to identify elements behind uncertainties typically introduced during the process of visual mapping of sea ice information in satellite radar imagery. Uncertainty information would increase reliability of the manually produced ice charts and increase navigation safety.
09 Feb 2022
Global evaluation of process-based models with in situ observations to detect long-term change in lake ice
Mohammad Arshad Imrit, Alessandro Filazzola, R. Iestyn Woolway, and Sapna Sharma
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-31, https://doi.org/10.5194/tc-2022-31, 2022
Manuscript not accepted for further review (discussion: closed, 8 comments)
Short summary
Short summary
Process-based models are frequently used to investigate the influence of climate change on lake ice cover, but an assessment of their validity at large spatial scales is currently lacking. Here, we provide a global assessment of lake ice models, comparing the models can accurately simulate the long-term change in lake ice but fail to capture the occurrence of extreme ice years. Model performance also differs across location and morphometric gradients.
03 Feb 2022
Comparison of in-situ snow depth measurements and impacts on validation of unpiloted aerial system lidar over a mixed-use temperate forest landscape
Holly Proulx, Jennifer M. Jacobs, Elizabeth A. Burakowski, Eunsang Cho, Adam G. Hunsaker, Franklin B. Sullivan, Michael Palace, and Cameron Wagner
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-7, https://doi.org/10.5194/tc-2022-7, 2022
Manuscript not accepted for further review (discussion: closed, 4 comments)
Short summary
Short summary
This study compares snow depth measurements from two manual instruments and an airborne platform in a field and forest. The manual instruments’ snow depths differed by 1 to 3 cm. The airborne measurements , which do not penetrate the leaf litter, were consistently shallower than either manual instrument. When combining airborne snow depth maps with manual density measurements, corrections may be required to create unbiased maps of snow properties.
24 Jan 2022
Permafrost Stability Mapping on the Tibetan Plateau by Integrating Time-series InSAR and Random Forest Method
Fumeng Zhao, Wenping Gong, Tianhe Ren, Jun Chen, Huiming Tang, and Tianzheng Li
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-9, https://doi.org/10.5194/tc-2022-9, 2022
Revised manuscript not accepted (discussion: closed, 6 comments)
Short summary
Short summary
In this study, a new permafrost stability mapping is obtained by integrating time-series InSAR and machine learning method, this method provides another alternative for measuring permafrost degradation when the ground temperature is limited to the site-specific measurements. Also, the influences of topography and vegetation coverage on the ground deformations are studied to illustrate that the permafrost stability is high related to the environmental factors.
11 Jan 2022
Inventory and classification of the post Little Ice Age glacial lakes in Svalbard
Iwo Wieczorek, Mateusz Czesław Strzelecki, Łukasz Stachnik, Jacob Clement Yde, and Jakub Małecki
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-364, https://doi.org/10.5194/tc-2021-364, 2022
Manuscript not accepted for further review (discussion: closed, 4 comments)
Short summary
Short summary
Glacial lakes development around the World has been observed since the end of the Little Ice Age. The whole process is especially rapid in Arctic region what shows last researches. One of the last regions which still has not been covered by data about changes of glacial lakes is the Svalbard Archipelago (Norway). We used remote sensing materials and methods to provide information's about changes of glacial lakes and to show major activity of glacial lakes outburst floods.
05 Jan 2022
A Novel Global Freeze-Thaw State Detection Algorithm Based on Passive L-Band Microwave Remote Sensing
Shaoning Lv, Clemens Simmer, Yijian Zeng, Jun Wen, Yuanyuan Guo, and Zhongbo Su
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-369, https://doi.org/10.5194/tc-2021-369, 2022
Preprint withdrawn (discussion: closed, 4 comments)
Short summary
Short summary
The freeze-thaw of the ground is an interesting topic to climatology, hydrology, and other earth sciences. The global freeze-thaw distribution is available by passive microwave remote sensing technique. However, the remote sensing technique indirectly detects freeze-thaw states by measuring the brightness temperature difference between frozen and unfrozen soil. Thus, we present different interprets of the brightness signals to the FT-state by using its sub-daily character.
20 Dec 2021
Uncertainties in mass balance estimation of the Antarctic Ice Sheet using the input and output method
Yijing Lin, Yan Liu, Zhitong Yu, Xiao Cheng, Qiang Shen, and Liyun Zhao
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-325, https://doi.org/10.5194/tc-2021-325, 2021
Preprint withdrawn (discussion: closed, 4 comments)
Short summary
Short summary
We introduce an uncertainty analysis framework for comprehensively and systematically quantifying the uncertainties of the Antarctic mass balance using the Input and Output Method. It is difficult to use the previous strategies employed in various methods and the available data to achieve the goal of estimation accuracy. The dominant cause of the future uncertainty is the ice thickness data gap. The interannual variability of ice discharge caused by velocity and thickness is also nonnegligible.
03 Dec 2021
New large subglacial lake in Princess Elizabeth Land, East Antarctica, detected by airborne geophysical observations
Lin Li, Aiguo Zhao, Tiantian Feng, Xiangbin Cui, Lu An, Ben Xu, Shinan Lang, Liwen Jing, Tong Hao, Jingxue Guo, Bo Sun, and Rongxing Li
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-332, https://doi.org/10.5194/tc-2021-332, 2021
Preprint withdrawn (discussion: closed, 0 comments)
Short summary
Short summary
No subglacial lakes have been reported in Princess Elizabeth Land (PEL), East Antarctica. In this study, thanks to a new suite of airborne geophysical observations in PEL, including RES and gravity data collected during the Chinese National Antarctic Research Expedition, we detected a large subglacial lake of ~45 km in length, ~11 km in width, and ~250 m in depth. These findings will help us understand ice sheet stability in the PEL region.
30 Nov 2021
Review article: Parameterizations of snow-related physical processes in land surface models
Won Young Lee, Hyeon-Ju Gim, and Seon Ki Park
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-319, https://doi.org/10.5194/tc-2021-319, 2021
Manuscript not accepted for further review (discussion: closed, 2 comments)
Short summary
Short summary
Snow cover or snow albedo plays a vital role in the atmosphere and land surface interaction. Especially, direct observation of snow is difficult and scarce. That's why a reliable Land Surface Model (LSM), including snow physical processes, is significant. In this study, we tried to give meaningful insights for improving the LSM in the future by identifying the main variables or parameters used and examining the different formulas for snow-related processes of the eight LSMs.
22 Nov 2021
Seasonal Sea Ice Prediction with the CICE Model and Positive Impact of CryoSat-2 Ice Thickness Initialization
Shan Sun and Amy Solomon
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-353, https://doi.org/10.5194/tc-2021-353, 2021
Preprint withdrawn (discussion: closed, 6 comments)
Short summary
Short summary
We validate the standalone CICE sea ice model for application in the seasonal forecast, before it is used in the coupled atmosphere-ocean-ice model. We found the model did a better job in forecasting Arctic sea ice extent in the warm season than in the cold season at the seasonal time scale. A higher forecast skill is achieved when the model is initialized with ice thickness from satellite observations, indicating the importance of the ice thickness initialization.
05 Nov 2021
Basal Water Storage Variations beneath Antarctic Ice Sheet Inferred from Multi-source Satellite Data
Jingyu Kang, Yang Lu, Yan Li, Zizhan Zhang, and Hongling Shi
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-278, https://doi.org/10.5194/tc-2021-278, 2021
Manuscript not accepted for further review (discussion: closed, 2 comments)
Short summary
Short summary
Antarctic basal water storage variations (BWSV) effect basal effective pressure and produces changing ice velocity, yet it is rarely accessible to direct observation. We estimated the BWSV by using multisource satellite data. Result revealed BWSV is increasing with the rate of 43 ± 13 Gt/yr. Basal water in most active subglacial lakes is increasing, despite water discharging occur frequently. Fierce basal water increases are often accompanied with massive rapid and accelerated ice flows.
19 Oct 2021
Insensitivity of mass loss of Icelandic Vatnajökull ice cap to solar geoengineering
Chao Yue, Louise Steffensen Schmidt, Liyun Zhao, Michael Wolovick, and John C. Moore
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-318, https://doi.org/10.5194/tc-2021-318, 2021
Revised manuscript not accepted (discussion: closed, 4 comments)
Short summary
Short summary
We use the ice sheet model PISM to estimate Vatnajökull mass balance under solar geoengineering. We find that Stratospheric aerosol injection at the rate of 5 Tg yr−1 reduces ice cap mass loss by 4 percentage points relative to the RCP4.5 scenario. Dynamic mass loss is a significant component of mass balance, but insensitive to climate forcing.
27 Sep 2021
Estimating snow depth on Arctic sea ice based on reanalysis reconstruction and particle filter assimilation
Haili Li, Chang-Qing Ke, Qinghui Zhu, and Xiaoyi Shen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-271, https://doi.org/10.5194/tc-2021-271, 2021
Revised manuscript not accepted (discussion: closed, 4 comments)
Short summary
Short summary
Here, we employ particle filter assimilation to combine snow depth values retrieved from remote sensing with those obtained from reanalysis reconstructions, and INESOSIM-PF is proposed. The results indicate that the proposed method improves the modeled snow depth, and the monthly and seasonal changes in the snow depth are consistent with those in the snow depth determined with two existing snow depth algorithms.
22 Sep 2021
Fate of sea ice in the 'New Arctic': A database of daily Lagrangian Arctic sea ice parcel drift tracks with coincident ice and atmospheric conditions
Sean Horvath, Linette Boisvert, Chelsea Parker, Melinda Webster, Patrick Taylor, and Robyn Boeke
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-297, https://doi.org/10.5194/tc-2021-297, 2021
Preprint withdrawn (discussion: closed, 5 comments)
Short summary
Short summary
Arctic sea ice has been experiencing a dramatic decline since the late 1970s. A database is presented that combines satellite observations with daily sea ice parcel drift tracks. This dataset consists of daily time series of sea ice parcel locations, sea ice and snow conditions, and atmospheric states. This has multiple applications for the scientific community that can shed light on the atmosphere-snow-sea ice interactions in the changing Arctic environment.
21 Sep 2021
Evolution of the Amundsen Sea Polynya, Antarctica, 2016–2021
Grant J. Macdonald, Stephen F. Ackley, and Alberto M. Mestas-Nuñez
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-250, https://doi.org/10.5194/tc-2021-250, 2021
Manuscript not accepted for further review (discussion: closed, 5 comments)
Short summary
Short summary
Polynyas are key sites of sea ice production, biological activity and carbon sequestration. The Amundsen Sea Polynya is of particular interest due to its size and location. By analyzing radar imagery and climate and sea ice data products we evaluate variations in the dynamics, area and ice production of the Amundsen Sea Polynya. In particular, we find the local sea floor topography and associated grounded icebergs play an important role in the polynyas dynamics, influencing ice production.
26 Aug 2021
Relationships between Andean Glacier Ice-Core Dust Records and Amazon Basin Riverine Sediments
Rafael S. dos Reis, Rafael da Rocha Ribeiro, Barbara Delmonte, Edson Ramirez, Norberto Dani, Paul A. Mayewski, and Jefferson C. Simões
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-186, https://doi.org/10.5194/tc-2021-186, 2021
Revised manuscript not accepted (discussion: closed, 4 comments)
Short summary
Short summary
The ice-core recovered in Peruvian Andes depicts the 12 years of dust particles data in snow accumulation. The seasonality of the dry and wet season, respectively, are represented by high and low dust concentration in profile. Our observations period show the differences between fine and larger particles concentrations over the years and their correlation with oceanic oscillations phenomena. Also, we introduce the link of the dust groupings with Madeira River in the Amazon basin context.
25 Aug 2021
The statistics of blowing snow occurrences from multi-year autonomous snow flux measurements in the French Alps
Zhipeng Xie, Yaoming Ma, Weiqiang Ma, Zeyong Hu, and Genhou Sun
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-260, https://doi.org/10.5194/tc-2021-260, 2021
Preprint withdrawn (discussion: closed, 2 comments)
Short summary
Short summary
Wind-driven snow transport greatly influences spatial-temporal distribution of snow in mountainous areas. Knowledge of the spatiotemporal variability of blowing snow is in its infancy because of inaccuracies in satellite-based blowing snow algorithms and the absence of quantitative assessments. Here, we present the spatiotemporal variability and magnitude of blowing snow events, and explore the potential links with ambient meteorological conditions using near surface blowing snow observations.
24 Aug 2021
Effects of climate change on the valley glaciers of the Italian Alps
Rossana Serandrei-Barbero, Sandra Donnici, and Stefano Zecchetto
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-241, https://doi.org/10.5194/tc-2021-241, 2021
Manuscript not accepted for further review (discussion: closed, 5 comments)
Short summary
Short summary
The annual measurements carried out at the glacier fronts in recent decades indicate that Italian valley glaciers are less sensitive to global warming than the generality of alpine glaciers. This study investigates their length variations in the last 45 years and their projected behavior as a result of the climate changes. The model used indicates that the majority of the valley glaciers could better resist the climate change, unlike most alpine glaciers.
09 Aug 2021
Review Article: Permafrost Trapped Natural Gas in Svalbard, Norway
Thomas Birchall, Malte Jochmann, Peter Betlem, Kim Senger, Andrew Hodson, and Snorre Olaussen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-226, https://doi.org/10.5194/tc-2021-226, 2021
Preprint withdrawn (discussion: closed, 6 comments)
Short summary
Short summary
Svalbard has over a century of drilling history, though this historical data is largely overlooked nowadays. After inspecting this data, stored in local archives, we noticed the surprisingly common phenomenon of gas trapped below the permafrost. Methane is a potent greenhouse gas, and the Arctic is warming at unprecedented rates. The permafrost is the last barrier preventing this gas from escaping into the atmosphere and if it thaws it risks a feedback effect to the already warming climate.
04 Aug 2021
A fine-scale digital elevation model of Antarctica derived from ICESat-2
Xiaoyi Shen, Chang-Qing Ke, Yubin Fan, and Lhakpa Drolma
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-204, https://doi.org/10.5194/tc-2021-204, 2021
Manuscript not accepted for further review (discussion: closed, 6 comments)
Short summary
Short summary
Obtaining the detailed surface topography in Antarctica is essential for human fieldwork planning, ice surface height changes and mass balance estimations. A definite time-stamped and fine-scale DEM for Antarctica with a modal resolution of 250 m is presented based on the surface height measurements from ICESat-2 by using a model fitting method, which is more valuable for further scientific applications, e.g., land ice height and mass balance estimations.
02 Aug 2021
A strong link between variations in sea-ice extent and global atmospheric pressure?
Jean-Louis Le Mouël, Fernando Lopes, and Vincent Courtillot
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-216, https://doi.org/10.5194/tc-2021-216, 2021
Manuscript not accepted for further review (discussion: closed, 7 comments)
Short summary
Short summary
Variations of Arctic and Antarctic sea-ice exhibit a quasi-linear rate and an annual component. Trends in Arctic and Antarctic are of opposite sign. Both series share a set of harmonics of 1 year (1/2, 1/3, 1/4 and 1/5 yr), linked to the Earth’s revolution. The components with longer period form a set of even harmonics of the Schwabe cycle. The pressure series also exhibits the four harmonics of 1 year. These observations suggest a connection between variations in pressure and sea-ice extent.
22 Jul 2021
Changes in Supraglacial Lakes on George VI Ice Shelf, Antarctic Peninsula: 1973–2020
Thomas James Barnes, Amber Alexandra Leeson, Malcolm McMillan, Vincent Verjans, Jeremy Carter, and Christoph Kittel
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-214, https://doi.org/10.5194/tc-2021-214, 2021
Revised manuscript not accepted (discussion: closed, 5 comments)
Short summary
Short summary
We find that the area covered by lakes on George VI ice shelf in 2020 is similar to that seen in other years such as 1989. However, the climate conditions are much more in favour of lakes forming. We find that it is likely that snowfall, and the build up of a surface snow layer limits the development of lakes on the surface of George VI ice shelf in 2020. We also find that in future, snowfall is predicted to decrease, and therefore this limiting effect may be reduced in future.
22 Jul 2021
Snow dune growth increases polar heat fluxes
Kelly Kochanski, Gregory Tucker, and Robert Anderson
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-205, https://doi.org/10.5194/tc-2021-205, 2021
Manuscript not accepted for further review (discussion: closed, 2 comments)
Short summary
Short summary
Falling snow does not life flat. When blown by the wind, it forms elaborate structures, like dunes. Where these dunes form, they change the way heat flows through the snow. This can accelerate sea ice melt and climate change. Here, we use both field observations obtained during blizzards in Colorado and simulations performed with a state-of-the-art model, to quantify the impact of snow dunes on Arctic heat flows.
17 May 2021
Winter growth and tidal variability of the sub-ice platelet layer observed with electromagnetic induction soundings
Gemma M. Brett, Gregory H. Leonard, Wolfgang Rack, Christian Haas, Patricia J. Langhorne, and Anne Irvin
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-61, https://doi.org/10.5194/tc-2021-61, 2021
Manuscript not accepted for further review (discussion: closed, 2 comments)
Short summary
Short summary
Using a geophysical technique, we observe temporal variability in the influence of ice shelf meltwater on coastal sea ice which forms platelet ice crystals which contribute to the thickness of the sea ice and accumulate into a thick mass called a sub-ice platelet layer (SIPL). The variability observed in the SIPL indicated that circulation of ice shelf meltwater out from the cavity in McMurdo Sound is influenced by tides and strong offshore winds which affect surface ocean circulation.
17 May 2021
Air pollutants in Xinjiang during the COVID-19 pandemic and glaciochemical records of a Tien-Shan glacier
Feiteng Wang, Xin Zhang, Fanglong Wang, Mengyuan Song, Zhongqin Li, and Jing Ming
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-133, https://doi.org/10.5194/tc-2021-133, 2021
Preprint withdrawn (discussion: closed, 5 comments)
Short summary
Short summary
The ongoing pandemic of COVID-19 impacts deeply in every aspects of human life and nature. After investigate the air pollutants in Xinjiang from 2019 through 2020, we find the mobility restrictions due to the COVID-19 dipped air NO2 concentration twice from 2019 normal in 2020 and snow chemistry records also show abnormal decrease in Urumqi Glacier No. 1.
07 Apr 2021
On the performance of the snow model Crocus driven by in situ and reanalysis data at Villum Research Station in northeast Greenland
Daniela Krampe, Frank Kauker, Marie Dumont, and Andreas Herber
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-100, https://doi.org/10.5194/tc-2021-100, 2021
Manuscript not accepted for further review (discussion: closed, 2 comments)
Short summary
Short summary
Reliable and detailed Arctic snow data are limited. Evaluation of the performance of atmospheric reanalysis compared to measurements in northeast Greenland generally show good agreement. Both data sets are applied to an Alpine snow model and the performance for Arctic conditions is investigated: Simulated snow depth evolution is reliable, but vertical snow profiles show weaknesses. These are smaller with an adapted parametrisation for the density of newly fallen snow for harsh Arctic conditions.
30 Mar 2021
Sea ice and water classification on dual-polarized Sentinel-1 imagery during melting season
Yu Zhang, Tingting Zhu, Gunnar Spreen, Christian Melsheimer, Marcus Huntemann, Nick Hughes, Shengkai Zhang, and Fei Li
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-85, https://doi.org/10.5194/tc-2021-85, 2021
Revised manuscript not accepted (discussion: closed, 6 comments)
Short summary
Short summary
We developed an algorithm for ice-water classification using Sentinel-1 data during melting seasons in the Fram Strait. The proposed algorithm has the OA of nearly 90 % with STD less than 10 %. The comparison of sea ice concentration demonstrate that it can provide detailed information of sea ice with the spatial resolution of 1km. The time series shows the average June to September sea ice area does not change so much in 2015–2017 and 2019–2020, but it has a significant decrease in 2018.
15 Mar 2021
Basal Water Storage Variations beneath Antarctic Ice Sheet
Jingyu Kang, Yang Lu, Yan Li, Zizhan Zhang, and Hongling Shi
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-17, https://doi.org/10.5194/tc-2021-17, 2021
Manuscript not accepted for further review (discussion: closed, 2 comments)
Short summary
Short summary
Antarctic basal water storage variations (BWSV) effect basal effective pressure and produces changing ice velocity, yet it is rarely accessible to direct observation. We estimated the BWSV by using multisource satellite data. We found that basal water in most active subglacial lakes is increasing, despite water discharging occur frequently. In marginal regions, fierce basal water decreases are often accompanied with massive rapid ice flows, while huge ice shelves can block basal water discharge.
12 Mar 2021
Accelerated decline of Svalbard coasts fast ice as a result of climate
change
Jacek A. Urbański and Dagmara Litwicka
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-21, https://doi.org/10.5194/tc-2021-21, 2021
Manuscript not accepted for further review (discussion: closed, 2 comments)
Short summary
Short summary
The primary aim of the presented research was to characterize the spatial distribution of the mean temporal difference in the presence of fast ice between 1975-2000 and 2014-2019 at the archipelago scale and the fjord scale of Svalbard. The second aim was to quantify the changes in the fast ice surface area in different time periods, and in the near future, assuming the forecast increase in temperature.
17 Feb 2021
Observation of strong NOx release over Qiyi Glacier, China
Weili Lin, Feng Wang, Chunxiang Ye, and Tong Zhu
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-32, https://doi.org/10.5194/tc-2021-32, 2021
Preprint withdrawn (discussion: closed, 2 comments)
Short summary
Short summary
Field observations found that released NOx on the glacier surface of the Tibetan Plateau, an important snow-covered region in the northern mid-latitudes, had a higher concentration than in Antarctic and Arctic regions. Such evidence, and such high fluxes as observed here on the Tibetan plateau is novel. That such high concentrations of nitrogen oxides can be found in remote areas is interesting and important for the oxidative budget of the boundary layer.
12 Feb 2021
Mapping snow depth and volume at the alpine watershed scale from
aerial imagery using Structure from Motion
Joachim Meyer, S. McKenzie Skiles, Jeffrey Deems, Kat Bormann, and David Shean
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-34, https://doi.org/10.5194/tc-2021-34, 2021
Manuscript not accepted for further review (discussion: closed, 2 comments)
Short summary
Short summary
Snow that accumulates seasonally in mountains forms a natural water reservoir and is difficult to measure in the rugged and remote landscapes. Here, we use modern software that models surface elevations from overlapping aerial images to map snow depth by calculating the difference in surface elevations between two dates, one with snow and one without. Results demonstrate the potential value of aerial images for understanding the amount of water held as snow in remote and inaccessible locations.
04 Feb 2021
Effect of ephemeral snow cover on the active layer thermal regime and
thickness on CALM-S JGM site, James Ross Island, eastern Antarctic
Peninsula
Filip Hrbáček, Zbyněk Engel, Michaela Kňažková, and Jana Smolíková
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-5, https://doi.org/10.5194/tc-2021-5, 2021
Preprint withdrawn (discussion: closed, 2 comments)
Short summary
Short summary
This manuscript assesses the effect of the ephemeral snow cover occurring during high summer on ground thermal regime and active layer thickness in the cold environment of James Ross Island on Antarctic Peninsula region. We found that even short-term occurrence of relatively thick snow (> 20 cm) can significantly affect ground thermal conditions and consequently reduce the active layer thaw depth by ca 10 % when compare to snow-free conditions.
03 Feb 2021
InSAR monitoring of Arctic land fast sea ice deformation using
L-band ALOS-2, C-band Radarsat-2 and Sentinel-1
Zhaohua Chen, Benoit Montpetit, Sarah Banks, Lori White, Amir Behnamian, Jason Duffe, and Jon Pasher
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-18, https://doi.org/10.5194/tc-2021-18, 2021
Manuscript not accepted for further review (discussion: closed, 2 comments)
29 Jan 2021
Comparison of optical-equivalent snow grain size estimates under
Arctic low Sun conditions during PAMARCMiP 2018
Evelyn Jäkel, Tim Carlsen, André Ehrlich, Manfred Wendisch, Michael Schäfer, Sophie Rosenburg, Konstantina Nakoudi, Marco Zanatta, Gerit Birnbaum, Veit Helm, Andreas Herber, Larysa Istomina, Linlu Mei, and Anika Rohde
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-14, https://doi.org/10.5194/tc-2021-14, 2021
Preprint withdrawn (discussion: closed, 3 comments)
Short summary
Short summary
Different approaches to retrieve the optical-equivalent snow grain size using satellite, airborne, and ground-based observations were evaluated and compared to modeled data. The study is focused on low Sun and partly rough surface conditions encountered North of Greenland in March/April 2018. We proposed an adjusted airborne retrieval method to reduce the retrieval uncertainty.
29 Jan 2021
Antecedent control on active ice sheet retreat revealed by seafloor
geomorphology, offshore Windmill Islands, Antarctica
Alexandra L. Post, Emrys Phillips, Christopher J. Carson, and Jodie Smith
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-8, https://doi.org/10.5194/tc-2021-8, 2021
Manuscript not accepted for further review (discussion: closed, 2 comments)
Short summary
Short summary
The seafloor is one of the best places to look for evidence of past response of the Antarctic ice sheet to environmental change. This work uses extremely high resolution bathymetry to interpret features imprinted onto the seafloor during last retreat of the Law Dome ice sheet. Seafloor features reveal the influence of pre-existing conditions, such as the underlying topography and the existence of sediment or bedrock, providing context to understand how ice sheets may respond to future change.
21 Jan 2021
A local model of snow-firn dynamics and application to Colle Gnifetti site
Fabiola Banfi and Carlo De Michele
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-357, https://doi.org/10.5194/tc-2020-357, 2021
Manuscript not accepted for further review (discussion: closed, 3 comments)
Short summary
Short summary
Climate changes require a dynamic description of glaciers in hydrological models. In this study we focus on the local modeling of snow and firn. We tested our model at the site of Colle Gnifetti, 4400–4550 m a.s.l. The model shows that wind erodes all the precipitation of the cold months, while snow is in part conserved between May and September, since higher temperatures protect snow from erosion. We also compared modeled and observed firn density obtaining a satisfying agreement.
14 Jan 2021
On the 2011 record low Arctic sea ice thickness: a combination of
dynamic and thermodynamic anomalies
Xuewei Li, Qinghua Yang, Lejiang Yu, Paul R. Holland, Chao Min, Longjiang Mu, and Dake Chen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-359, https://doi.org/10.5194/tc-2020-359, 2021
Preprint withdrawn (discussion: closed, 6 comments)
Short summary
Short summary
The Arctic sea ice thickness record minimum is confirmed occurring in autumn 2011. The dynamic and thermodynamic processes leading to the minimum thickness is analyzed based on a daily sea ice thickness reanalysis data covering the melting season. The results demonstrate that the dynamic transport of multiyear ice and the subsequent surface energy budget response is a critical mechanism actively contributing to the evolution of Arctic sea ice thickness in 2011.
11 Jan 2021
Recent North Greenland temperature warming and accumulation
Helle Astrid Kjær, Patrick Zens, Ross Edwards, Martin Olesen, Ruth Mottram, Gabriel Lewis, Christian Terkelsen Holme, Samuel Black, Kasper Holst Lund, Mikkel Schmidt, Dorthe Dahl-Jensen, Bo Vinther, Anders Svensson, Nanna Karlsson, Jason E. Box, Sepp Kipfstuhl, and Paul Vallelonga
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-337, https://doi.org/10.5194/tc-2020-337, 2021
Manuscript not accepted for further review (discussion: closed, 2 comments)
Short summary
Short summary
We have reconstructed accumulation in 6 firn cores and 8 snow cores in Northern Greenland and compared with a regional Climate model over Greenland. We find the model underestimate precipitation especially in north-eastern part of the ice cap- an important finding if aiming to reconstruct surface mass balance.
Temperatures at 10 meters depth at 6 sites in Greenland were also determined and show a significant warming since the 1990's of 0.9 to 2.5 °C.
11 Jan 2021
Brief Communication: Initializing RAMMS with High Resolution
LiDAR Data for Avalanche Simulations
James Dillon and Kevin Hammonds
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-368, https://doi.org/10.5194/tc-2020-368, 2021
Manuscript not accepted for further review (discussion: closed, 6 comments)
06 Jan 2021
Brief communication: Grease Ice in the Antarctic Marginal Ice Zone
Felix Paul, Tommy Mielke, Carina Nisters, Jörg Schröder, Tokoloho Rampai, Sebastian Skatulla, Riesna Audh, Ehlke Hepworth, Marcello Vichi, and Doru C. Lupascu
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-362, https://doi.org/10.5194/tc-2020-362, 2021
Preprint withdrawn (discussion: closed, 2 comments)
Short summary
Short summary
Frazil ice, consisting of loose disc-shaped ice crystals, is the very first sea ice that forms in the annual cycle in the marginal ice zone (MIZ) of the Antarctic. A sufficient number of frazil ice crystals forms the surface grease ice layer taking a fundamental role in the freezing processes in the MIZ. As soon as the ocean waves are damped, a closed ice cover can form. The viscous properties of frazil ice, which have a crucial influence on the growth of sea ice in the MIZ are investigated.
14 Dec 2020
Higher mass loss over Greenland and Antarctic ice
sheets projected in CMIP6 than CMIP5 by high resolution regional
downscaling EC-Earth
Fredrik Boberg, Ruth Mottram, Nicolaj Hansen, Shuting Yang, and Peter L. Langen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-331, https://doi.org/10.5194/tc-2020-331, 2020
Manuscript not accepted for further review (discussion: closed, 2 comments)
Short summary
Short summary
Using the regional climate model HIRHAM5, we compare two versions (v2 and v3) of the global climate model EC-Earth for the Greenland and Antarctica ice sheets. We are interested in the surface mass balance of the ice sheets due to its importance when making estimates of the future sea level rise. We find that the end-of-century change of the surface mass balance for Antarctica is +150 Gt yr−1 (v2) and −710 Gt yr−1 (v3) and for Greenland the numbers are −210 Gt yr−1 (v2) and −1150 Gt yr−1 (v3).
08 Dec 2020
A model for the Artic mixed layer circulation under a melted lead:
Implications on the near-surface temperature maximum formation
Alberto Alvarez
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-322, https://doi.org/10.5194/tc-2020-322, 2020
Revised manuscript not accepted (discussion: closed, 4 comments)
Short summary
Short summary
Strong heat exchanges between the Arctic Ocean and the atmosphere occur in cracks in the sea ice pack (leads). Numerical simulations of an idealized lead geometry, suggest the daily generation of near surface convection cells under a melted lead. The cyclical generation of the cells with the solar cycle, significantly enhances the heating of waters below the lead. This process at lead scale may be of global relevance, if lead frequency in the ice cover increases as a result of global warming.
01 Dec 2020
Multi-scale spatialization of snow water equivalent (SWE) according
to their spatial structures in eastern Canada
Noumonvi Yawu Sena, Karem Chokmani, Erwan Gloaguen, and Monique Bernier
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-316, https://doi.org/10.5194/tc-2020-316, 2020
Manuscript not accepted for further review (discussion: closed, 10 comments)
20 Nov 2020
A Novel Approach to Map the Intensity of Surface Melting on the
Antarctica Ice Sheet using SMAP L-Band Microwave Radiometry
Seyedmohammad Mousavi, Andreas Colliander, Julie Z. Miller, and John S. Kimball
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-297, https://doi.org/10.5194/tc-2020-297, 2020
Manuscript not accepted for further review (discussion: closed, 2 comments)
05 Nov 2020
Evaluating Airborne Ku-Band Radar Altimetry over Landfast
First-Year Sea Ice
Paul Donchenko, Joshua King, and Richard Kelly
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-283, https://doi.org/10.5194/tc-2020-283, 2020
Publication in TC not foreseen (discussion: closed, 3 comments)
Short summary
Short summary
Estimating Arctic sea ice surface elevation from the CryoSat-2 instrument may not fully compensate for the incomplete penetration of radar through the snow cover and overestimate the ice thickness. This study investigates the accuracy of the ice surface measurement and how it is affected by the properties snow and ice properties. It was found that deep or salty snow, and rough ice can make the surface appear higher, but including these properties in the calculation may improve the estimate.
28 Oct 2020
Significant water vapor fluxes from the Greenland Ice Sheet detected
through water vapor isotopic (δ18O, δD, deuterium excess) measurements
Ben G. Kopec, Pete D. Akers, Eric S. Klein, and Jeffery M. Welker
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-276, https://doi.org/10.5194/tc-2020-276, 2020
Manuscript not accepted for further review (discussion: closed, 2 comments)
Short summary
Short summary
Significant mass loss to the Greenland Ice Sheet has occurred over recent decades, marked by a record summer melt season in 2019. Water vapor fluxes from the ice sheet surface, including sublimation and meltwater evaporation, are a growing component of the mass balance. Using water vapor isotope measurements in northwest Greenland, we identify the signal of these fluxes and show how they correspond with melt extent. These vapor fluxes contribute ~20 % of water vapor advected off the ice sheet.
23 Oct 2020
Formation and evolution of newly formed glaciovolcanic caves in the
crater of Mount St. Helens, Washington, USA
Linda Sobolewski, Christian Stenner, Charlotte Hüser, Tobias Berghaus, Eddy Cartaya, and Andreas Pflitsch
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-279, https://doi.org/10.5194/tc-2020-279, 2020
Manuscript not accepted for further review (discussion: closed, 2 comments)
Short summary
Short summary
Glaciovolcanic caves are a rare phenomenon on glacier-covered volcanoes and provide the chance to better understand the interaction of glaciers and active volcanoes. Furthermore, they may be useful as indicators of volcanic unrest. We studied the newly formed cave systems around the 2004–2008 lava dome in the crater of Mount St. Helens and found out that the cave systems are highly dynamic, trending to expand in the near future, with fumarolic activity as the driving force.
12 Oct 2020
Dynamics of Large Pelagic Ice Crystals in an Antarctic Ice Shelf Water Plume Flowing Beneath Land-Fast Sea Ice
Craig Stevens, Natalie Robinson, Gabby O'Connor, and Brett Grant
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-249, https://doi.org/10.5194/tc-2020-249, 2020
Revised manuscript not accepted (discussion: closed, 4 comments)
Short summary
Short summary
Along Antarctica's coastal margin melting ice shelves create plumes of very cold sea water. In some circumstances the water is so cold that ice crystals exist in suspension. We present evidence from near the McMurdo Ice Shelf of ice crystals far larger than normal (by an order of magnitude or more). The crystal behaviour is examined by combining measurements of the crystal motion with ocean flow and turbulence data. This helps us make links between ice shelf melting and sea ice formation.
21 Sep 2020
Hydrology and runoff routing of glacierized drainage basins in the Kongsfjord area, northwest Svalbard
Ankit Pramanik, Jack Kohler, Katrin Lindbäck, Penelope How, Ward Van Pelt, Glen Liston, and Thomas V. Schuler
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-197, https://doi.org/10.5194/tc-2020-197, 2020
Revised manuscript not accepted (discussion: closed, 4 comments)
Short summary
Short summary
Freshwater discharge from tidewater glaciers influences fjord circulation and fjord ecosystem. Glacier hydrology plays crucial role in transporting water underneath glacier ice. We investigated hydrology beneath the tidewater glaciers of Kongsfjord basin in Northwest Svalbard and found that subglacial water flow differs substantially from surface flow of glacier ice. Furthermore, we derived freshwater discharge time-series from all the glaciers to the fjord.
13 Sep 2020
Quantifying multifrequency acoustic characterization accuracy for ice
model development applications
David R. Topham and John R. Marko
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-213, https://doi.org/10.5194/tc-2020-213, 2020
Manuscript not accepted for further review (discussion: closed, 2 comments)
Short summary
Short summary
This paper concerns the physical interpretation of multi-frequency acoustic returns from weakly buoyant suspensions of disk shaped frazil ice crystals. The degree to which ice crystals can be acoustically modeled as spheres is compared with experimental results on polystyrene disks of similar geometry, and with frazil ice field data.
28 Aug 2020
Summer valley-floor snowfall in Taylor Valley, Antarctica from 1995–2017
Madeline E. Myers, Peter T. Doran, and Krista F. Myers
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-203, https://doi.org/10.5194/tc-2020-203, 2020
Revised manuscript not accepted (discussion: closed, 6 comments)
Short summary
Short summary
In polar regions like the Dry Valleys of Antarctica, snowfall is expected to increase. Small amounts of snow lower radiation for melting and photosynthesis by increasing the albedo of the surrounding dark soil. Two decades of snowfall data have shown that the volume of snowfall has been declining since 2009, which contradicts the anticipated increase; however, the number of days with snow has been increasing, which will slow glacial melt and lower productivity below the snow cover.
26 Aug 2020
Evaluation of coastal Antarctic precipitation in MAR3.9 regional
and LMDz6 global atmospheric model with ground-based radar
observations
Florentin Lemonnier, Alizée Chemison, Hubert Gallée, Gerhard Krinner, Jean-Baptiste Madeleine, Chantal Claud, and Christophe Genthon
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-167, https://doi.org/10.5194/tc-2020-167, 2020
Manuscript not accepted for further review (discussion: closed, 4 comments)
Short summary
Short summary
This study presents the first evaluation from snowfall observations in Antarctica of the general circulation model LMDz (global), the atmospheric component of the coupled IPSL Climate Model that is part of CMIP6 (IPCC). We also present an evaluation of the new version of the MAR model (regional), considered as a reference in terms of polar climate modelling. Both models show satisfying results for the modelling of precipitation in Antarctica.
21 Aug 2020
Osmium isotope and trace elements reveal melting of Chhota Shigri Glacier,
western Himalaya, insensitive to anthropogenic emission residues
Sarwar Nizam, Indra Sekhar Sen, Tanuj Shukla, and David Selby
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-165, https://doi.org/10.5194/tc-2020-165, 2020
Manuscript not accepted for further review (discussion: closed, 4 comments)
Short summary
Short summary
One billion people rely on meltwater from the Himalayan glacial mass. Its alarming rate of melting is being enhanced by increased heat absorption caused by a dark-colored aggregate of minerals and organic materials on the glacier surface. We use multiple lines of geochemical evidence to show that Chhota Shigri Glacier (CSG)— a benchmark glacier in the western Himalaya — is essentially free of anthropogenic particles, and consequently limited role in glacier mass wastage rates.
17 Aug 2020
Long-term variation of sea ice and its response to thermodynamic factors in the Northwest Passage of the Canadian Arctic Archipelago
Xinyi Shen, Yu Zhang, Changsheng Chen, and Song Hu
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-215, https://doi.org/10.5194/tc-2020-215, 2020
Manuscript not accepted for further review (discussion: closed, 6 comments)
Short summary
Short summary
Sea ice conditions in the Canadian Arctic Archipelago (CAA) play a key role in the navigation of the Northwest Passage (NWP). Based on the observed and simulated sea ice concentration and thickness data, we studied the temporal and spatial characteristics of sea ice from 1979 to 2017 in the NWP of the CAA and evaluated the sea ice conditions along the southern and northern routes of the NWP.
12 Aug 2020
Snow cover variations across China from 1951–2018
Xiaodong Huang, Changyu Liu, Zhaojun Zheng, Yunlong Wang, Xubing Li, and Tiangang Liang
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-202, https://doi.org/10.5194/tc-2020-202, 2020
Revised manuscript not accepted (discussion: closed, 4 comments)
Short summary
Short summary
In the study, the long-term snow cover variation and distribution characteristics are illustrated across China during the period of 1951–2018, using the snow depth dataset retrieve from the National Meteorological Information Center of the China Meteorological Administration. The geographical and meteorological factors were closely related to snow cover change, especially the change in temperature, which will lead to significant changes in snow depth and phenology in mainland China.
03 Aug 2020
Can katabatic winds directly force retreat of Greenland outlet glaciers? Hypothesis test on Helheim Glacier in Sermilik Fjord
Iain Wheel, Poul Christoffersen, and Sebastian H. Mernild
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-194, https://doi.org/10.5194/tc-2020-194, 2020
Manuscript not accepted for further review (discussion: closed, 3 comments)
Short summary
Short summary
Down-fjord winds, known as katabatic winds, are shown to increase water temperatures close to Helheim Glacier through circulation changes. More importantly, strong winds are shown to break up the sea-ice and iceberg matrix in front of the glacier which through a loss of support to the glacier leads to retreat of up to 1.5 km. Therefore katabatic winds are hypothesised to play an important role in the retreat of Helheim Glacier and to be important in the retreat of other Greenland glaciers.
28 Jul 2020
Rock and snow differentiation from colour (RGB) images
Alex Burton-Johnson and Nina Sofia Wyniawskyj
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-115, https://doi.org/10.5194/tc-2020-115, 2020
Publication in TC not foreseen (discussion: closed, 4 comments)
Short summary
Short summary
Accurate maps of Polar Regions are vital for navigation and scientific research. However, automated mapping of snow and rock requires low resolution infrared imagery. This is the first paper to evaluate mapping rocks and snow from colour imagery, and presents a new methodology. The techniques are evaluated, and shown to have high accuracy. By allowing usage of high resolution and abundant colour imagery we hope to improve Polar mapping and geospatial research in diverse disciplines.
21 Jul 2020
SAR image observations of the A-68 iceberg drift
Ludwin Lopez-Lopez, Flavio Parmiggiani, Miguel Moctezuma-Flores, and Lorenzo Guerrieri
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-180, https://doi.org/10.5194/tc-2020-180, 2020
Manuscript not accepted for further review (discussion: closed, 3 comments)
Short summary
Short summary
A methodology for examining a temporal sequence of Synthetic Aperture Radar (SAR) images as applied to the detection of the A-68 iceberg and its drifting trajectory, is presented. Using an improved image processing scheme, the analysis covers a period of eighteen months. A-68 is one of the largest icebergs observed by remote sensing on record. It is expected to continue its path for more than a decade. It is important to track the huge A-68 iceberg to retrieve information on the drift movement.
16 Jun 2020
Improved Multimodel Superensemble Forecast for Sea Ice Thickness using Global Climate Models
Wang Yangjun, Liu Kefeng, Zhang Ren, Qian Longxia, and Zhang Yu
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-86, https://doi.org/10.5194/tc-2020-86, 2020
Revised manuscript not accepted (discussion: closed, 4 comments)
Short summary
Short summary
This paper aims to find an ensemble method that combines the global climate models, providing an accurate forecast of sea ice thickness (SIT). An improved multimodel superensemble is proposed in SIT prediction, showing better performance than other mainstream methods. Large biases between the proposed model and observations in SIT simulation are found along the coastline in the west Arctic, and in August, being in accordance with the largest SIT anomaly in time and space.
03 Jun 2020
Inter-and Intra-annual Surface Velocity Variations at the Southern Grounding Line of Amery Ice Shelf from 2014 to 2018
Zhaohui Chi and Andrew G. Klein
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-99, https://doi.org/10.5194/tc-2020-99, 2020
Manuscript not accepted for further review (discussion: closed, 2 comments)
Short summary
Short summary
This study examines surface velocity variations of temporal and spatial distribution along the southern segment of the grounding line of Amery Ice Shelf, East Antarctica. As the variations in surface velocities observed for three major tributary glaciers over the study period of 2014–2018 are similar in magnitude to the range of velocities to that of measured since 1989 of the AIS suggests caution needs to be applied when comparing limited measurements from various decades.
12 May 2020
Landfast ice growth and displacement in the Mackenzie Delta observed by 3D time-series SAR speckle offset tracking
Byung-Hun Choe, Sergey V. Samsonov, and Jungkyo Jung
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-116, https://doi.org/10.5194/tc-2020-116, 2020
Revised manuscript not accepted (discussion: closed, 4 comments)
Short summary
Short summary
This study proposes a methodology to monitor the growth and displacement of landfast ice in the Mackenzie Delta. 3-dimensional speckle offsets were reconstructed with ascending and descending orbit SAR data. Horizontal and vertical displacements caused by landfast ice breakups and pressure ridges were observed. Cumulative vertical offsets of approximately −1 to −2 m were observed, which is due to longer radar penetration into the ice-water interface with increasing landfast ice thickness.
05 May 2020
New insights into the drainage of inundated Arctic polygonal tundra using fundamental hydrologic principles
Dylan R. Harp, Vitaly Zlotnik, Charles J. Abolt, Brent D. Newman, Adam L. Atchley, Elchin Jafarov, and Cathy J. Wilson
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-100, https://doi.org/10.5194/tc-2020-100, 2020
Manuscript not accepted for further review (discussion: closed, 4 comments)
Short summary
Short summary
Polygon shaped land forms present in relatively flat Arctic tundra result in complex landscape scale water drainage. The drainage pathways and the time to transition from inundated conditions to drained have important implications for heat and carbon transport. Using fundamental hydrologic principles, we investigate the drainage pathways and timing of individual polygons providing insights into the effects of polygon geometry and preferential flow direction on drainage pathways and timing.
03 May 2020
Liquid-water content and water distribution of wet snow using electrical monitoring
Pirmin Philipp Ebner, Aaron Coulin, Joël Borner, Fabian Wolfsperger, Michael Hohl, and Martin Schneebeli
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-56, https://doi.org/10.5194/tc-2020-56, 2020
Revised manuscript not accepted (discussion: closed, 4 comments)
Short summary
Short summary
These laboratory measurements allow to analyse wet snow and to find the narrow range of the starting point of water percolation in coarse-grained snow. Based on the electrical monitoring a promising perspective for retrieving water content and water distribution in the snowpack is given. The water distribution is analysed using micro-computer tomography to find preferential spots of the accumulated water. These findings are pertinent to the interpretation of the snow melt run-off of spring snow.
23 Apr 2020
Glacier variations in the Himalaya from 1990 to 2015 based on remote sensing
Qin Ji, Jun Dong, Hong-rong Li, Yan Qin, Rui Liu, and Taibao Yang
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-297, https://doi.org/10.5194/tc-2019-297, 2020
Manuscript not accepted for further review (discussion: closed, 9 comments)
07 Apr 2020
Spatial distribution and post-depositional diffusion of stable water
isotopes in East Antarctica
Mahalinganathan Kanthanathan, Thamban Meloth, Tariq Ejaz, Bhikaji L. Redkar, and Laluraj C. Madhavanpillai
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-77, https://doi.org/10.5194/tc-2020-77, 2020
Manuscript not accepted for further review (discussion: closed, 4 comments)
Short summary
Short summary
We discuss the factors influencing spatial variations of stable water isotopes and snow accumulation from two different sectors – the central Dronning Maud Land and the Princess Elizabeth Land, that are ~ 2000 km apart in East Antarctica using data from short snow cores. Also, we calculated the amount of diffusion in the isotope signals (amplitude) over time from a firn core. Finally, we used back-trajectories to ascertain the moisture source regions during summer and winter periods.
07 Apr 2020
Effects of surface roughness and light-absorbing impurities on glacier surface albedo, August-one ice cap, Qilian Mountains, China
Junfeng Liu, Rensheng Chen, Yongjian Ding, Chuntan Han, Yong Yang, Zhangwen Liu, Xiqiang Wang, Shuhai Guo, Yaoxuan Song, and Wenwu Qing
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-67, https://doi.org/10.5194/tc-2020-67, 2020
Preprint withdrawn (discussion: closed, 6 comments)
Short summary
Short summary
we try to investigate the spatial and temporal variability of albedo, micro scale surface roughness, and LAIs, with the objective to better understanding and simulating surface albedo variability over snow and dirty ice surface at the August-one ice cap in Qilian Mountain. Snow and ice surface albedo parameterization methods are established based on either surface roughness or both surface roughness and LAIs.
03 Apr 2020
Seasonal and interannual variability of sea-ice state variables: Observations and predictions for landfast ice in northern Alaska and Svalbard
Marc Oggier, Hajo Eicken, Meibing Jin, and Knut Høyland
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-52, https://doi.org/10.5194/tc-2020-52, 2020
Publication in TC not foreseen (discussion: closed, 4 comments)
10 Mar 2020
Daily water-level variations of supraglacial lakes in the southern Inylchek Glacier, Central Asia
Naoki Sakurai, Chiyuki Narama, Mirlan Daiyrov, Muhammed Esenamanov, Zarylbek Usekov, and Hiroshi Inoue
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-62, https://doi.org/10.5194/tc-2020-62, 2020
Revised manuscript not accepted (discussion: closed, 4 comments)
Short summary
Short summary
To better understand the storage in and drainage through supraglacial lakes and englacial conduits, we investigated the daily water-level variations of supraglacial lakes on the southern Inylchek Glacier in 2017, 2018, and 2019, using daily aerial digital images in 2017–2019 from an unmanned aerial vehicle (UAV). We observed the simultaneous drainage of five lakes, and argued that each lake must have been connected to the same main englacial conduit via a branch englacial conduit.
06 Mar 2020
21st century estimates of mass loss rates from glaciers in the Gulf of Alaska and Canadian Archipelago using a GRACE constrained glacier model
Lavanya Ashokkumar and Christopher Harig
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-325, https://doi.org/10.5194/tc-2019-325, 2020
Manuscript not accepted for further review (discussion: closed, 9 comments)
Short summary
Short summary
Glacier mass loss or melting is expected to increase due to global temperature, and the rates of loss are rapidly increasing in the recent decades. In order to estimate the future sea-level rates more accurately, we need to determine the current rates of glacier loss. From our combined approach in glacier modelling and remote sensing, we are able to understand the sensitivity of glaciers in different regions to the climate change.
03 Mar 2020
A comparison between Envisat and ICESat sea ice thickness in the
Antarctic
Jinfei Wang, Chao Min, Robert Ricker, Qinghua Yang, Qian Shi, Bo Han, and Stefan Hendricks
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-48, https://doi.org/10.5194/tc-2020-48, 2020
Revised manuscript not accepted (discussion: closed, 4 comments)
Short summary
Short summary
To get a better understanding of the characteristics of the newly-released Envisat sea ice data in the Antarctic, we firstly conduct a comprehensive comparison between Envisat and ICESat sea ice thickness. Their deviations are different considering different seasons, years and regions. Potential reasons mainly deduce from the limitations of radar altimeter, the surface roughness and different retrieval algorithms. The smaller deviation in spring has a potential relation with relative humidity.
24 Feb 2020
Acoustic Emission investigation for avalanche formation and
release: A case study of dry-slab avalanche event in Great Himalaya
Jagdish Kapil, Sakshi Sharma, Karmjit Singh, Jangvir Singh Shahi, and Rama Arora
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-38, https://doi.org/10.5194/tc-2020-38, 2020
Revised manuscript not accepted (discussion: closed, 4 comments)
Short summary
Short summary
A case study is presented for an avalanche event reported in Great Himalaya through monitoring and interpretation of the acoustic emission (AE) signatures detected by an AE sensor array established over avalanche slope. A peculiar AE activity and also the increasing trends of instability index have clearly demonstrated how avalanche was developed prior to its release. Several states of the snowpack are derived directly in terms of the AE which could be used as alert prior to avalanche occurence.
10 Feb 2020
Brief communication: CMIP6 does not suggest any circulation change over Greenland in summer by 2100
Alison Delhasse, Edward Hanna, Christoph Kittel, and Xavier Fettweis
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-332, https://doi.org/10.5194/tc-2019-332, 2020
Preprint withdrawn (discussion: closed, 4 comments)
Short summary
Short summary
Significant melting events over Greenland ice sheet related to unusual atmospheric pattern in summer, as observed this summer 2019, are still not considered by the new generation of Earth-system models (CMIP6) and therefore the projected surface melt increase of the ice sheet is likely to be underestimated if such changes persist in the next decades.
06 Feb 2020
Geospatial Analysis and Simulation of Glacial Lake Outburst Flood
Hazard in Hunza and Shyok Basins of Upper Indus Basin
Syed Naseem Abbas Gilany, Javed Iqbal, and Ejaz Hussain
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-292, https://doi.org/10.5194/tc-2019-292, 2020
Manuscript not accepted for further review (discussion: closed, 7 comments)
Short summary
Short summary
The Shyok and Hunza basin are prone to glacial lake outburst floods hazard based on the proximity of glacial lake with respect to infrastructure, geomorphology of underneath surface, geo-cover of the vicinity, crevasses, ice melt, and anthropogenic activities. Therefore, continuous monitoring through physical gauge stations and satellite images is very vital of the streams nearing settlements of these basins. HEC-RAS simulated extents of damages can help in adoption of mitigation measures.
13 Jan 2020
Terminal motions of Longbasaba Glacier and their mass
contributions to proglacial lake volume during 1988–2018
Junfeng Wei, Shiyin Liu, Te Zhang, Xin Wang, Yong Zhang, Zongli Jiang, Kunpeng Wu, and Zheng Zhang
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-259, https://doi.org/10.5194/tc-2019-259, 2020
Preprint withdrawn (discussion: closed, 2 comments)
Short summary
Short summary
During the past three decades, Longbasaba Glacier has experienced a continuous and accelerating recession in glacier area and length but accompanied by the decelerating surface lowing and ice flow. The glacier surface lowering played a predominant role in the mass contribution of glacier shrinkage to the increase in lake water volume, while ice avalanches were the main potential trigger for failure of moraine dams and subsequent GLOF events.
18 Dec 2019
Spatiotemporal variation of snow depth in the Northern Hemisphere from 1992 to 2016
Xiongxin Xiao, Tingjun Zhang, Xinyue Zhong, Xiaodong Li, and Yuxing Li
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-300, https://doi.org/10.5194/tc-2019-300, 2019
Manuscript not accepted for further review (discussion: closed, 4 comments)
Short summary
Short summary
Seasonal snow cover is an important component of the climate system and global water cycle that stores large amounts of freshwater. Our research attempts to develop a long-term Northern Hemisphere daily snow depth and snow water equivalent product data using a new algorithm applying in historical passive microwave dataset from 1992 to 2016. Our further analysis showed that snow cover has a significant declining trend across the Northern Hemisphere, especially beginning in the new century.
09 Dec 2019
Consistent variability but different spatial patterns between
observed and reanalysed sea-ice thickness
Joula Siponen, Petteri Uotila, Eero Rinne, and Steffen Tietsche
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-272, https://doi.org/10.5194/tc-2019-272, 2019
Manuscript not accepted for further review (discussion: closed, 4 comments)
Short summary
Short summary
Long sea-ice thickness time series are needed to better understand the Arctic climate and improve its forecasts. In this study 2002–2017 satellite observations are compared with reanalysis output, which is used as initial conditions for long forecasts. The reanalysis agrees well with satellite observations, with differences typically below 1 m when averaged in time, although seasonally and in certain years the differences are large. This is caused by uncertainties in reanalysis and observations.
19 Nov 2019
Inter-comparison and evaluation of sea ice type concentration algorithms
Yufang Ye, Mohammed Shokr, Signe Aaboe, Wiebke Aldenhoff, Leif E. B. Eriksson, Georg Heygster, Christian Melsheimer, and Fanny Girard-Ardhuin
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-200, https://doi.org/10.5194/tc-2019-200, 2019
Revised manuscript not accepted (discussion: closed, 4 comments)
Short summary
Short summary
Sea ice has been monitored with microwave satellite observations since the late 1970s. However, the question remains as to which sea ice type concentration (SITC) method is most appropriate for ice type distribution and hence climate monitoring. This paper presents key results of inter-comparison and evaluation for eight SITC methods. The SITC methods were inter-compared with sea ice age and sea ice type products. Their performances were evaluated quantitatively and qualitatively.
06 Nov 2019
Brief communication: Sampling c-axes distributions from the eigenvalues of ice fabric orientation tensors
Martin Rongen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-204, https://doi.org/10.5194/tc-2019-204, 2019
Preprint withdrawn (discussion: closed, 4 comments)
Short summary
Short summary
For simulation purposes regarding the physical properties of flowing ice, it can be necessary to generate arbitrarily large samples of crystal axes based on the second-order orientation tensor, a commonly used descriptive statistics provided in publications of ice core measurements. This paper describes a statistical sampling technique based on the combination of a vertical girdle and a single maximum Watson distributions.
17 Oct 2019
Imprint of Arctic sea ice cover in North-Greenland ice cores
Damiano Della Lunga, Hörhold Maria, Birthe Twarloh, Behrens Melanie, Dallmayr Remi, Erhardt Tobias, Jensen Camille Marie, and Wilhelms Frank
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-215, https://doi.org/10.5194/tc-2019-215, 2019
Preprint withdrawn (discussion: closed, 3 comments)
Short summary
Short summary
The extent of sea ice plays a major role in the present Arctic warming, and it is possibly one of its first victims, since it has been predicted to disappear in the near future, if warming proceed. Our manuscript validates ice core proxies for the reconstruction of the variability of sea ice extent around Greenland in the last 600 years, and simultanesouly infers the evolution of the proxy-sources with time. Understanding past sea ice extent variability, is thus crucial in predicting its future.
07 Oct 2019
Projecting Circum-Arctic Excess Ground Ice Melt with a sub-grid representation in the Community Land Model
Lei Cai, Hanna Lee, Sebastian Westermann, and Kjetil Schanke Aas
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-230, https://doi.org/10.5194/tc-2019-230, 2019
Preprint withdrawn (discussion: closed, 2 comments)
Short summary
Short summary
We develop a sub-grid representation of excess ground ice in the Community Land Model (CLM) by adding three landunits to the original CLM sub-grid hierarchy, in order to prescribe three different excess ice conditions in one grid cell. Single-grid simulations verify the potential of the model development on better projecting excess ice melt in a warming climate. Global simulations recommend the proper way of applying the model development with the existing excess ice dataset.
20 Sep 2019
Debris cover and the thinning of Kennicott Glacier, Alaska, Part C: feedbacks between melt, ice dynamics, and surface processes
Leif S. Anderson, William H. Armstrong, Robert S. Anderson, and Pascal Buri
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-178, https://doi.org/10.5194/tc-2019-178, 2019
Preprint withdrawn (discussion: closed, 8 comments)
Short summary
Short summary
Thick rock cover (or debris) disturbs the melt of many Alaskan glaciers. Yet the effect of debris on glacier thinning in Alaska has been overlooked. In three companion papers we assess the role of debris and ice flow on the thinning of Kennicott Glacier. In Part C we describe feedbacks contributing to rapid thinning under thick debris. Changes in debris thickness downglacier on Kennicott Glacier are manifested in the pattern of glacier thinning, ice dynamics, melt, and glacier surface features.
18 Sep 2019
Debris cover and the thinning of Kennicott Glacier, Alaska, Part A:in situ mass balance measurements
Leif S. Anderson, Robert S. Anderson, Pascal Buri, and William H. Armstrong
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-174, https://doi.org/10.5194/tc-2019-174, 2019
Preprint withdrawn (discussion: closed, 4 comments)
Short summary
Short summary
Thick rock cover (or debris) disturbs the melt of many Alaskan glaciers. Yet the effect of debris on glacier thinning in Alaska has been overlooked. In three companion papers we assess the role of debris and ice flow on the thinning of Kennicott Glacier. In Part A, we report measurements from the glacier surface. We measured surface debris thickness, melt under debris, and the rate of ice cliff backwasting. These data allow for further studies linking debris to glacier shrinkage in Alaska.
13 Sep 2019
Investigation of spatiotemporal variability of melt pond fraction and its relationship with sea ice extent during 2000–2017 using a new data
Yifan Ding, Xiao Cheng, Jiping Liu, Fengming Hui, and Zhenzhan Wang
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-208, https://doi.org/10.5194/tc-2019-208, 2019
Preprint withdrawn (discussion: closed, 8 comments)
Short summary
Short summary
This study develops a new melt pond fraction (MPF) data set over sea ice on Arctic-wide scale, using a method of ensemble-based deep neural network. Based on the new dataset, we analyze the spatial-temporal variations of MPF on different ice types and the prediction of MPF to the Arctic sea ice extent in recent years. The new dataset may help improve the prediction of the Arctic sea ice minimum by assimilating the MPF in models.
10 Sep 2019
Snow cover variations across China from 1952–2012
Xiaodong Huang, Changyu Liu, Yunlong Wang, Qisheng Feng, and Tiangang Liang
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-152, https://doi.org/10.5194/tc-2019-152, 2019
Revised manuscript not accepted (discussion: closed, 6 comments)
Short summary
Short summary
(a) Long term snow cover variation across China was evaluated
(b) There are three major snow cover distribution centers in China
(c) Snow depth showed an increasing trend, and four jump points between 1952 and 2012. (d) Snow depth oscillation period is 13 years. (e) Snow onset day delayed, and snow end day advanced.
06 Sep 2019
Efficient multi-objective calibration and uncertainty analysis of distributed snow simulations in rugged alpine terrain
James M. Thornton, Gregoire Mariethoz, Tristan J. Brauchli, and Philip Brunner
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-181, https://doi.org/10.5194/tc-2019-181, 2019
Manuscript not accepted for further review (discussion: closed, 4 comments)
Short summary
Short summary
Meltwater runoff from steep mountainous terrain holds great societal and ecological importance. Predicting snow dynamics in unmonitored areas and/or under changed climate requires computer simulations. Yet variability in alpine snow patterns poses a considerable challenge. Here we combine existing tools with high-resolution observations to both constrain and quantify the uncertainty in historical simulations. Snowpack evolution was satisfactorily reproduced and uncertainty substantially reduced.
02 Sep 2019
Lake outbursts of the eastern part of the Larsemann Hills, East Antarctica, through snow and ice dams
Alina Boronina, Sergey Popov, and Galina Pryakhina
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-149, https://doi.org/10.5194/tc-2019-149, 2019
Preprint withdrawn (discussion: closed, 3 comments)
Short summary
Short summary
The oasis Larsemann Hills (East Antarctica) is characterized by a developed drainage system and includes several lakes of different genesis. Interest in the investigation of the oasis lakes has increased sharply after the formation of a vast depression on on Dålk Glacier caused by the outburst of intraglacial reservoir. The present work aims at the application of mathematical modeling methods to shed light on the processes that lead to dam destruction and the outburst of lakes.
15 Aug 2019
The measurement and impact of light absorbing particles on snow surfaces
Carl G. Schmitt, Bria L. Riggs, Ulyana N. Horodyskyj, Alia L. Khan, Holly A. Ewing, John D. All, and Wilmer Sanchez Rodriguez
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-162, https://doi.org/10.5194/tc-2019-162, 2019
Revised manuscript not accepted (discussion: closed, 6 comments)
Short summary
Short summary
Dirty snow melts faster than clean snow because the dark particles absorb light from the sun. Common techniques for measurements and analysis assume that the dirt particles are mixed in with the snow. Many processes lead to the dirt particles forming a layer on the surface of the snow rather than being mixed in. This publication demonstrates the importance of considering a surface layer and provides a new sampling protocol to enable the measurement of the surface layer.
26 Jul 2019
Deriving Arctic 2 m air temperatures over snow and ice from satellite surface temperature measurements
Pia Nielsen-Englyst, Jacob L. Høyer, Kristine S. Madsen, Rasmus T. Tonboe, and Gorm Dybkjær
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-126, https://doi.org/10.5194/tc-2019-126, 2019
Revised manuscript not accepted (discussion: closed, 4 comments)
Short summary
Short summary
The Arctic region is responding heavily to climate change, and yet, the air temperature of Arctic, ice covered areas is heavily under-sampled when it comes to in situ measurements. This paper presents a method for estimating daily mean 2 meter air temperatures (T2m) in the Arctic from satellite observations of skin temperature, providing spatially detailed observations of the Arctic. The satellite derived T2m product covers clear sky snow and ice surfaces in the Arctic for the period 2000–2009.
24 Jul 2019
Metamorphism of Arctic marine snow during the melt season.
Impact on albedo
Gauthier Verin, Florent Dominé, Marcel Babin, Ghislain Picard, and Laurent Arnaud
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-113, https://doi.org/10.5194/tc-2019-113, 2019
Publication in TC not foreseen (discussion: closed, 4 comments)
Short summary
Short summary
The results of two sampling campaigns conducted on landfast sea ice in Baffin Bay show that the melt season can be divided into four main phases during which surface albedo and snow properties show distinct signatures. A radiative transfer model was used to successfully reconstruct the albedo from snow properties. This modeling work highlights that only little changes on the very surface of the snowpack are able to dramatically change the albedo, a key element for the energy budget of sea ice.
10 Jul 2019
Revisiting the vapor diffusion coefficient in dry snow
Andrew Hansen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-143, https://doi.org/10.5194/tc-2019-143, 2019
Revised manuscript not accepted (discussion: closed, 6 comments)
Short summary
Short summary
The diffusion coefficient of water vapor in snow is an important material property for understanding mass transfer in snow as it relates to the evolution of snow microstructure under a temperature gradient. A colorful history surrounds efforts to determine this parameter with no definitive answer. I provide analytical models combined with a thorough review of past research to quantify this important snow property.
18 Jun 2019
Investigating spatiotemporal patterns of snowline altitude at the end of melting season in High Mountain Asia, using cloud-free MODIS snow cover product, 2001–2016
Zhiguang Tang, Xiaoru Wang, Jian Wang, Xin Wang, and Junfeng Wei
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-139, https://doi.org/10.5194/tc-2019-139, 2019
Preprint withdrawn (discussion: closed, 4 comments)
05 Jun 2019
Dynamics of ionic species in Svalbard annual snow: the effects of rain event and melting
Elena Barbaro, Cristiano Varin, Xanthi Pedeli, Jean Marc Christille, Torben Kirchgeorg, Fabio Giardi, David Cappelletti, Clara Turetta, Andrea Gambaro, Andrea Bernagozzi, Jean Charles Gallet, Mats P. Björkman, and Andrea Spolaor
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-124, https://doi.org/10.5194/tc-2019-124, 2019
Preprint withdrawn (discussion: closed, 4 comments)
16 May 2019
The response of supraglacial debris to elevated, high frequencyGPR: Volumetric scatter and interfacial dielectric contrastsinterpreted from field and experimental studies
Alexandra Giese, Steven Arcone, Robert Hawley, Gabriel Lewis, and Patrick Wagnon
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-60, https://doi.org/10.5194/tc-2019-60, 2019
Preprint withdrawn (discussion: closed, 7 comments)
Short summary
Short summary
This manuscript defines a novel method of determining the depth of debris on a debris-covered glacier using 960 MHz Ground-Penetrating Radar, under circumstances which prevent the detection of a coherent reflection at the debris-ice interface. Our method was verified using full-scale debris-analog experiments and uses internal scattering within the debris layer. We use this method to measure debris thickness on Changri Nup Glacier, in the Nepal Himalaya.
15 May 2019
Glacier changes and surges over Xinqingfeng and Malan Ice Caps in the inner Tibetan Plateau since 1970 derived from Remote Sensing Data
Zhen Zhang, Shiyin Liu, Zongli Jiang, Donghui Shangguan, Junfeng Wei, Wanqin Guo, Junli Xu, Yong Zhang, and Danni Huang
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-94, https://doi.org/10.5194/tc-2019-94, 2019
Preprint withdrawn (discussion: closed, 4 comments)
Short summary
Short summary
We present an integrated view of the glacier area and its mass changes for Mt. Xinqingfeng and Mt. Malan of the inner Tibetan Plateau as derived from topographic maps, Landsat, ASTER, SRTM DEM, and TerraSAR-X/TanDEM-X for the period of 1970–2012 and 1970–2018, respectively. The glaciers experienced weak shrinkage and slight negative mass balance. The Monuomaha Glacier and Zu Glacier together with another 5 glaciers displayed the surging or advancing characteristics during the observation period.
30 Apr 2019
The contributions of the leading modes of the North Pacific sea surface temperature variability to the Arctic sea ice depletion in recent decades
Lejiang Yu, Shiyuan Zhong, and Timo Vihma
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-38, https://doi.org/10.5194/tc-2019-38, 2019
Manuscript not accepted for further review (discussion: closed, 6 comments)
Short summary
Short summary
Arctic sea ice cover has been decreasing in recent decades. The reason for the decrease remains unclear. In this study, we examine the contributions of the North Pacific SST anomalies to the decrease. There are global warming and Pacific Decadal Oscillation (PDO) modesof the North Pacific SST variability in boreal summer and autumn. The global warming mode explains 44.9% and 50.1% of the Arctic sea ice loss in boreal summer and autumn, respectively. There are 22.0% and 22.2% for PDO mode.
29 Apr 2019
Spatiotemporal variation of snow depth in the Northern Hemisphere from 1992 to 2016
Xiongxin Xiao, Tingjun Zhang, Xinyue Zhong, Xiaodong Li, and Yuxing Li
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-33, https://doi.org/10.5194/tc-2019-33, 2019
Revised manuscript not accepted (discussion: closed, 6 comments)
Short summary
Short summary
Seasonal snow cover is an important component of the climate system and global water cycle that stores large amounts of freshwater. Our research attempts to develop a long-term Northern Hemisphere daily snow depth and snow water equivalent products using a new algorithm applying in historical passive microwave data sets from 1992 to 2016. Our further analysis showed the snow cover has a significant declining trend across the Northern Hemisphere, especially beginning at the new century.
29 Apr 2019
Glacier elevation and mass changes in Himalayas during 2000–2014
Debmita Bandyopadhyay, Gulab Singh, and Anil V. Kulkarni
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-85, https://doi.org/10.5194/tc-2019-85, 2019
Preprint withdrawn (discussion: closed, 4 comments)
Short summary
Short summary
The paper focusses on utilizing freely disseminated SAR data for estimating ice-thickness and mass changes in the Himalayan terrain. The state-wise water loss estimates for the Himalayas has not been performed before. This information gives an idea as to how each state is performing in terms of water-sustainability on a global scale.
17 Apr 2019
The Impact of Climate on Surging at Donjek Glacier, Yukon, Canada
William Kochtitzky, Dominic Winski, Erin McConnel, Karl Kreutz, Seth Campbell, Ellyn M. Enderlin, Luke Copland, Scott Williamson, Brittany Main, Christine Dow, and Hester Jiskoot
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-72, https://doi.org/10.5194/tc-2019-72, 2019
Manuscript not accepted for further review (discussion: closed, 6 comments)
Short summary
Short summary
Donjek Glacier has experienced eight instability events since 1935. Here we use a suite of weather and satellite data to understand the impacts of climate on instability events. We find that while there has been a consistent amount of snow fall between instability events, the relationship between the two is unclear as they are both very consistent on decade timescales. We show that we need further glacier observations to understand why these glaciers become unstable.
15 Apr 2019
Fracture dynamics in an unstable, deglaciating headwall,
Kitzsteinhorn, Austria
Andreas Ewald, Ingo Hartmeyer, Markus Keuschnig, Andreas Lang, and Jan-Christoph Otto
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-42, https://doi.org/10.5194/tc-2019-42, 2019
Preprint withdrawn (discussion: closed, 8 comments)
Short summary
Short summary
Processes destabilising recently deglaciated rocks, driving cirque headwall retreat, and putting alpine infrastructure at risk are poorly understood due to scarce in situ data. We monitored fracture deformation at a cirque headwall in the Austria Alps. We found thermo-mechanical expansion and freeze-thaw action as dominant processes for deformation. Our results highlight the importance of liquid water in combination with subzero-temperatures on the destabilisation of glacier headwalls.
10 Apr 2019
Sensitivity of submarine melting on North East Greenland towards ocean forcing
Philipp Anhaus, Lars H. Smedsrud, Marius Årthun, and Fiammetta Straneo
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-35, https://doi.org/10.5194/tc-2019-35, 2019
Revised manuscript not accepted (discussion: closed, 6 comments)
Short summary
Short summary
Atlantic Water flows towards the Arctic and under floating glaciers on Greenland. Observations in a rift on the 79 North Glacier show presence of such water with temperature of 1 °C at 600 m. We simulate how this warm water melts the floating ice. Melt rates are largest where the glacier starts floating, are smaller where the water rises, and increase linearly with rising ocean temperature. Our results improve the understanding of ocean processes driving melting of floating glaciers.
08 Apr 2019
Quantifying the impact of synoptic weather types, patterns,
and trends on energy fluxes of a marginal snowpack
Andrew Schwartz, Hamish McGowan, Alison Theobald, and Nik Callow
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-48, https://doi.org/10.5194/tc-2019-48, 2019
Manuscript not accepted for further review (discussion: closed, 4 comments)
Short summary
Short summary
Understanding the relationship between weather and snowmelt is increasingly important as snowpacks undergo reductions due to climate change. Impacts of weather patterns on snowmelt in Australia's Snowy Mountains were identified through the use of weather pattern data and in-situ energy measurements. We found that maximum snowmelt occurs prior to the passage of cold fronts, teleconnections have an impact on snowmelt, and energy available for snowmelt has decreased slightly in the last 39 years.
27 Mar 2019
Improved characterization of alpine permafrost through structurally constrained inversion of refraction seismic data
Matthias Steiner, Florian M. Wagner, and Adrian Flores Orozco
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-52, https://doi.org/10.5194/tc-2019-52, 2019
Revised manuscript not accepted (discussion: closed, 5 comments)
11 Mar 2019
Supraglacial pond evolution in the Everest region, central Himalaya, 2015–2018
Caroline J. Taylor and J. Rachel Carr
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-12, https://doi.org/10.5194/tc-2019-12, 2019
Preprint withdrawn (discussion: closed, 4 comments)
Short summary
Short summary
Supraglacial ponds can greatly enhance local melt rates, growing rapidly to form proglacial lakes, which represent a major hazard. Here, a remote sensing study using 10m resolution satellite imagery (Sentinel-2A) was deployed to quantify the changes of 6,425 supraglacial ponds on 10 glaciers in the Everest region of Nepal, 2015 to 2018. Overall, our results demonstrate rapid pond expansion, subject to spatial and temporal variation, highlighting the need for continued monitoring.
08 Mar 2019
10,000 years of melt history of the 2015 Renland ice core, EastGreenland
Tetsuro Taranczewski, Johannes Freitag, Olaf Eisen, Bo Vinther, Sonja Wahl, and Sepp Kipfstuhl
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-280, https://doi.org/10.5194/tc-2018-280, 2019
Preprint withdrawn (discussion: closed, 2 comments)
Short summary
Short summary
We used melt layers detected in ice cores from the Renland ice cap in East Greenland to find evidence of past climate trends in this region. Our record provides such information for the past 10,000 years. We developed an attempt to increase the reliability of such a record by correcting deformation-induced biases. It proves that such simple to obtain melt records can be used to gather information about paleoclimate especially for regions where climate records are sparse.
25 Feb 2019
Estimate of Greenland and Antarctic ice-sheet total discharge from multiple GRACE solutions
Ida Russo, Guillaume Ramillien, Frédéric Frappart, and Frédérique Rémy
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-16, https://doi.org/10.5194/tc-2019-16, 2019
Preprint withdrawn (discussion: closed, 3 comments)
21 Feb 2019
Blowing snow in East Antarctica: comparison of ground-based and space-borne retrievals
Alexandra Gossart, Stephen P. Palm, Niels Souverijns, Jan T. M. Lenaerts, Irina V. Gorodetskaya, Stef Lhermitte, and Nicole P. M. van Lipzig
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-25, https://doi.org/10.5194/tc-2019-25, 2019
Manuscript not accepted for further review (discussion: closed, 6 comments)
Short summary
Short summary
Blowing snow measurements are scarce, both in time and space over the Antarctic ice sheet. We compare here CALIPSO satellite blowing snow measurements, to ground-base remote sensing ceilometer retrievals at two coastal stations in East Antarctica. Results indicate that 95 % of the blowing snow occurs under cloudy conditions, and are missed by the satellite. In addition, difficulties arise if comparing point locations to satellite overpasses.
20 Feb 2019
Assessing snow cover changes in the Kola Peninsula, Arctic Russia,
using a synthesis of MODIS snow products and station observations
Rebecca M. Vignols, Gareth J. Marshall, W. Gareth Rees, Yulia Zaika, Tony Phillips, and Ilona Blinova
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-9, https://doi.org/10.5194/tc-2019-9, 2019
Publication in TC not foreseen (discussion: closed, 2 comments)
Short summary
Short summary
We examine recent changes in snow cover (2000–2016) in the western mountain regions of the Kola Peninsula in Arctic Russia. Using a combination of remote sensing data and meteorological observations, we demonstrate that the region has high inter-annual and spatial variability in the long-term snow cover trends and that overall the snow cover duration has been decreasing at higher altitudes and increasing at lower altitudes. We find that MODIS provides a highly reliable snow parameter dataset.
11 Feb 2019
Uncertainty in predicting the Eurasian snow: Intercomparison of land surface models coupled to a regional climate model
Da-Eun Kim and Seon Ki Park
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-15, https://doi.org/10.5194/tc-2019-15, 2019
Preprint withdrawn (discussion: closed, 6 comments)
Short summary
Short summary
An accurate prediction of the Eurasian snow is essentially important in predicting the climate and weather phenomena in Asia. Regional climate models are mostly coupled with several land surface models (LSMs) in which the land surface process parameters are calculated under their own physical principles and parameterization schemes. We show that prediction of the Eurasian snow cover is sensitive to the choice of LSMs coupled to regional climate models, and hence the future climate projections.
15 Jan 2019
Rapid decline of Arctic sea ice volume: Causes and consequences
Jean-Claude Gascard, Jinlun Zhang, and Mehrad Rafizadeh
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-2, https://doi.org/10.5194/tc-2019-2, 2019
Revised manuscript not accepted (discussion: closed, 9 comments)
Short summary
Short summary
From ERA Interim surface air temperature reanalysis, we estimated Freezing Degrees Days (FDD) over the whole Arctic Ocean during the freezing period each year for the past 40 years. We deduced sea ice growth from FDD that we compared with model (PIOMAS) and satellite (Cryosat-2) estimations. The warming of the Atmosphere and the vertical heat fluxes from the Ocean are contributing to the Arctic sea ice rapid decline. A disappearance of Arctic sea ice in summer is predictable within 15 years.
04 Jan 2019
Shear failure of weak snow layers in the first hours after burial
Benjamin Reuter, Neige Calonne, and Ed Adams
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-268, https://doi.org/10.5194/tc-2018-268, 2019
Revised manuscript not accepted (discussion: closed, 5 comments)
Short summary
Short summary
Storm snow instabilities often crest during storms which hampers field experiements. Yet, layers of nature-like snow can be created in the lab. We shear tested samples containing typical storm snow and other weak layers. Failure was consistently located in the weak layer and ocurred after linear elastic-perfectly plastic deformation. Measurements of shear modulus and fracture toughness indicate that surface hoar and precipitation particles are equally fragile in the first hours after burial.
07 Dec 2018
Seasonal sea ice forecast skills and predictability of the KMA's GloSea5
Byoung Woong An, Sang Min Lee, Pil-Hun Chang, KiRyong Kang, and Yoon Jae Kim
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-217, https://doi.org/10.5194/tc-2018-217, 2018
Revised manuscript not accepted (discussion: closed, 3 comments)
26 Nov 2018
Changes in glacier facies zonation on Devon Ice Cap, Nunavut, detected from SAR imagery and field observations
Tyler de Jong, Luke Copland, and David Burgess
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-250, https://doi.org/10.5194/tc-2018-250, 2018
Publication in TC not foreseen (discussion: closed, 3 comments)
Short summary
Short summary
We combine field and remote sensing measurements to describe how snow and ice zones across Devon Ice Cap changed over the period 2004–2011. At the start of this period a dry snow zone existed near the ice cap summit, but by 2011 the dry zone had entirely disappeared and the ablation zone comprised 92 % of the ice cap. This has implications for understanding how Canadian Arctic ice caps are responding to a warming climate, and how they may evolve in the future.
22 Nov 2018
Satellite ice extent, sea surface temperature, and atmospheric methane trends in the Barents and Kara Seas
Ira Leifer, F. Robert Chen, Thomas McClimans, Frank Muller Karger, and Leonid Yurganov
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-237, https://doi.org/10.5194/tc-2018-237, 2018
Revised manuscript not accepted (discussion: closed, 10 comments)
Short summary
Short summary
We studied long-term satellite data of the Barents and Kara Seas (BKS) of atmospheric CH4 and sea surface temperature (SST). Enhanced CH4 was found near Novaya Zemlya and Franz Josef Land, sources not in current budgets and areas of shoaling–where currents drive CH4–rich seabed water upslope to escape to the atmosphere, far from the source. Trends suggest increasing current heat transport warms the seabed, driving CH4 seepage from submerged hydrates and permafrost.
16 Nov 2018
Organic matter across subsea permafrost thaw horizons on the East Siberian Arctic Shelf
Birgit Wild, Natalia Shakhova, Oleg Dudarev, Alexey Ruban, Denis Kosmach, Vladimir Tumskoy, Tommaso Tesi, Hanna Joß, Helena Alexanderson, Martin Jakobsson, Alexey Mazurov, Igor Semiletov, and Örjan Gustafsson
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-229, https://doi.org/10.5194/tc-2018-229, 2018
Revised manuscript not accepted (discussion: closed, 4 comments)
Short summary
Short summary
The thaw and degradation of subsea permafrost on the Arctic Ocean shelves is one of the key uncertainties concerning natural greenhouse gas emissions since difficult access limits the availability of observational data. In this study, we describe sediment properties and age constraints of a unique set of three subsea permafrost cores from the East Siberian Arctic Shelf, as well as content, origin and degradation state of organic matter at the current thaw front.
27 Sep 2018
Response of Antarctic Ice Sheet Mass Balance to Climate Change
Jingang Zhan, Hongling Shi, Yong Wang, Yixin Yao, and Yongbin Wu
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-191, https://doi.org/10.5194/tc-2018-191, 2018
Revised manuscript not accepted (discussion: closed, 4 comments)
Short summary
Short summary
Ice record recorded environmental change information such as atmospheric circulation. We assessment the main climatic factors that affect the ice sheet change using GRACE data. The results indicate that the low-frequency signals of SSTA in the Niño region is the major factors, temperature changes in the Antarctica have little effect on mass loss. The change in the meridional wind at 700 hPa in the South Pacific may be the key factor that determines the effect of SSTA on the Antarctic ice sheet.
18 Sep 2018
Significant submarine ice loss from the Getz Ice Shelf, Antarctica
David M. Rippin
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-163, https://doi.org/10.5194/tc-2018-163, 2018
Preprint withdrawn (discussion: closed, 2 comments)
Short summary
Short summary
We explore the changes going on at the base of the Getz Ice Shelf in West Antarctica using repeated airborne radio-echo sounding surveys which allow us to see the ice-base. Between 2010 and 2014 we observed considerable thinning at an average rate of nearly 13 m a−1, which is faster than recent predictions. These large changes are important because ice-shelves control how easily ice is transmitted from inland Antarctica to the coast. If ice-shelves collapse, this happens much more quickly.
04 Sep 2018
Evaluation of dynamically downscaled near-surface mass and energy fluxes for three mountain glaciers, British Columbia, Canada
Mekdes Ayalew Tessema, Valentina Radić, Brian Menounos, and Noel Fitzpatrick
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-154, https://doi.org/10.5194/tc-2018-154, 2018
Preprint withdrawn (discussion: closed, 5 comments)
Short summary
Short summary
To force physics-based models of glacier melt, meteorological variables and energy fluxes are needed at or in vicinity of the glaciers in question. In the absence of observations detailing these variables, the required forcing is commonly derived by downscaling the coarse-resolution output from global climate models (GCMs). This study investigates how the downscaled fields from GCMs can successfully resolve the local processes driving surface melting at three glaciers in British Columbia.
07 Aug 2018
Anomalous acceleration of mass loss in the Greenland ice sheet
drainage basins and its contribution to the sea level fingerprints
during 2010–2012
Linsong Wang, Liangjing Zhang, Chao Chen, Maik Thomas, and Mikhail K. Kaban
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-142, https://doi.org/10.5194/tc-2018-142, 2018
Preprint withdrawn (discussion: closed, 2 comments)
Short summary
Short summary
The Greenland ice sheet (GrIS) variations estimated from GRACE gravity fields and SMB data have been investigated with respect to ice melting of Greenland and its contributions to sea level changes. Greenland contributes about 31 % of the total terrestrial water storage transferring to the sea level rise from 2003 to 2015. We also found that variations of the GrIS contribution to sea level have an opposite V shape during 2010–2012, while a clear global mean sea level drop also took place.
19 Jul 2018
Review of Radar Altimetry Techniques over the Arctic Ocean: Recent Progress and Future Opportunities for Sea Level and Sea Ice Research
Graham D. Quartly, Eero Rinne, Marcello Passaro, Ole B. Andersen, Salvatore Dinardo, Sara Fleury, Kevin Guerreiro, Amandine Guillot, Stefan Hendricks, Andrey A. Kurekin, Felix L. Müller, Robert Ricker, Henriette Skourup, and Michel Tsamados
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-148, https://doi.org/10.5194/tc-2018-148, 2018
Revised manuscript not accepted (discussion: closed, 4 comments)
Short summary
Short summary
Radar altimetry is a high-precision technique for measuring sea level and sea ice thickness from space, which are important for monitoring ocean circulation, sea level rise and changes in the Arctic ice cover. This paper reviews the processing techniques needed to best extract the information from complicated radar echoes, and considers the likely developments in the coming decade.
18 Jul 2018
Snowfall versus sub-shelf melt: response of an idealized 3D
ice-sheet-shelf system to mass redistribution
Johannes Feldmann, Ronja Reese, Ricarda Winkelmann, and Anders Levermann
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-109, https://doi.org/10.5194/tc-2018-109, 2018
Revised manuscript not accepted (discussion: closed, 3 comments)
26 Jun 2018
The role of a mid-air collision in drifting snow
Shuming Jia, Zhengshi Wang, and Shumin Li
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-113, https://doi.org/10.5194/tc-2018-113, 2018
Revised manuscript not accepted (discussion: closed, 9 comments)
Short summary
Short summary
Drifting snow largely changes the mass and energy balance of polar ice sheets. Inter-particle collisions in drifting snow, previously neglected, is studied by tracking trajectories of snow particles. Mid-air collision effect enhances the particle activity, and thus produces a more realistic transport flux. Suspension snows may also restrain the saltation movement due to the reduction of wind speed higher in the air. Interactions between suspension and saltation movements should be considered.
30 May 2018
Remote-sensing estimate of glacier mass balance over the central Nyainqentanglha Range during 1968 – ∼ 2013
Kunpeng Wu, Shiyin Liu, Zongli Jiang, Junli Xu, and Junfeng Wei
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-90, https://doi.org/10.5194/tc-2018-90, 2018
Revised manuscript not accepted (discussion: closed, 4 comments)
Short summary
Short summary
This study presents diminishing ice cover in the central Nyainqentanglha Range by 0.68 % ± 0.05 % a−1, and a mean mass deficit of 0.46 % ± 0.04 m w.e. a−1 since 1968. Mass losses accelerating from 0.42 % ± 0.05 m w.e. a−1 to 0.60 % ± 0.20 m w.e. a−1 during 1968–2000 and 2000–~2013, with thinning noticeably greater on the debris-covered ice than the clean ice. Surface-elevation changes can be influenced by ice cliffs, as well as debris cover, and land- or lake-terminating glaciers and supraglacial lakes.
29 May 2018
Solar SW radiative transfer in bubbled ice: spectral considerations,
subsurface enhancement, and inclusions
Andrew R. D. Smedley, Geoffrey W. Evatt, Amy Mallinson, and Eleanor Harvey
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-79, https://doi.org/10.5194/tc-2018-79, 2018
Revised manuscript not accepted (discussion: closed, 3 comments)
14 May 2018
Satellite ice extent, sea surface temperature, and atmospheric methane trends in the Barents and Kara seas
Ira Leifer, F. Robert Chen, Thomas McClimans, Frank Muller Karger, and Leonid Yurganov
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-75, https://doi.org/10.5194/tc-2018-75, 2018
Revised manuscript has not been submitted (discussion: closed, 6 comments)
Short summary
Short summary
Based on long-term satellite data of sea surface temperature and methane in the Barents and Kara Seas trends of increasing methane and sea surface temperature were found that were related to strengthening currents with strong methane anomalies near Franz Josef Land and Novaya Zemlya. Likely sources are methane seepage from subsea permafrost and hydrates, with current shoaling aiding the transport of near seabed dissolved methane to upper waters and the atmosphere.
08 May 2018
Automated iceberg detection using Landsat: method and example
application in Disko Bay, west Greenland
Jessica Scheick, Ellyn M. Enderlin, and Gordon Hamilton
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-73, https://doi.org/10.5194/tc-2018-73, 2018
Preprint withdrawn (discussion: closed, 3 comments)
Short summary
Short summary
Jakobshavn Isbrae generates a large number of icebergs, which float into Disko Bay, west Greenland, and make coastal navigation difficult. From 2013–2015, Disko Bay was often covered with a much larger number of icebergs compared to 2000–2002, including thousands of small icebergs. This confirms observations made by local fishermen and other ship captains and suggests future changes in iceberg cover may occur with changes in glacier activity.
21 Mar 2018
Assessment of Arctic sea ice simulations in CMIP5 models
Liping Wu, Xiao-Yi Yang, and Jianyu Hu
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-26, https://doi.org/10.5194/tc-2018-26, 2018
Revised manuscript not accepted (discussion: closed, 3 comments)
Short summary
Short summary
In this study, we constructed a objectively and comprehensively assessment framework to quantify the models’ ability of sea ice simulation, by which we can sort out some better models to constrain the biases of models and set a better basis for the study of future Arctic climate change prediction. Moreover, we further scrutinized on the model parameters and suggested the possible way to improve models’ performance on Arctic sea ice simulation.
08 Mar 2018
Dissolved and particulate organic carbon in Icelandic proglacial streams
Peter Chifflard, Christina Fasching, Martin Reiss, and Lukas Ditzel
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-32, https://doi.org/10.5194/tc-2018-32, 2018
Preprint withdrawn (discussion: closed, 4 comments)
Short summary
Short summary
For the first time, the concentration of dissolved and particulate organic carbon, as well as its optical properties in proglacial streams of Iceland, location of Europe’s largest nonpolar ice cap, was analyzed. Compared to the global annual release of 1.97 Tg C yr−1 POC, the estimation of annual release of 0.008 Tg C yr−1 (DOC) and 1.72 Tg C yr−1 (POC) from Icelandic glaciers underline the necessity to include the Icelandic glaciers in global organic carbon budget, which has not yet been done.
02 Mar 2018
Ice flow velocity as a sensitive indicator of glacier state
Martin Stocker-Waldhuber, Andrea Fischer, Kay Helfricht, and Michael Kuhn
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-37, https://doi.org/10.5194/tc-2018-37, 2018
Revised manuscript has not been submitted (discussion: closed, 8 comments)
08 Dec 2017
Quantification of calcium carbonate (ikaite) in first– and multi–year sea ice
Heather Kyle, Søren Rysgaard, Feiyue Wang, and Mostafa Fayek
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-226, https://doi.org/10.5194/tc-2017-226, 2017
Revised manuscript not accepted (discussion: closed, 5 comments)
Short summary
Short summary
Ikaite may play a major role in air-sea carbon fluxes, but its importance is not well known due to difficulties with quantification. A new technique for measuring ikaite was developed and tested and our findings showed this method is effective. Sea ice properties were also measured. Results indicate that ikaite is most abundant in the upper layers of first-year sea ice so will likely play a more significant role in air-sea carbon fluxes in future as seasonal sea ice becomes more common.
30 Nov 2017
Multiannual observations and modelling of seasonal thermal profiles through supraglacial debris in the Central Himalaya
Ann V. Rowan, Lindsey Nicholson, Emily Collier, Duncan J. Quincey, Morgan J. Gibson, Patrick Wagnon, David R. Rounce, Sarah S. Thompson, Owen King, C. Scott Watson, Tristram D. L. Irvine-Fynn, and Neil F. Glasser
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-239, https://doi.org/10.5194/tc-2017-239, 2017
Revised manuscript not accepted (discussion: closed, 3 comments)
Short summary
Short summary
Many glaciers in the Himalaya are covered with thick layers of rock debris that acts as an insulating blanket and so reduces melting of the underlying ice. Little is known about how melt beneath supraglacial debris varies across glaciers and through the monsoon season. We measured debris temperatures across three glaciers and several years to investigate seasonal trends, and found that sub-debris ice melt can be predicted using a temperature–depth relationship with surface temperature data.
02 Nov 2017
Review article: The hydrology of debris-covered glaciers – state of the science and future research directions
Katie E. Miles, Bryn Hubbard, Tristam D. L. Irvine-Fynn, Evan S. Miles, Duncan J. Quincey, and Ann V. Rowan
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-210, https://doi.org/10.5194/tc-2017-210, 2017
Preprint withdrawn (discussion: closed, 4 comments)
Short summary
Short summary
The production and routing of meltwater through glaciers is important because that water influences glacier sliding, and represents a resource in some instances and a hazard in others. Despite this importance, very little is known about the hydrology of debris-covered glaciers, which are commonly located at high altitudes. Here, we present a review of the hydrology of debris-covered glaciers, summarizing the current state of knowledge and identify potential future research priorities.
24 Oct 2017
Reconstruction of the Greenland Ice Sheet surface
mass balance and the spatiotemporal distribution of
freshwater runoff from Greenland to surrounding seas
Sebastian H. Mernild, Glen E. Liston, Andrew P. Beckerman, and Jacob C. Yde
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-234, https://doi.org/10.5194/tc-2017-234, 2017
Revised manuscript not accepted (discussion: closed, 6 comments)
Short summary
Short summary
This study is about simulating the Greenland Ice Sheet surface mass balance, and the related snow refreezing conditions and the spatio-temporal Greenland distribution of freshwater runoff to surrounding seas. Runoff has increased since 1979, and can be used as input for numerical ocean models linking the terrestrial runoff to changes in the near-coastal seas. This will provide us with an increasing understanding how Greenland is linked to the surrounding seas. SnowModel and ERA-I were used here.
04 Oct 2017
Estimating relationships between snow water equivalent, snow covered area, and topography to extend the Airborne Snow Observatory dataset
Dominik Schneider, Noah P. Molotch, and Jeffrey S. Deems
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-167, https://doi.org/10.5194/tc-2017-167, 2017
Revised manuscript not accepted (discussion: closed, 3 comments)
Short summary
Short summary
New data from the ongoing Airborne Snow Observatory (ASO) provides an unprecedented look at the spatial and temporal patterns of snow water content (SWE) over multiple years in California, USA. We found that relationships between SWE, snow covered area, and topography transfer between years at accuracy levels equivalent to those from models generated from ASO data collected on the day of interest. This research provides a first attempt at extending the value of ASO beyond the observations.
27 Sep 2017
Distributed vs. semi-distributed simulations of snowpack
dynamics in alpine areas: case study in the upper Arve
catchment, French Alps, 1989–2015
Jesús Revuelto, Grégoire Lecourt, Matthieu Lafaysse, Isabella Zin, Luc Charrois, Vincent Vionnet, Marie Dumont, Antoine Rabatel, Delphine Six, Thomas Condom, Samuel Morin, Alessandra Viani, and Pascal Sirguey
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-184, https://doi.org/10.5194/tc-2017-184, 2017
Revised manuscript not accepted (discussion: closed, 5 comments)
Short summary
Short summary
We evaluated distributed and semi-distributed modeling approaches to simulating the spatial and temporal evolution of snow and ice over an extended mountain catchment, using the Crocus snowpack model. The distributed approach simulated the snowpack dynamics on a 250-m grid, enabling inclusion of terrain shadowing effects. The semi-distributed approach simulated the snowpack dynamics for discrete topographic classes characterized by elevation range, aspect, and slope.
25 Sep 2017
In situ measurement of meltwater percolation flux in seasonal alpine
snowpack using self potential and capillary pressure sensors
Wilson S. Clayton
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-187, https://doi.org/10.5194/tc-2017-187, 2017
Revised manuscript has not been submitted (discussion: closed, 4 comments)
Short summary
Short summary
Downward percolation of water in melting snowpacks is a factor effecting the survival of glaciers as well as the water balance in areas dependent on snowmelt for water supply. Meltwater percolation flux in a snowpack was measured for the first time using an emerging method known as electrical self-potential, developed by others. Measured meltwater percolation flux was compared to snowpack measurements at an adjacent advanced weather station, and the average error was 8 % over a four-day period.
11 Sep 2017
A Systematic Study of the Fracturing of Ronne - Filchner Ice Shelf, Antarctica,
Using Multisource Satellite Data from 2001 to 2016
Rongxing Li, Haifeng Xiao, Shijie Liu, and Xiaohua Tong
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-178, https://doi.org/10.5194/tc-2017-178, 2017
Revised manuscript not accepted (discussion: closed, 5 comments)
Short summary
Short summary
Fracturing in the RFIS was slightly increased, particularly at its front, from 2003 to 2015. They do not seem to suggest an immediate significant impact on the stability of the shelf. However, with the rapid changes and 3D measurements of Rifts 1 and 2, the most active activities occurred at the front of the FIS from 2001 to 2016. A potential upcoming major calving event in FIS is estimated to occur in 2051. The stability of the ice shelf, particularly Rifts 1 and 2, should be closely monitored.
05 Sep 2017
Estimating interaction between surface water and groundwater in a permafrost region using heat tracing methods
Tanguang Gao, Jie Liu, Tingjun Zhang, Yuantao Hu, Jianguo Shang, Shufa Wang, Xiongxin Xiao, Chuankun Liu, Shichang Kang, Mika Sillanpää, and Yulan Zhang
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-176, https://doi.org/10.5194/tc-2017-176, 2017
Preprint retracted (discussion: closed, 6 comments)
Short summary
Short summary
Understanding the interactions between groundwater and surface water in permafrost regions is essential to the understanding of flood frequencies and river water quality of high latitude/altitude basins. Thus, we analyzed the interaction between surface water and groundwater in a permafrost region in the northern Tibetan Plateau by using heat tracing methods.
15 Jun 2017
Water flow in the active layer along an arctic slope – An investigation based on a field campaign and model simulations
Sebastian F. Zastruzny, Bo Elberling, Lars Nielsen, and Karsten H. Jensen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-97, https://doi.org/10.5194/tc-2017-97, 2017
Revised manuscript has not been submitted (discussion: closed, 3 comments)
Short summary
Short summary
The hydrological regime in the arctic will change as the climate conditions change and the release and associated transport of nutrients will also be affected. In this study we analyze water flow and tracer transport along a sloping transect in Disko Island in Greenland. The results suggest that the movement of dissolved nitrogen compounds such as nitrate, being released along the slope in consequence of permafrost thawing, can quickly influence nitrogen cycling at the end of the slope.
09 Jun 2017
A statistical fracture model for Antarctic glaciers
Veronika Emetc, Paul Tregoning, and Malcolm Sambridge
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-98, https://doi.org/10.5194/tc-2017-98, 2017
Preprint withdrawn (discussion: closed, 5 comments)
Short summary
Short summary
We developed a statistics-based method to identify zones of Antarctic ice shelves that are likely to fracture, with an average accuracy of 77 % when compared to observed fractures identified in optical imagery. We find that we can identify 4 main groups of ice shelf regions having similar characteristics. Our method of identifying fracture regions provides the initial step in the modelling of the propagation of crevasses and can form the basis for modelling ice shelf calving processes.
06 Jun 2017
Brief communication: Estimation of hydraulic properties of active
layers using ground-penetrating radar (GPR) and 2D inverse
hydrological modeling
Xicai Pan, Stefan Jaumann, Jiabao Zhang, and Kurt Roth
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-77, https://doi.org/10.5194/tc-2017-77, 2017
Revised manuscript not accepted (discussion: closed, 4 comments)
Short summary
Short summary
This study proposes a new method for estimating hydraulic properties of active layers using ground-penetrating radar (GPR) and 2D inverse hydrological modeling. This method creatively turns over the adverse features of undulating frost table for 1D inverse estimation of hydraulic parameters to assets for 2D inverse estimation. Its advantages include non-destructive observations, a bigger scale of the soil hydraulic properties and efficiency for permafrost studies.
24 May 2017
Spatial and temporal variability of water-filled crevasse hydrologic states along the shear margins of Jakobshavn Isbrae, Greenland
Casey A. Joseph and Derrick J. Lampkin
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-86, https://doi.org/10.5194/tc-2017-86, 2017
Revised manuscript not accepted (discussion: closed, 4 comments)
Short summary
Short summary
This work characterizes the spatial and temporal variability in the hydrologic state (filled or drained) of seven crevasse groups on Jakobshavn Isbræ from 2000–2015 using several optical satellite platforms. Meltwater from these crevasse groups can be transported to the bedrock and accelerate mass loss. The frequency of multi-drainage events were observed to increase over the study period. Multi-drain events may be related to temperature, terminus front location, and strain rate.
09 May 2017
How unusual was 2015 in the 1984–2015 period of North Cascade Glacier Annual Mass Balance?
Mauri S. Pelto
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-62, https://doi.org/10.5194/tc-2017-62, 2017
Revised manuscript not accepted (discussion: closed, 3 comments)
Short summary
Short summary
In 1983 the North Cascade Glacier Climate Project (NCGCP) began annual monitoring 10 glaciers throughout the range, to identify their response to climate change. The annual observations include mass balance, terminus behavior, and accumulation area ratio (AAR). In 2015 the region experienced the warmest conditions in at least the last 50 years. This paper places 2015 in context of the thirty-two-year mass balance record and local climate records.
03 May 2017
Measured and Modeled Snow Cover Properties across the Greenland Ice Sheet
Sascha Bellaire, Martin Proksch, Martin Schneebeli, Masashi Niwano, and Konrad Steffen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-55, https://doi.org/10.5194/tc-2017-55, 2017
Preprint withdrawn (discussion: closed, 2 comments)
25 Apr 2017
Brief communication: Changing mid-twentieth century Antarctic sea ice variability linked to tropical forcing
Chris S.~M. Turney, Andrew Klekociuk, Christopher J. Fogwill, Violette Zunz, Hugues Goosse, Claire L. Parkinson, Gilbert Compo, Matthew Lazzara, Linda Keller, Rob Allan, Jonathan G. Palmer, Graeme Clark, and Ezequiel Marzinelli
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-51, https://doi.org/10.5194/tc-2017-51, 2017
Revised manuscript not accepted (discussion: closed, 6 comments)
Short summary
Short summary
We demonstrate that a mid-twentieth century decrease in geopotential height in the southwest Pacific marks a Rossby wave response to equatorial Pacific warming, leading to enhanced easterly airflow off George V Land. Our results suggest that in contrast to ozone hole-driven changes in the Amundsen Sea, the 1979–2015 increase in sea ice extent off George V Land may be in response to reduced northward Ekman drift and enhanced (near-coast) production as a consequence of low latitude forcing.
24 Apr 2017
Measuring the snowpack depth with Unmanned Aerial System photogrammetry: comparison with manual probing and a 3D laser scanning over a sample plot
Francesco Avanzi, Alberto Bianchi, Alberto Cina, Carlo De Michele, Paolo Maschio, Diana Pagliari, Daniele Passoni, Livio Pinto, Marco Piras, and Lorenzo Rossi
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-57, https://doi.org/10.5194/tc-2017-57, 2017
Revised manuscript not accepted (discussion: closed, 7 comments)
Short summary
Short summary
We compare three different instruments used to collect snow depth, i.e., photogrammetric surveys using Unmanned Aerial Systems (UAS), a 3D laser scanning, and manual probing. The relatively high density of manual data (135 pt over 6700 m2, i.e., 2 pt/100 m2) enables to assess the performance of UAS in capturing the marked spatial variability of snow. Results suggest that UAS represent a competitive choice among existing techniques for high-precision, high-resolution remote sensing of snow.
10 Apr 2017
Understanding the Mechanism of Arctic Amplification and Sea Ice
Loss
Kwang-Yul Kim, Jinju Kim, Saerim Yeo, Hanna Na, Benjamin D. Hamlington, and Robert R. Leben
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-39, https://doi.org/10.5194/tc-2017-39, 2017
Revised manuscript not accepted (discussion: closed, 4 comments)
Short summary
Short summary
Sea ice reduction is accelerating in the Barents-Kara Seas, and the air temperature in this region is increasing much more rapidly than the global average temperature. In this study, we examined how the rapid air temperature increase, so-called Arctic amplification, is associated with the sea ice reduction in the Barents-Kara Seas in terms of a positive feedback process between the ocean surface and the atmosphere over the sea ice reduced areas. Details of this feedback are presented/discussed.
06 Apr 2017
Antarctic high-resolution ice flow mapping and increased mass loss in Wilkes Land, East Antarctica during 2006–2015
Qiang Shen, Hansheng Wang, Che-Kwan Shum, Liming Jiang, Hou Tse Hsu, and Jinglong Dong
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-34, https://doi.org/10.5194/tc-2017-34, 2017
Preprint withdrawn (discussion: closed, 5 comments)
Short summary
Short summary
We constructed two present-day continent-wide ice flow maps on Antarctica, and estimated its mass balances over the last decade. An increased mass discharge from Wilkes Land, East Antarctica was found, contrary to the long-standing belief that accelerated mass loss primarily originates from West Antarctica and Antarctic Peninsula. Our maps allow the first continent-wide assessment of mass discharge changes in the last decade, which will contribute to our understanding of Antarctic ice dynamics.
01 Feb 2017
Change in Frozen Soils and its Effect on Regional Hydrology in the
Upper Heihe Basin, the Northeast Qinghai-Tibetan Plateau
Bing Gao, Dawen Yang, Yue Qin, Yuhan Wang, Hongyi Li, Yanlin Zhang, and Tingjun Zhang
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-289, https://doi.org/10.5194/tc-2016-289, 2017
Revised manuscript not accepted (discussion: closed, 6 comments)
Short summary
Short summary
This study developed a distributed hydrological model coupled with cryospherical processes and used it to simulate the long-term change of frozen ground and hydrological impacts in the upper Heihe basin. Results showed that the permafrost area shrank by 9.5 %, and frozen depth of seasonally frozen ground decreased at a rate of 4.1 cm/10 yr. Runoff increased in cold season due to the increase in liquid soil moisture. Groundwater recharge was enhanced due to the degradation of permafrost.
01 Feb 2017
Multi-year surface velocities and sea-level rise contribution of the Basin-3 and Basin-2 surges, Austfonna, Svalbard
Thomas Schellenberger, Thorben Dunse, Andreas Kääb, Thomas Vikhamar Schuler, Jon Ove Hagen, and Carleen H. Reijmer
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-5, https://doi.org/10.5194/tc-2017-5, 2017
Preprint withdrawn (discussion: closed, 4 comments)
Short summary
Short summary
Basin-3, NE-Svalbard, was still surging with 10 m d-1 in July 2016. After a speed peak of 18.8 m d-1 in Dec 2012/Jan 2013, speed-ups are overlying the fast flow every summer. The glacier is massively calving icebergs (5.2 Gt yr-1 ~ 2 L drinking water for every human being daily!) which in the same order of magnitude as all other Svalbard glaciers together.
Since autumn 2015 also Basin-2 is surging with maximum velocities of 8.7 m d-1, an advance of more than 2 km and a mass loss of 0.7 Gt yr-1.
31 Jan 2017
On measuring snow ablation rates in alpine terrain with a mobile GPR device
Nena Griessinger, Franziska Mohr, and Tobias Jonas
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-295, https://doi.org/10.5194/tc-2016-295, 2017
Revised manuscript not accepted (discussion: closed, 6 comments)
Short summary
Short summary
We demonstrate the potential of ground penetrating radar for efficient and accurate measurements of snow depth and snow water equivalent when liquid water is present in the snowpack. We were able to derive snow ablation rates with high accuracy from repeated measurements.
We present the design of our light-weight setup consisting of a common-mid-point assembly on a plastic sled, which is mobile even in complex heterogeneous terrain like our investigated field sites in the eastern Swiss Alps.
05 Jan 2017
Use of an Unmanned Aerial Vehicle to assess recent surface elevation change of Storbreen in Norway
Walter Immerzeel, Philip Kraaijenbrink, and Liss Andreassen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-292, https://doi.org/10.5194/tc-2016-292, 2017
Revised manuscript not accepted (discussion: closed, 4 comments)
Short summary
Short summary
Unmanned Aerial Vehicles (UAV) have become increasingly popular in environmental monitoring. In this study we use a UAV to derive a very detailed digital elevation model (DEM) of Storbreen in Norway. We compare our results with a past DEM to derive the mass balance of this glacier. Our results confirm strong mass loss and retreat of continental glaciers in southern Norway and we conclude that UAVs are effective tools in stuyding mountain glaciers at a high level of detail.
21 Dec 2016
Impact of natural parameters on rock glacier development and conservation in subtropical mountain ranges. Northern sector of the Argentine Central Andes
Ana P. Forte, Cristian D. Villarroel, and María Y. Esper Angillieri
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-232, https://doi.org/10.5194/tc-2016-232, 2016
Revised manuscript not accepted (discussion: closed, 4 comments)
Short summary
Short summary
Our paper reports how natural parameters affect the mountain periglacial environment in an arid subtropical region. Based on statistical analysis and ratio frequency method over an inventory of the most relevant periglacial landforms, we demonstrated that their development are controlled by elevation, lithology and aspect. However lithology is the factor which will primarily control rock glacier behavior faced any climate change.
01 Dec 2016
Uncertainty budget in snow thickness and snow water equivalent estimation using GPR and TDR techniques
Federico Di Paolo, Barbara Cosciotti, Sebastian E. Lauro, Elisabetta Mattei, Mattia Callegari, Luca Carturan, Roberto Seppi, Francesco Zucca, and Elena Pettinelli
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-267, https://doi.org/10.5194/tc-2016-267, 2016
Preprint retracted (discussion: closed, 5 comments)
Short summary
Short summary
Snow water equivalent is an important parameter for hydrological and climate change studies, however its measurement is tedious and time consuming. In this paper we show that it is possible to accurately measure snow water equivalent using electromagnetic methods. During a field campaign we tested the performances of traditional methods vs. those of a Ground Penetrating Radar, founding a very good agreement between the snow water equivalent values computed with the two different methods.
17 Nov 2016
Archival of the water stable isotope signal in East Antarctic ice cores
Mathieu Casado, Amaelle Landais, Ghislain Picard, Thomas Münch, Thomas Laepple, Barbara Stenni, Giuliano Dreossi, Alexey Ekaykin, Laurent Arnaud, Christophe Genthon, Alexandra Touzeau, Valérie Masson-Delmotte, and Jean Jouzel
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-263, https://doi.org/10.5194/tc-2016-263, 2016
Revised manuscript not accepted (discussion: closed, 4 comments)
Short summary
Short summary
Ice core isotopic records rely on the knowledge of the processes involved in the archival of the snow. In the East Antarctic Plateau, post-deposition processes strongly affect the signal found in the surface and buried snow compared to the initial climatic signal. We evaluate the different contributions to the surface snow isotopic composition between the precipitation and the exchanges with the atmosphere and the variability of the isotopic signal found in profiles from snow pits.
15 Nov 2016
A global high-resolution map of debris on glaciers derived from multi-temporal ASTER images
Orie Sasaki, Omi Noguchi, Yong Zhang, Yukiko Hirabayashi, and Shinjiro Kanae
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-222, https://doi.org/10.5194/tc-2016-222, 2016
Revised manuscript not accepted (discussion: closed, 6 comments)
Short summary
Short summary
Supraglacial debris is widely spread in many high-relief mountain regions and affects glacier melting rate and resulting runoff, however, there is no global dataset of debris information. Here we present a first global map of thermal resistance of debris on glaciers at 90 m by using multi-temporal satellite images and radiation data. We believe our result provides a solid basis for evaluating debris effects in global glacier models, which could refine future predictions of glacier meltwater.
31 Oct 2016
Relationship of Permafrost Cryofacies to Varying Surface and Subsurface Terrain
Conditions in the Brooks Range and foothills of Northern Alaska, USA
Andrew W. Balser, Jeremy B. Jones, and M. Torre Jorgenson
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-224, https://doi.org/10.5194/tc-2016-224, 2016
Revised manuscript has not been submitted (discussion: closed, 2 comments)
Short summary
Short summary
The permafrost carbon feedback is an important climate change feedback, but quantifying the effect across the Arctic is difficult because permafrost includes a very broad variety of properties among landscapes which respond differently to climate perturbations. Permafrost properties are integrally linked with surface vegetation and terrain properties, but the relationships are complex. We test the ability to characterize these relationships spatially across landscapes in northern Alaska.
05 Oct 2016
Brief Communication: Capturing scales of spatial heterogeneity of Antarctic sea ice algae communities
Alexander L. Forrest, Lars C. Lund-Hansen, Brian K. Sorrell, Isak Bowden-Floyd, Vanessa Lucieer, Remo Cossu, and Ian Hawes
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-186, https://doi.org/10.5194/tc-2016-186, 2016
Revised manuscript not accepted (discussion: closed, 6 comments)
Short summary
Short summary
Measuring light conditions across sub-kilometer underwater transects of sea-ice in McMurdo Sound, Antarctica with an Autonomous Underwater Vehicle (AUV), we were able to derive estimates of ice algae biomass living at the ice/ocean interface at an unprecedented resolution. Characterizing ice algae communities at the appropriate scales of ecosystem variability is critical to understanding present day conditions and to predict how ecosystem response under future climate change scenarios.
23 Sep 2016
Effects of variability of meteorological measures on soil temperature in permafrost regions
Christian Beer, Philipp Porada, Altug Ekici, and Matthias Brakebusch
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-210, https://doi.org/10.5194/tc-2016-210, 2016
Preprint withdrawn (discussion: closed, 7 comments)
Short summary
Short summary
Models suggest thawing permafrost in future due to climate change. In addition to warming, day-to-day variability of air temperature and precipitation is projected to increase. In an idealized theoretical model experiment we show that such changing short-term variability will reduce soil warming as a consequence of air warming by up to 1 K due to effects on snow and moss insulating layers. This shows the need of a mechanistic representation of such layers in Earth system models.
12 Sep 2016
Attribution of Greenland's ablating ice surfaces on ice sheet albedo using unmanned aerial systems
Jonathan C. Ryan, Alun Hubbard, Marek Stibal, Jason E. Box, and the Dark Snow Project team
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-204, https://doi.org/10.5194/tc-2016-204, 2016
Preprint withdrawn (discussion: closed, 5 comments)
Short summary
Short summary
Using digital imagery and broadband albedo acquired by a fixed-wing UAS we classified and measured the albedo of six surface types that dominate the Greenland ablation area and its dark region. We found that the primary control on ablation area albedo is the fractional area of distributed impurities. Although not the darkest surface type observed, the distributed impurities dominate the albedo signal because of their extensive coverage.
12 Sep 2016
Balance between driving stress and basal drag results in linearity between driving stress and basal yield stress in Antarctica's Siple Coast Ice Streams
Jan Wohland, Torsten Albrecht, and Anders Levermann
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-191, https://doi.org/10.5194/tc-2016-191, 2016
Preprint withdrawn (discussion: closed, 3 comments)
07 Sep 2016
Subgrid snow depth coefficient of variation within complex mountainous terrain
Graham A. Sexstone, Steven R. Fassnacht, Juan Ignacio López-Moreno, and Christopher A. Hiemstra
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-188, https://doi.org/10.5194/tc-2016-188, 2016
Revised manuscript has not been submitted (discussion: closed, 5 comments)
Short summary
Short summary
Seasonal snowpacks vary spatially within mountainous environments and the representation of this variability by modeling can be a challenge. This study uses high-resolution airborne lidar data to evaluate the variability of snow depth within a grid size common for modeling applications. Results suggest that snow depth coefficient of variation is well correlated with ecosystem type, depth of snow, and topography and forest characteristics, and can be parameterized using airborne lidar data.
10 Aug 2016
Modeling Slope Environmental Lapse Rate (SELR) of temperature
in the monsoon glacio-hydrological regime of the Himalaya
Renoj J. Thayyen and Ashok P. Dimri
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-152, https://doi.org/10.5194/tc-2016-152, 2016
Revised manuscript not accepted (discussion: closed, 6 comments)
Short summary
Short summary
Present study shows that the seasonal variations in the temperature lapse rate along the Himalayan slopes is dominated by pre-monsoon high and monsoon lows. However, lapse rates restricted to the higher elevation regions did not show this seasonal variation. As the observed lapse rate deviate significantly from standard lapse rate of 6.5 K/km, a modeling solution is proposed by deriving monthly lapse rate indices for improving the snow, glaciers and other modeling effort in the region.
18 Jul 2016
Characteristics of an avalanche-feeding and partially debris-covered glacier and its response to atmospheric warming in Mt. Tomor, Tian Shan, China
Puyu Wang, Zhongqin Li, and Huilin Li
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-138, https://doi.org/10.5194/tc-2016-138, 2016
Revised manuscript not accepted (discussion: closed, 4 comments)
Short summary
Short summary
A cirque-valley glacier with complex topography and partially debris-covered area was investigated in the Mt. Tomor, Tian Shan. The glacier is analogous to temperate one on movement and temperature regimes. The strongest ablation and most significant terminus retreat and area reduction occurred at the end of last century and the beginning of this century. Since inhibition of debris cover to melting, it is expected to keep shrinkage in the coming decades, but the terminus retreat is to be slower.
15 Jul 2016
Possible groundwater dominance in the subglacial hydrology of ice sheet interiors: example at Dome C, East Antarctica
Brad T. Gooch, Sasha P. Carter, Omar Ghattas, Duncan A. Young, and Donald D. Blankenship
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-141, https://doi.org/10.5194/tc-2016-141, 2016
Revised manuscript has not been submitted (discussion: closed, 2 comments)
Short summary
Short summary
Our work investigates the potential significance of groundwater flow underneath the interior of East Antarctica where the ice doesn't rapidly melt. We attempt to describe the relationship between two hydrologic systems (water under the ice and in the ground) and how they might interact along a flow path between lakes under the ice. We find that groundwater is significant in regional water transport for melt water under the ice in areas of low melting in East Antarctica.
14 Jul 2016
Slight glacier reduction over the northwestern Tibetan Plateau despite
significant recent warming
Yetang Wang, Shugui Hou, Wenling An, Hongxi Pang, and Yaping Liu
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-165, https://doi.org/10.5194/tc-2016-165, 2016
Revised manuscript has not been submitted (discussion: closed, 3 comments)
Short summary
Short summary
This study further confirms "Pamir–Karakoram–Western-Kunlun-Mountain (northwestern Tibetan Plateau) Glacier Anomaly". Slight glacier reduction over the northwestern Tibetan Plateau may result from more accumulation from increased precipitation in winter which to great extent protects it from mass reductions under climate warming during 1961–2000. Warming slowdown since 2000 happening at this region may further mitigate glacier mass reduction.
13 Jul 2016
Increased nitrate and decreased δ15N–NO3− in the Greenland Arctic after 1940 attributed to North American oil burning
Nathan J. Chellman, Meredith G. Hastings, and Joseph R. McConnell
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-163, https://doi.org/10.5194/tc-2016-163, 2016
Revised manuscript not accepted (discussion: closed, 4 comments)
Short summary
Short summary
This manuscript analyzes the changing sources of nitrate deposition to Greenland since 1760 CE using a dataset consisting of sub-seasonally resolved nitrogen isotopes of nitrate and source tracers. Correlations amongst ion concentration, source tracers, and the δ15N–NO3− provide evidence of the impact of biomass burning and fossil fuel combustion emissions of nitrogen oxides and suggest that oil combustion is the likely driver of increased nitrate concentration in Greenland ice since 1940 CE.
06 Jul 2016
Effects of Seasonal Snow Cover on Hydrothermal Conditions of the Active
Layer in the Northeastern Qinghai-Tibet Plateau
Ji Chen, Yu Sheng, Qingbai Wu, Lin Zhao, Jing Li, and Jingyi Zhao
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-134, https://doi.org/10.5194/tc-2016-134, 2016
Revised manuscript not accepted (discussion: closed, 4 comments)
Short summary
Short summary
The extreme thin and short-time snow cover in the northeastern Qinghai-Tibet plateau is predominantly during spring and autumn. Removal of seasonal snow cover is beneficial for cooling the active layer in the first few years. Seasonal snow cover maintains the high water content of the active layer because of the inhibitory action of snow cover on the evaporation capacity in the natural site during the daytime and in summer. Snow removal can therefore lead to a rapid decrease of soil moisture.
21 Jun 2016
Development and analysis of a continuous record of global near-surface soil freeze/thaw patterns from AMSR-E and AMSR2 data
Tongxi Hu, Tianjie Zhao, Jiancheng Shi, Tianxing Wang, Dabin Ji, Ahmad Al Bitar, Bin Peng, and Yurong Cui
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-115, https://doi.org/10.5194/tc-2016-115, 2016
Revised manuscript not accepted (discussion: closed, 6 comments)
Short summary
Short summary
We present an approach of satellite remote sensing to derive a continuous long term and stable data record of the near-surface freeze/thaw cycle over the permafrost and seasonally frozen ground. We find that the distribution of the frost days and its trend variations are consistent with the minimum temperature anomalies. Analysis over the Qinghai-Tibetan Plateau demonstrates that the frost period is shortening slightly over the past decade, and the last frost date is advanced in most regions.
16 Jun 2016
Incorporating Distributed Debris Thickness in a Glacio-Hydrological Model: Khumbu Himalaya, Nepal
James S. Douglas, Matthias Huss, Darrel A. Swift, Julie M. Jones, and Franco Salerno
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-116, https://doi.org/10.5194/tc-2016-116, 2016
Revised manuscript has not been submitted (discussion: closed, 3 comments)
Short summary
Short summary
Glacier behaviour in high-mountain Asia is different from other regions due to debris cover and ice stagnation. This study incorporates these factors into a glacio-hydrological model for the first time at the Khumbu Glacier, Nepal. We show that including debris provides a more realistic representation of the Khumbu Glacier than in previous runoff models, and that changes to the debris surface significantly influence glacier and runoff evolution, with impacts on downstream water resources.
13 Jun 2016
Nationwide aerial laser scanning reveals relict rock glaciers and protalus ramparts in Slovenia
Mihaela Triglav-Čekada, Blaž Barborič, Mateja Ferk, and Matija Zorn
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-86, https://doi.org/10.5194/tc-2016-86, 2016
Preprint withdrawn (discussion: closed, 3 comments)
Short summary
Short summary
In 2015 the nationwide lidar of Slovenia became available. These data enable the identification of potential rock glaciers and protalus ramparts. All the mountainous areas at elevations above 1200 m a.s.l. were evaluated. Twenty potential rock glaciers and eight potential protalus ramparts were found. They are the most abundant in the Karavanks, followed by the Julian Alps and one on the Snežnik. The majority of the potential rock glaciers are probably relicts, due to the heavy vegetation cover.
09 Jun 2016
Glacier surface mass balance modeling in the inner tropics using a positive degree-day approach
L. Maisincho, V. Favier, P. Wagnon, V. Jomelli, R. Basantes Serrano, B. Francou, M. Villacis, A. Rabatel, M. Ménégoz, L. Mourre, and B. Cáceres
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-105, https://doi.org/10.5194/tc-2016-105, 2016
Revised manuscript not accepted (discussion: closed, 4 comments)
Short summary
Short summary
Studies performed in the outer tropics suggested that Positive Degree-Day (PDD) model should be used with caution in tropical areas because temperature is not directly linked to the main local melting processes. Using an enhanced PDD model in the inner tropics during nine years allowed an accurate modelling of the glacier-wide mass balances and ablation on the Antizana glacier. This proves the high sensitivity of glaciers to temperature changes in Ecuador.
31 May 2016
Dynamical Downscaling Data for Studying Climatic Impacts on Hydrology, Permafrost, and Ecosystems in Arctic Alaska
Lei Cai, Vladimir A. Alexeev, Christopher D. Arp, Benjamin M. Jones, Anna Liljedahl, and Anne Gädeke
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-87, https://doi.org/10.5194/tc-2016-87, 2016
Preprint withdrawn (discussion: closed, 2 comments)
Short summary
Short summary
This paper introduces the development process of a data set that specifically made for climatic impacts research over the Alaskan North Slope. This data set can offset to some extent the sparseness of observation on spatial and temporal scales, retrieving high-resolution climatic backgrounds that enable various studies in the fields of climatology, hydrology, ecology, etc.
30 May 2016
Response of freeze-thaw processes to experimental warming in the permafrost regions of the central Qinghai-Tibet Plateau
Shengyun Chen, Wenjie Liu, Qian Zhao, Lin Zhao, Qingbai Wu, Xingjie Lu, Shichang Kang, Xiang Qin, Shilong Chen, Jiawen Ren, and Dahe Qin
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-80, https://doi.org/10.5194/tc-2016-80, 2016
Revised manuscript not accepted (discussion: closed, 4 comments)
Short summary
Short summary
Experimental warming was manipulated using open top chambers in alpine grassland ecosystem in the permafrost regions of the Qinghai-Tibet Plateau. The results revealed variations of earlier thawing, later freezing and longer freezing-thawing periods in shallow soil. Further, the estimated permafrost table declined under the warming scenarios. The work will be helpful to evaluate the stability of Qinghai-Tibet Railway/Highway and estimate the release of carbon under the future climate warming.
27 May 2016
Assessment of Glacier Area Change in the Tekes River Basin, Central Tien Shan, Kazakhstan Between 1976 and 2013 Using Landsat and KH-9 Imagery
Zamira Usmanova, Maria Shahgedanova, Igor Severskiy, Gennady Nosenko, and Vassiliy Kapitsa
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-82, https://doi.org/10.5194/tc-2016-82, 2016
Revised manuscript has not been submitted (discussion: closed, 4 comments)
Short summary
Short summary
Changes in glacierized area in the Tekes River basin were assessed using Landsat and KH-9 imagery from 2013, 1992 and 1976. The Tekes River is a transboundary river distributing water between Kazakhstan and China where strong competition for water exists. Glacier shrinkage has been observed and the observed warming is likely to result in the extension of the melting season and higher proportion of liquid precipitation leading to further and potentially faster glacier recession in the future.
24 May 2016
Full-Stokes modeling of grounding line dynamics, ice melt and iceberg calving for Thwaites Glacier, West Antarctica
Hongju Yu, Eric Rignot, Mathieu Morlighem, and Helene Seroussi
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-101, https://doi.org/10.5194/tc-2016-101, 2016
Revised manuscript not accepted (discussion: closed, 3 comments)
Short summary
Short summary
We performed a 2D Full-Stokes (FS) modeling study of grounding line dynamics and calving of Thwaites Glacier, West Antarctica. We compare FS with simplified models on grounding line migration and we combine FS with Linear Elastic Fracture Mechanics to simulate crevasse propagation. We find that only FS is able to provide reliable grounding line migration and to explain observed crevasse. We conclude that it may be essential to employ FS in the grounding line region for 2D simulations.
23 May 2016
Impact of refreezing melt ponds on Arctic sea ice basal growth
Daniela Flocco, Daniel L. Feltham, David Schroeder, and Michel Tsamados
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-118, https://doi.org/10.5194/tc-2016-118, 2016
Preprint withdrawn (discussion: closed, 4 comments)
Short summary
Short summary
Melt ponds form over the sea ice cover in the Arctic and impact the surface albedo inducing a positive feedback leading to further melting.
While they refreeze, ponds delay basal sea ice growth in Autumn impacting the internal sea ice temperature and therefore its basal growth rate. By using a numerical model we estimate an inhibited basal growth of up to 228 km3, which represents 25 % of the basal sea ice growth estimated by PIOMAS during the months of September and October.
12 May 2016
The increasing snow cover in the Amur River Basin from MODIS observations during 2000–2014
Xianwei Wang, Yuan Zhu, Yaning Chen, Hailing Zheng, Henan Liu, Huabing Huang, Kai Liu, and Lin Liu
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-72, https://doi.org/10.5194/tc-2016-72, 2016
Preprint withdrawn (discussion: closed, 7 comments)
Short summary
Short summary
The study investigates the snow cover variations in the Amur River Basin (ARB) using MODIS observations from 2000–2014. Forest (about 50 %) demonstrates complex influences on the snow accumulation and melting processes and on optical satellite snow cover mapping. The snow cover increase in ARB is associated with the decrease of air temperature during the study period. The increasing air temperature in ARB projects a decrease of snow cover extent and periods in the coming years.
10 May 2016
Abrupt transitions in Arctic open water area
Michael A. Goldstein, Amanda H. Lynch, Todd E. Arbetter, and Florence Fetterer
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-108, https://doi.org/10.5194/tc-2016-108, 2016
Revised manuscript not accepted (discussion: closed, 4 comments)
Short summary
Short summary
Statistical analysis of the long term satellite record of Arctic open water in September reveals breakpoints in 1988 and 2007, particularly in the Pacific sector. These shifts are supported by independent data sets such as operational ice charts. Hence, open water in the Arctic ice appears to be associated with abrupt shifts rather than a gradual upward trend. These results support the thesis that Arctic sea ice may have critical points beyond which a return to the previous state is less likely.
20 Apr 2016
Controls on the distribution of the soil organic matter in mountain permafrost regions on the north Qinghai-Tibet Plateau
Cuicui Mu, Tingjun Zhang, Xiankai Zhang, Hong Guo, Bin Cao, Lili Li, Hang Su, and Xiaoqing Peng
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-65, https://doi.org/10.5194/tc-2016-65, 2016
Revised manuscript not accepted (discussion: closed, 6 comments)
Short summary
Short summary
Permafrost stores massive amounts of carbon. Our results showed that deep soil carbon contents were highest over wet grasslands, and lowest over dry grasslands for different depths. The soils have higher proportions fine particles in wet grasslands, while have higher proportions of coarse fractions such as sand and gravels. Our results also demonstrated that organic carbon pools accompanied with fine-fractions soils under wet grasslands are more decomposable than those of coarse soils.
11 Apr 2016
Impacts of black carbon and mineral dust on radiative forcing and glacier melting during summer in the Qilian Mountains, northeastern Tibetan Plateau
Yang Li, Jizu Chen, Shichang Kang, Chaoliu Li, Bin Qu, Lekhendra Tripathee, Fangping Yan, Yulan Zhang, Junmin Guo, Chaman Gul, and Xiang Qin
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-32, https://doi.org/10.5194/tc-2016-32, 2016
Preprint withdrawn (discussion: closed, 5 comments)
Short summary
Short summary
To our knowledge, this study constitutes the first quantitative dataset of the impacts of light absorbing particles (LAPs) on glacier ablation estimated directly from the northeastern edge of the Tibetan Plateau (TP).The average concentrations of black carbon (BC) and mineral dust (MD) in surface snow and ice at Laohugou Glacier No. 12 (LHG) were much higher than those detected in snow pits and ice cores in TP and Tien Shan mountains.
06 Apr 2016
Stable isotopic evidence for high microbial nitrate throughput in a High Arctic glacial catchment
A. H. Ansari
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-59, https://doi.org/10.5194/tc-2016-59, 2016
Preprint withdrawn (discussion: closed, 3 comments)
Short summary
Short summary
The solute chemistry and stable isotope investigation of the snowpack and stream samples demonstrates a large scale microbial NO3−-N production (1.64 ± 1.41 kg Day−1 for MLE and 1.41 ± 1.43 kg Day−1 for MLW) and assimilation (1.39 ± 1.41 kg Day−1 for MLE and 1.35 ± 1.43 kg Day−1 for MLW) in the glacier catchment. The microbial nitrate production and consumption are several times higher than the actual nitrate flux of streams therefore infer that microbes play a much greater role in the glacial nitrogen.
01 Apr 2016
Effects of pan-Arctic snow cover and air temperature changes on soil heat content
Xiaogang Shi, Tara J. Troy, and Dennis P. Lettenmaier
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-70, https://doi.org/10.5194/tc-2016-70, 2016
Revised manuscript has not been submitted (discussion: closed, 2 comments)
15 Mar 2016
A 2D model for simulating heterogeneous mass and energy fluxes through melting snowpacks
Nicolas R. Leroux and John W. Pomeroy
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-55, https://doi.org/10.5194/tc-2016-55, 2016
Revised manuscript not accepted (discussion: closed, 6 comments)
Short summary
Short summary
Snowmelt runoff reaches our rivers and is critical for water management and consumption in cold regions. Preferential flow paths form while snow is melting and accelerate the timing at which meltwater reaches the base of the snowpack and has great impact on basin hydrology. A novel 2D numerical model that simulates water and heat fluxes through a melting snowpack is presented. Its ability to simulate formation and flow through preferential flow paths and impacts on snowmelt runoff are discussed.
09 Mar 2016
Thinning of the Quelccaya Ice Cap over the last thirty years
C. D. Chadwell, D. R. Hardy, C. Braun, H. H. Brecher, and L. G. Thompson
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-40, https://doi.org/10.5194/tc-2016-40, 2016
Revised manuscript has not been submitted (discussion: closed, 6 comments)
Short summary
Short summary
The Quelccaya Ice Cap in southern Peru is the largest tropical glacier on earth. Aerial photographs and satellite images have documented retreat of its margins since 1963. While thinning of the glacier has been observed at its margins, here we document for the first time that the glacier has thinned all over during the past 30 years, including the elevation lowering 4.4 m within the highest regions of the glacier above ~ 5400 m a.s.l., where snow accumulation feeds the glacier.
02 Mar 2016
Brief Communication: Does it matter exactly when the Arctic will become ice-free?
J. K. Ridley, R. A. Wood, A. B. Keen, E. Blockley, and J. A. Lowe
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-28, https://doi.org/10.5194/tc-2016-28, 2016
Revised manuscript has not been submitted (discussion: closed, 3 comments)
Short summary
Short summary
The internal variability in model projections of Arctic sea ice extent is high. As a consequence an ensemble of projections from a single model can show considerable scatter in the range of dates for an "ice-free" Arctic. This paper investigates if the scatter can be reduced for a variety of definitions of "ice-free". Daily GCM data reveals that only a high emissions scenario results in the optimal definition of five conservative years in with ice extent is below one million square kilometer.
29 Feb 2016
A Close Observation to a Typical Continental Valley Glacier Surge in Northeastern Pamir
Xin Yao, Fuchu Dai, Iqbal Javed, Lingjing Li, Zhongsheng Wang, Sheng Ling, and Zhengkai Zhou
The Cryosphere Discuss., https://doi.org/10.5194/tc-2015-235, https://doi.org/10.5194/tc-2015-235, 2016
Preprint withdrawn (discussion: closed, 4 comments)
28 Jan 2016
Moderate Greenland ice sheet melt during the last interglacial constrained by present-day observations and paleo ice core reconstructions
P.M. Langebroek and K.H. Nisancioglu
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-15, https://doi.org/10.5194/tc-2016-15, 2016
Revised manuscript has not been submitted (discussion: closed, 4 comments)
Short summary
Short summary
Last interglacial (LIG) temperatures over Greenland were several degrees higher than today, causing melting of the Greenland ice sheet (GIS). We use temperatures and precipitation from the Norwegian Earth System Model to simulate the GIS during the LIG. Present-day observations of the GIS, together with paleo elevation data from ice cores, constrain our ice sheet simulations. We find a GIS reduction of 0.8–2.2 m compared to today, with the strongest melt occurring in the southwest.
18 Jan 2016
Monitoring long-term changes of glacial seismic activity with continuous seismological observations: a case study from Spitsbergen
W. Gajek, J. Trojanowski, and M. Malinowski
The Cryosphere Discuss., https://doi.org/10.5194/tc-2015-229, https://doi.org/10.5194/tc-2015-229, 2016
Revised manuscript not accepted (discussion: closed, 6 comments)
Short summary
Short summary
We study year-to-year long-term changes in seismic activity of two Spitsbergen's glaciers. Our results reveal that over recent years the glacier-related seismicity in the analysed regions of Spitsbergen increased significantly. The results were obtained using permanent polar seismic stations located in the vicinity of analyzed glaciers.
15 Jan 2016
Brief communication: On area- and slope-related thickness estimates and volume calculations for unmeasured glaciers
W. Haeberli
The Cryosphere Discuss., https://doi.org/10.5194/tc-2015-222, https://doi.org/10.5194/tc-2015-222, 2016
Revised manuscript has not been submitted (discussion: closed, 3 comments)
Short summary
Short summary
Area- and slope-related approaches for estimating thicknesses and calculating volumes of unmeasured glaciers are compared with respect to statistical regression/correlation, area definition, error propagation, calibration/validation and average versus distributed values. Slope-related techniques and numerical modeling making full use of 3-D-information are better constrained and provide realistic glacier-bed topographies. Corresponding results are available at local to regional and global scales
11 Nov 2015
Antarctic slush-ice algal accumulation not quantified through conventional satellite imagery: Beware the ice of March
J. L. Lieser, M. A. J. Curran, A. R. Bowie, A. T. Davidson, S. J. Doust, A. D. Fraser, B. K. Galton-Fenzi, R. A. Massom, K. M. Meiners, J. Melbourne-Thomas, P. A. Reid, P. G. Strutton, T. R. Vance, M. Vancoppenolle, K. J. Westwood, and S. W. Wright
The Cryosphere Discuss., 9, 6187–6222, https://doi.org/10.5194/tcd-9-6187-2015, https://doi.org/10.5194/tcd-9-6187-2015, 2015
Revised manuscript has not been submitted (discussion: closed, 7 comments)
02 Nov 2015
Soil temperature-threshold based runoff generation processes in a permafrost catchment
G. Wang, T. Mao, J. Chang, and G. Liu
The Cryosphere Discuss., 9, 5957–5978, https://doi.org/10.5194/tcd-9-5957-2015, https://doi.org/10.5194/tcd-9-5957-2015, 2015
Revised manuscript not accepted (discussion: closed, 4 comments)
Short summary
Short summary
In cold regions, a comprehensive understanding of the runoff generation mechanism at various scales and within different environments still remains elusive, which is one of the most challenging obstructions in the solution of hydrological scale issues and the development of distributed hydrological models. The traditional theory of nonlinear water-storage capacity curve is obviously not suitable to permafrost catchments in which active soil freezing-thawing cycle have important effects on runoff
22 Oct 2015
Snow on Arctic sea ice: model representation and last decade changes
K. Castro-Morales, R. Ricker, and R. Gerdes
The Cryosphere Discuss., 9, 5681–5718, https://doi.org/10.5194/tcd-9-5681-2015, https://doi.org/10.5194/tcd-9-5681-2015, 2015
Revised manuscript not accepted (discussion: closed, 6 comments)
Short summary
Short summary
The snow cover on Arctic sea ice is subject to vast changes due to a warming climate. In this study, we assess last decade changes of Arctic snow depth (SD) on sea-ice simulated by an Arctic general circulation model. North of 76 N, the model SD is on average 3 cm thicker than radar SD measurements. In the last decade, the mean regional SD decreased 21 % mainly in first-year ice areas. Surface snow sublimation and melt are the dominant processes responsible of this decline.
16 Oct 2015
Seasonal sea ice predictions for the Arctic based on assimilation of remotely sensed observations
F. Kauker, T. Kaminski, R. Ricker, L. Toudal-Pedersen, G. Dybkjaer, C. Melsheimer, S. Eastwood, H. Sumata, M. Karcher, and R. Gerdes
The Cryosphere Discuss., 9, 5521–5554, https://doi.org/10.5194/tcd-9-5521-2015, https://doi.org/10.5194/tcd-9-5521-2015, 2015
Revised manuscript not accepted (discussion: closed, 5 comments)
Short summary
Short summary
The manuscript describes the use of remotely sensed sea ice observations for the initialization of seasonal sea ice predictions. Among other observations, CryoSat-2 ice thickness is, to our knowledge for the first time, utilized. While a direct assimilation with CryoSat ice thickness could improve the predictions only locally, the use an advanced data assimilation system (4dVar) allows to establish a bias correction scheme, which is shown to improve the seasonal predictions Arctic wide.
07 Oct 2015
An investigation of the influence of supraglacial debris on glacier-hydrology
C. L. Fyffe, B. W. Brock, M. P. Kirkbride, D. W. F. Mair, N. S. Arnold, C. Smiraglia, G. Diolaiuti, and F. Diotri
The Cryosphere Discuss., 9, 5373–5411, https://doi.org/10.5194/tcd-9-5373-2015, https://doi.org/10.5194/tcd-9-5373-2015, 2015
Revised manuscript not accepted (discussion: closed, 6 comments)
Short summary
Short summary
Dye-tracing of a debris-covered glacier revealed that its hydrological system was not similar to that of a debris-free glacier. Beneath the thick debris covering the lower glacier the drainage system was mainly inefficient, probably due lower sub-debris melt rates causing a lack of the large inputs required to open efficient channels. However, efficient channels opened by the large melt inputs from the debris-free areas did route water from the moulins above the thick debris.
05 Oct 2015
A new spatially and temporally variable sigma parameter in degree-day melt modelling of the Greenland Ice Sheet 1870–2013
A. E. Jowett, E. Hanna, F. Ng, P. Huybrechts, and I. Janssens
The Cryosphere Discuss., 9, 5327–5371, https://doi.org/10.5194/tcd-9-5327-2015, https://doi.org/10.5194/tcd-9-5327-2015, 2015
Revised manuscript has not been submitted (discussion: closed, 6 comments)
22 Sep 2015
Estimating spatial distribution of daily snow depth with kriging methods: combination of MODIS snow cover area data and ground-based observations
C. L. Huang, H. W. Wang, and J. L. Hou
The Cryosphere Discuss., 9, 4997–5020, https://doi.org/10.5194/tcd-9-4997-2015, https://doi.org/10.5194/tcd-9-4997-2015, 2015
Revised manuscript has not been submitted (discussion: closed, 3 comments)
Short summary
Short summary
An integrated framework was developed for estimating spatial distribution of snow depth.
Four types of kriging methods were compared and evaluated: OK, UK, OCK, UCK.
MODIS SCA data were used to compensate for the scarcity and uneven distribution of stations
Results from the paper showed snow depth could be improved by the proposed method.
07 Aug 2015
Fram Strait spring ice export and September Arctic sea ice
M. H. Halvorsen, L. H. Smedsrud, R. Zhang, and K. Kloster
The Cryosphere Discuss., 9, 4205–4235, https://doi.org/10.5194/tcd-9-4205-2015, https://doi.org/10.5194/tcd-9-4205-2015, 2015
Revised manuscript has not been submitted (discussion: closed, 6 comments)
Short summary
Short summary
A new and updated timeseries of Fram Strait sea ice area export from 1979 - 2013 shows an overall increase until today. Spring and summer ice area export increases more (14% per decade) than in autumn and winter, and these export anomalies have a large influence on the following September mean ice extent.
30 Jul 2015
Subglacial hydrology indicates a major shift in dynamics of the West Antarctic Ross Ice Streams within the next two centuries
S. Goeller, V. Helm, M. Thoma, and K. Grosfeld
The Cryosphere Discuss., 9, 3995–4018, https://doi.org/10.5194/tcd-9-3995-2015, https://doi.org/10.5194/tcd-9-3995-2015, 2015
Revised manuscript has not been submitted (discussion: closed, 4 comments)
Short summary
Short summary
The Ross Ice Streams in West Antarctica showed a high variability in the past. We model basal water pathways and catchment areas for present and future ice sheet geometries (gained by applying satellite-derived elevation change rates) in this sector. Thus, we can explain the current ice stream configuration and estimate implications for the next two centuries, where we find that a major basal hydraulic tributary of the Kamb and Whillans IS could be redirected underneath the Bindschadler IS.
26 Mar 2015
Active lakes in Antarctica survive on a sedimentary substrate – Part 1: Theory
S. P. Carter, H. A. Fricker, and M. R. Siegfried
The Cryosphere Discuss., 9, 2053–2099, https://doi.org/10.5194/tcd-9-2053-2015, https://doi.org/10.5194/tcd-9-2053-2015, 2015
Revised manuscript not accepted (discussion: closed, 5 comments)
Short summary
Short summary
We develop a model that simulated the observed filling and draining of active subglacial lakes in Antarctica that suggests the may occurs by the erosion of channels into deformable subglacial sediments, that then deform shut as lake level declines. This contrasts with ice dammed alpine lakes which drain by channels incised into ice. If active subglacial lakes require deformable sediments to fill and drain as observed, then classic radar-based methods of lake detection may fail to find them.
26 Mar 2015
Overview on radon measurements in Arctic glacier waters
A. Kies, O. Hengesch, Z. Tosheva, A. P. Nawrot, and J. Jania
The Cryosphere Discuss., 9, 2013–2052, https://doi.org/10.5194/tcd-9-2013-2015, https://doi.org/10.5194/tcd-9-2013-2015, 2015
Revised manuscript not accepted (discussion: closed, 4 comments)
Short summary
Short summary
We present a study of the subglacial component in waters using the natural radioisotope radon. The paper is the result of several years of investigations on a Svalbard glacier and constitutes a first overview on this new technique. The paper is innovative as we are the first to use radon as a tracer for the system of glacier drainage, hydrology and glacier dynamics.
24 Mar 2015
First Sentinel-1 detections of avalanche debris
E. Malnes, M. Eckerstorfer, and H. Vickers
The Cryosphere Discuss., 9, 1943–1963, https://doi.org/10.5194/tcd-9-1943-2015, https://doi.org/10.5194/tcd-9-1943-2015, 2015
Revised manuscript has not been submitted (discussion: closed, 3 comments)
Short summary
Short summary
During an avalanche cycle in January 2015 in northern Norway we used repeat pass Sentinel-1 images to map avalanches. Avalanche debris shows up as increased backscatter in repeat pass images. We detected 489 avalanches in a single scene. Results were validated using high resolution SAR data and field reconnaissance. The results are very promising, and pave the way for operational avalanche monitoring using SAR. Sentinel-1 grant frequent coverage with high quality to monitor avalanches.
17 Mar 2015
Comparing ice discharge through West Antarctic Gateways: Weddell vs. Amundsen Sea warming
M. A. Martin, A. Levermann, and R. Winkelmann
The Cryosphere Discuss., 9, 1705–1733, https://doi.org/10.5194/tcd-9-1705-2015, https://doi.org/10.5194/tcd-9-1705-2015, 2015
Preprint withdrawn (discussion: closed, 4 comments)
Short summary
Short summary
Numerical ice sheet modelling shows that idealized, step-function type ocean warming in the Weddell Sea, where the ice sheet is close to floatation, leads to more immediate ice discharge with a higher sensitivity to small warming levels than the same warming in the Amundsen Sea. While the cumulative ice loss in the Amundsen Sea Sector is of similar magnitude after five centuries of continued warming, ice loss increases at a slower pace and only for significantly higher warming levels.
10 Mar 2015
Satellite monitoring of glaciers in the Karakoram from 1977 to 2013: an overall almost stable population of dynamic glaciers
R. M. Brahmbhatt, I. M. Bahuguna, B. P. Rathore, S. K. Singh, A. S. Rajawat, R. D. Shah, and J. S. Kargel
The Cryosphere Discuss., 9, 1555–1592, https://doi.org/10.5194/tcd-9-1555-2015, https://doi.org/10.5194/tcd-9-1555-2015, 2015
Revised manuscript has not been submitted (discussion: closed, 5 comments)
26 Feb 2015
Albedo reduction caused by black carbon and dust accumulation: a quantitive model applied to the western margin of the Greenland ice sheet
T. Goelles and C. E. Bøggild
The Cryosphere Discuss., 9, 1345–1381, https://doi.org/10.5194/tcd-9-1345-2015, https://doi.org/10.5194/tcd-9-1345-2015, 2015
Revised manuscript not accepted (discussion: closed, 4 comments)
26 Feb 2015
Soot on snow experiments: light-absorbing impurities effect on the natural snowpack
J. Svensson, A. Virkkula, O. Meinander, N. Kivekäs, H.-R. Hannula, O. Järvinen, J. I. Peltoniemi, M. Gritsevich, A. Heikkilä, A. Kontu, A.-P. Hyvärinen, K. Neitola, D. Brus, P. Dagsson-Waldhauserova, K. Anttila, T. Hakala, H. Kaartinen, M. Vehkamäki, G. de Leeuw, and H. Lihavainen
The Cryosphere Discuss., 9, 1227–1267, https://doi.org/10.5194/tcd-9-1227-2015, https://doi.org/10.5194/tcd-9-1227-2015, 2015
Revised manuscript not accepted (discussion: closed, 4 comments)
Short summary
Short summary
Soot's (including black carbon and organics) negative effect on a natural snow pack is experimentally addressed in this paper through a series of experiments. Soot concentrations in the snow in the range of 200-200 000 ppb verify the negative effects on the albedo, the physical snow characteristics, as well as increasing the melt rate of the snow pack. Our experimental data generally agrees when compared with the Snow, Ice and Aerosol Radiation model.
20 Feb 2015
Arctic sea ice area in CMIP3 and CMIP5 climate model ensembles – variability and change
V. A. Semenov, T. Martin, L. K. Behrens, and M. Latif
The Cryosphere Discuss., 9, 1077–1131, https://doi.org/10.5194/tcd-9-1077-2015, https://doi.org/10.5194/tcd-9-1077-2015, 2015
Revised manuscript not accepted (discussion: closed, 6 comments)
Short summary
Short summary
The shrinking Arctic sea ice cover is probably the clearest manifestation of ongoing climate change. The last generation of climate models from World Climate Research Programme Coupled Model Intercomparison Project (CMIP3 and CMIP5) simulate consistent changes in the Sea Ice Area (SIA) seasonal cycle. On average, the sensitivity of SIA to external forcing is enhanced in the CMIP5 models. The Arctic SIA variability response to anthropogenic forcing is different in CMIP3 and CMIP5.
15 Jan 2015
A 3-D simulation of drifting snow in the turbulent boundary layer
N. Huang and Z. Wang
The Cryosphere Discuss., 9, 301–331, https://doi.org/10.5194/tcd-9-301-2015, https://doi.org/10.5194/tcd-9-301-2015, 2015
Revised manuscript not accepted (discussion: closed, 6 comments)
Short summary
Short summary
Drifting snow is a frequent occurrence natural phenomenon at high latitudes, which has a non-ignorable contribution to the mass balance of ice sheets as well as hydrological balance. The snow drifting process in the turbulent boundary layer is performed and the snow streamers are reproduced. In addition, the particles' velocities along spanwise direction is one order of magnitude smaller than streamwise direction and the diameter distribution along height shows a stratification structure.
12 Jan 2015
A sensitivity study of fast outlet glaciers to short timescale cyclical perturbations
E. Aykutlug and T. K. Dupont
The Cryosphere Discuss., 9, 223–250, https://doi.org/10.5194/tcd-9-223-2015, https://doi.org/10.5194/tcd-9-223-2015, 2015
Revised manuscript not accepted (discussion: closed, 4 comments)
08 Jan 2015
Analysis of long-term precipitation pattern over Antarctica derived from satellite-borne radar
L. Milani, F. Porcù, D. Casella, S. Dietrich, G. Panegrossi, M. Petracca, and P. Sanò
The Cryosphere Discuss., 9, 141–182, https://doi.org/10.5194/tcd-9-141-2015, https://doi.org/10.5194/tcd-9-141-2015, 2015
Revised manuscript not accepted (discussion: closed, 4 comments)
Short summary
Short summary
The aim of this work is to show that the CloudSat Cloud Profiling Radar (CPR) can be a valuable source of snowfall rate data in Antarctica that can be used at different temporal scales. Two years of CloudSat data over Antarctica are analyzed and two different approaches for precipitation estimates are considered. The results show that CPR can provide valuable support to the sparse network of ground-based instruments both for numerical model validation and climatological studies.
21 Dec 2014
How robust and (un)certain are regional climate models over the Himalayas?
A. P. Dimri
The Cryosphere Discuss., 8, 6251–6270, https://doi.org/10.5194/tcd-8-6251-2014, https://doi.org/10.5194/tcd-8-6251-2014, 2014
Revised manuscript not accepted (discussion: closed, 4 comments)
Short summary
Short summary
This paper brings in and debates issues on
1. Uncertainty in regional climate models for glaciological/hydrological studies
2. Bias correction employed on model outputs provide improved results
3. Provides an insight for glacier research
20 Dec 2014
Brief Communication: 2014 velocity and flux for five major Greenland outlet glaciers using ImGRAFT and Landsat-8
A. Messerli, N. B. Karlsson, and A. Grinsted
The Cryosphere Discuss., 8, 6235–6250, https://doi.org/10.5194/tcd-8-6235-2014, https://doi.org/10.5194/tcd-8-6235-2014, 2014
Preprint withdrawn (discussion: closed, 6 comments)
Short summary
Short summary
We use 2014 Landsat-8 imagery in combination with a newly developed feature tracking toolbox, ImGRAFT to produce velocity fields and flux for five major Greenland marine terminating glaciers: Helheim, Kangerdlugssuaq, Nioghalvfjerdsbræ, Petermann and Jakobshavn Isbræ. A major finding of the paper documents the increased velocities observed at Jakobshavn Isbræ. We measure velocities over 50m/day which exceed that of the previously recorded maximum.
11 Dec 2014
Role of rainwater induced subsurface flow in water-level dynamics and thermoerosion of shallow thermokarst ponds on the Northeastern Qinghai–Tibet Plateau
X. Pan, Q. Yu, and Y. You
The Cryosphere Discuss., 8, 6117–6146, https://doi.org/10.5194/tcd-8-6117-2014, https://doi.org/10.5194/tcd-8-6117-2014, 2014
Revised manuscript not accepted (discussion: closed, 4 comments)
05 Dec 2014
Ice-shelf forced vibrations modelled with a full 3-D elastic model
Y. V. Konovalov
The Cryosphere Discuss., 8, 6059–6078, https://doi.org/10.5194/tcd-8-6059-2014, https://doi.org/10.5194/tcd-8-6059-2014, 2014
Revised manuscript not accepted (discussion: closed, 7 comments)
25 Nov 2014
Spatiotemporal variations in the surface velocities of Antarctic Peninsula glaciers
J. Chen, C. Q. Ke, and Z. D. Shao
The Cryosphere Discuss., 8, 5875–5910, https://doi.org/10.5194/tcd-8-5875-2014, https://doi.org/10.5194/tcd-8-5875-2014, 2014
Revised manuscript not accepted (discussion: closed, 6 comments)
06 Nov 2014
Factors controlling Slope Environmental Lapse Rate (SELR) of temperature in the monsoon and cold-arid glacio-hydrological regimes of the Himalaya
R. J. Thayyen and A. P. Dimri
The Cryosphere Discuss., 8, 5645–5686, https://doi.org/10.5194/tcd-8-5645-2014, https://doi.org/10.5194/tcd-8-5645-2014, 2014
Revised manuscript not accepted (discussion: closed, 8 comments)
Short summary
Short summary
Slope environmental lapse rate of temperature in the monsoon and cold-arid regimes of the higher Himalaya is found to be varying between 9.0 to 1.9oC/km and 17.0 to 2.8oC/km respectively highlighting strong regional variability. Moisture availability/absence is found to be the key factor forcing the lapse rate variability. Present study also provided a modelling solution for estimating the lapse rate.Study suggests that the arbitrary use of lapse rate in the Himalaya is is extremely untenable
06 Nov 2014
Snow mass decrease in the Northern Hemisphere (1979/80–2010/11)
Z. Li, J. Liu, L. Huang, N. Wang, B. Tian, J. Zhou, Q. Chen, and P. Zhang
The Cryosphere Discuss., 8, 5623–5644, https://doi.org/10.5194/tcd-8-5623-2014, https://doi.org/10.5194/tcd-8-5623-2014, 2014
Revised manuscript not accepted (discussion: closed, 6 comments)
Short summary
Short summary
In this manuscript, we verified the snow water equivalent (SWE) products with large amounts of ground stations and generated an optimized SWE product covering (1979/80-2010/11). Using the optimized product it was found that the SWE is significantly decreasing in the past 32 years, and the decreasing is closely related to temperature rising.
05 Nov 2014
Strategy of valid 14C dates choice in syngenetic permafrost
Y. K. Vasil'chuk and A. C. Vasil'chuk
The Cryosphere Discuss., 8, 5589–5621, https://doi.org/10.5194/tcd-8-5589-2014, https://doi.org/10.5194/tcd-8-5589-2014, 2014
Revised manuscript not accepted (discussion: closed, 4 comments)
Short summary
Short summary
The strategy of valid 14С dates choice in syngenetic permafrost includes several points such as:
• Re-deposition of organic matter in the permafrost is common. Syngenetic sediments contain allochthonous organic deposit that originated at a distance from its present position. There needs to be a careful cull of the manifestly more ancient 14C dates.
• The youngest 14C date from the data set in the particular horizon is closest to the actual time of accumulation and freezing of the yedoma
28 Oct 2014
Model calibration for ice sheets and glaciers dynamics: a general theory of inverse problems in glaciology
M. Giudici, F. Baratelli, A. Comunian, C. Vassena, and L. Cattaneo
The Cryosphere Discuss., 8, 5511–5537, https://doi.org/10.5194/tcd-8-5511-2014, https://doi.org/10.5194/tcd-8-5511-2014, 2014
Revised manuscript has not been submitted (discussion: closed, 8 comments)
Short summary
Short summary
Inverse problems (IPs) are fundamental to calibrate numerical models, but are not yet widely diffused in glaciology, even if some theroretical developments and excellent applications were published.
This paper provides a conceptual framework for IP in cryospheric sciences, which permits to clearly define and discuss the properties of IP.
The examined topics include: the role of data and parameters: the link of ill-posedness with ill-conditioning and identifiability; sensitivity analysis.
12 Aug 2014
A conceptual model of cyclical glacier flow in overdeepenings
J. B. Turrin and R. R. Forster
The Cryosphere Discuss., 8, 4463–4495, https://doi.org/10.5194/tcd-8-4463-2014, https://doi.org/10.5194/tcd-8-4463-2014, 2014
Revised manuscript has not been submitted (discussion: closed, 2 comments)
01 Aug 2014
Influence of urbanization on permafrost: a case study from Mohe County, northernmost China
W. B. Yu, M. Guo, L. Chen, Y. M. Lai, X. Yi, and L. L. Xu
The Cryosphere Discuss., 8, 4327–4348, https://doi.org/10.5194/tcd-8-4327-2014, https://doi.org/10.5194/tcd-8-4327-2014, 2014
Revised manuscript not accepted (discussion: closed, 5 comments)
29 Jul 2014
On the characteristics of sea ice divergence/convergence in the Southern Beaufort Sea
J. V. Lukovich, D. G. Babb, R. J. Galley, R. L. Raddatz, and D. G. Barber
The Cryosphere Discuss., 8, 4281–4325, https://doi.org/10.5194/tcd-8-4281-2014, https://doi.org/10.5194/tcd-8-4281-2014, 2014
Revised manuscript not accepted (discussion: closed, 7 comments)
15 Jul 2014
GPS based surface displacements – a proxy for discharge and sediment transport from the Greenland Ice Sheet
B. Hasholt, S. A. Khan, and A. B. Mikkelsen
The Cryosphere Discuss., 8, 3829–3850, https://doi.org/10.5194/tcd-8-3829-2014, https://doi.org/10.5194/tcd-8-3829-2014, 2014
Preprint withdrawn (discussion: closed, 2 comments)
10 Jul 2014
Modelled present and future thaw lake area expansion/contraction trends throughout the continuous permafrost zone
Y. Mi, J. van Huissteden, and A. J. Dolman
The Cryosphere Discuss., 8, 3603–3627, https://doi.org/10.5194/tcd-8-3603-2014, https://doi.org/10.5194/tcd-8-3603-2014, 2014
Revised manuscript not accepted (discussion: closed, 7 comments)
01 Jul 2014
What glaciers are telling us about Earth's changing climate
W. Tangborn and M. Mosteller
The Cryosphere Discuss., 8, 3475–3491, https://doi.org/10.5194/tcd-8-3475-2014, https://doi.org/10.5194/tcd-8-3475-2014, 2014
Revised manuscript not accepted (discussion: closed, 15 comments)
23 May 2014
On the interest of positive degree day models for mass balance modeling in the inner tropics
L. Maisincho, V. Favier, P. Wagnon, R. Basantes Serrano, B. Francou, M. Villacis, A. Rabatel, L. Mourre, V. Jomelli, and B. Cáceres
The Cryosphere Discuss., 8, 2637–2684, https://doi.org/10.5194/tcd-8-2637-2014, https://doi.org/10.5194/tcd-8-2637-2014, 2014
Revised manuscript not accepted (discussion: closed, 8 comments)
12 May 2014
Orientation dependent glacial changes at the Tibetan Plateau derived from 2003–2009 ICESat laser altimetry
V. H. Phan, R. C. Lindenbergh, and M. Menenti
The Cryosphere Discuss., 8, 2425–2463, https://doi.org/10.5194/tcd-8-2425-2014, https://doi.org/10.5194/tcd-8-2425-2014, 2014
Revised manuscript not accepted (discussion: closed, 5 comments)
12 May 2014
Surface depressions (Lacunas) on Bering Glacier, Alaska: a product of downwasting through differential ablation
P. J. Fleisher
The Cryosphere Discuss., 8, 2403–2424, https://doi.org/10.5194/tcd-8-2403-2014, https://doi.org/10.5194/tcd-8-2403-2014, 2014
Revised manuscript has not been submitted (discussion: closed, 3 comments)
25 Apr 2014
Quantifying the Jakobshavn Effect: Jakobshavn Isbrae, Greenland, compared to Byrd Glacier, Antarctica
T. Hughes, A. Sargent, J. Fastook, K. Purdon, J. Li, J.-B. Yan, and S. Gogineni
The Cryosphere Discuss., 8, 2043–2118, https://doi.org/10.5194/tcd-8-2043-2014, https://doi.org/10.5194/tcd-8-2043-2014, 2014
Revised manuscript not accepted (discussion: closed, 4 comments)
23 Apr 2014
Simulating more accurate snow maps for Norway with MCMC parameter estimation method
T. M. Saloranta
The Cryosphere Discuss., 8, 1973–2003, https://doi.org/10.5194/tcd-8-1973-2014, https://doi.org/10.5194/tcd-8-1973-2014, 2014
Revised manuscript not accepted (discussion: closed, 3 comments)
06 Mar 2014
Glacier dynamics in the Western Italian Alps: a minimal model approach
D. Peano, M. Chiarle, and J. von Hardenberg
The Cryosphere Discuss., 8, 1479–1516, https://doi.org/10.5194/tcd-8-1479-2014, https://doi.org/10.5194/tcd-8-1479-2014, 2014
Revised manuscript not accepted (discussion: closed, 3 comments)
14 Feb 2014
Combining damage and fracture mechanics to model calving
J. Krug, J. Weiss, O. Gagliardini, and G. Durand
The Cryosphere Discuss., 8, 1111–1150, https://doi.org/10.5194/tcd-8-1111-2014, https://doi.org/10.5194/tcd-8-1111-2014, 2014
Preprint withdrawn (discussion: closed, 1 comment)
05 Feb 2014
A data-constrained model for compatibility check of remotely sensed basal melting with the hydrography in front of Antarctic ice shelves
D. Olbers, H. H. Hellmer, and F. F. J. H. Buck
The Cryosphere Discuss., 8, 919–951, https://doi.org/10.5194/tcd-8-919-2014, https://doi.org/10.5194/tcd-8-919-2014, 2014
Revised manuscript has not been submitted (discussion: closed, 2 comments)
27 Jan 2014
Dating of a Dome Fuji (Antarctica) shallow ice core by volcanic signal synchronization with B32 and EDML1 chronologies
Y. Motizuki, Y. Nakai, K. Takahashi, M. Igarashi, H. Motoyama, and K. Suzuki
The Cryosphere Discuss., 8, 769–804, https://doi.org/10.5194/tcd-8-769-2014, https://doi.org/10.5194/tcd-8-769-2014, 2014
Revised manuscript has not been submitted (discussion: closed, 4 comments)
23 Jan 2014
Estimating the avalanche contribution to the mass balance of debris covered glaciers
A. Banerjee and R. Shankar
The Cryosphere Discuss., 8, 641–657, https://doi.org/10.5194/tcd-8-641-2014, https://doi.org/10.5194/tcd-8-641-2014, 2014
Revised manuscript not accepted (discussion: closed, 10 comments)
23 Jan 2014
Hybrid inventory, gravimetry and altimetry (HIGA) mass balance product for Greenland and the Canadian Arctic
W. Colgan, W. Abdalati, M. Citterio, B. Csatho, X. Fettweis, S. Luthcke, G. Moholdt, and M. Stober
The Cryosphere Discuss., 8, 537–580, https://doi.org/10.5194/tcd-8-537-2014, https://doi.org/10.5194/tcd-8-537-2014, 2014
Revised manuscript not accepted (discussion: closed, 5 comments)
21 Nov 2013
Review article: the false–bottom ice
D. V. Alexandrov, J. Jouzel, I. Nizovtseva, and L. B. Ryashko
The Cryosphere Discuss., 7, 5659–5682, https://doi.org/10.5194/tcd-7-5659-2013, https://doi.org/10.5194/tcd-7-5659-2013, 2013
Revised manuscript not accepted (discussion: closed, 5 comments)
15 Nov 2013
ESA's Ice Sheets CCI: validation and inter-comparison of surface elevation changes derived from laser and radar altimetry over Jakobshavn Isbræ, Greenland – Round Robin results
J. F. Levinsen, K. Khvorostovsky, F. Ticconi, A. Shepherd, R. Forsberg, L. S. Sørensen, A. Muir, N. Pie, D. Felikson, T. Flament, R. Hurkmans, G. Moholdt, B. Gunter, R. C. Lindenbergh, and M. Kleinherenbrink
The Cryosphere Discuss., 7, 5433–5460, https://doi.org/10.5194/tcd-7-5433-2013, https://doi.org/10.5194/tcd-7-5433-2013, 2013
Revised manuscript not accepted (discussion: closed, 4 comments)
08 Oct 2013
Morphology and distribution of liquid inclusions in young sea ice as imaged by magnetic resonance
R. J. Galley, B. G. T. Else, N.-X. Geilfus, A. A. Hare, D. Isleifson, L. Ryner, D. G. Barber, and S. Rysgaard
The Cryosphere Discuss., 7, 4977–5006, https://doi.org/10.5194/tcd-7-4977-2013, https://doi.org/10.5194/tcd-7-4977-2013, 2013
Revised manuscript not accepted (discussion: closed, 4 comments)
01 Oct 2013
Black carbon concentrations from a Tibetan Plateau ice core spanning 1843–1982: recent increases due to emissions and glacier melt
M. Jenkins, S. Kaspari, S. Kang, B. Grigholm, and P. A. Mayewski
The Cryosphere Discuss., 7, 4855–4880, https://doi.org/10.5194/tcd-7-4855-2013, https://doi.org/10.5194/tcd-7-4855-2013, 2013
Revised manuscript not accepted (discussion: closed, 9 comments)
24 Sep 2013
Simulating the role of gravel on the dynamics of permafrost on the Qinghai-Tibetan Plateau
S. Yi, J. Chen, Q. Wu, and Y. Ding
The Cryosphere Discuss., 7, 4703–4740, https://doi.org/10.5194/tcd-7-4703-2013, https://doi.org/10.5194/tcd-7-4703-2013, 2013
Revised manuscript not accepted (discussion: closed, 8 comments)
13 Sep 2013
Sea ice detection with space-based LIDAR
S. Rodier, Y. Hu, and M. Vaughan
The Cryosphere Discuss., 7, 4681–4701, https://doi.org/10.5194/tcd-7-4681-2013, https://doi.org/10.5194/tcd-7-4681-2013, 2013
Revised manuscript has not been submitted (discussion: closed, 3 comments)
09 Sep 2013
Distribution and recent variations of supraglacial lakes on dendritic-type glaciers in the Khan Tengri-Tomur Mountains, Central Asia
Q. Liu, C. Mayer, and S. Liu
The Cryosphere Discuss., 7, 4545–4584, https://doi.org/10.5194/tcd-7-4545-2013, https://doi.org/10.5194/tcd-7-4545-2013, 2013
Revised manuscript not accepted (discussion: closed, 4 comments)
07 Aug 2013
Probabilistic estimation of glacier volume and glacier bed topography: the Andean glacier Huayna West
V. Moya Quiroga, A. Mano, Y. Asaoka, K. Udo, S. Kure, and J. Mendoza
The Cryosphere Discuss., 7, 3931–3967, https://doi.org/10.5194/tcd-7-3931-2013, https://doi.org/10.5194/tcd-7-3931-2013, 2013
Revised manuscript not accepted (discussion: closed, 4 comments)
19 Jul 2013
A record of Antarctic sea ice extent in the Southern Indian Ocean for the past 300 yr and its relationship with global mean temperature
C. Xiao, R. Li, S. B. Sneed, T. Dou, and I. Allison
The Cryosphere Discuss., 7, 3611–3625, https://doi.org/10.5194/tcd-7-3611-2013, https://doi.org/10.5194/tcd-7-3611-2013, 2013
Revised manuscript not accepted (discussion: closed, 8 comments)
02 Jul 2013
Estimation of volume changes of mountain glaciers from ICESat data: an example from the Aletsch Glacier, Swiss Alps
J. Kropáček, N. Neckel, and A. Bauder
The Cryosphere Discuss., 7, 3261–3291, https://doi.org/10.5194/tcd-7-3261-2013, https://doi.org/10.5194/tcd-7-3261-2013, 2013
Preprint withdrawn (discussion: closed, 3 comments)
01 Jul 2013
Technical Note: On the use of the mushy-layer Rayleigh number for the interpretation of sea-ice-core data
M. Vancoppenolle, D. Notz, F. Vivier, J. Tison, B. Delille, G. Carnat, J. Zhou, F. Jardon, P. Griewank, A. Lourenço, and T. Haskell
The Cryosphere Discuss., 7, 3209–3230, https://doi.org/10.5194/tcd-7-3209-2013, https://doi.org/10.5194/tcd-7-3209-2013, 2013
Revised manuscript not accepted (discussion: closed, 4 comments)
27 Jun 2013
The Greenland ice sheet: modelling the surface mass balance from GCM output with a new statistical downscaling technique
M. Geyer, D. Salas Y Melia, E. Brun, and M. Dumont
The Cryosphere Discuss., 7, 3163–3207, https://doi.org/10.5194/tcd-7-3163-2013, https://doi.org/10.5194/tcd-7-3163-2013, 2013
Revised manuscript has not been submitted (discussion: closed, 4 comments)
18 Jun 2013
2001–2010 glacier changes in the Central Karakoram National Park: a contribution to evaluate the magnitude and rate of the "Karakoram anomaly"
U. Minora, D. Bocchiola, C. D'Agata, D. Maragno, C. Mayer, A. Lambrecht, B. Mosconi, E. Vuillermoz, A. Senese, C. Compostella, C. Smiraglia, and G. Diolaiuti
The Cryosphere Discuss., 7, 2891–2941, https://doi.org/10.5194/tcd-7-2891-2013, https://doi.org/10.5194/tcd-7-2891-2013, 2013
Revised manuscript not accepted (discussion: closed, 4 comments)
06 Jun 2013
Spatial debris-cover effect on the maritime glaciers of Mount Gongga, south-eastern Tibetan Plateau
Y. Zhang, Y. Hirabayashi, K. Fujita, S. Liu, and Q. Liu
The Cryosphere Discuss., 7, 2413–2453, https://doi.org/10.5194/tcd-7-2413-2013, https://doi.org/10.5194/tcd-7-2413-2013, 2013
Revised manuscript not accepted (discussion: closed, 6 comments)
31 May 2013
Evidence for spring mountain snowpack retreat from a Landsat-derived snow cover climate data record
C. J. Crawford
The Cryosphere Discuss., 7, 2089–2117, https://doi.org/10.5194/tcd-7-2089-2013, https://doi.org/10.5194/tcd-7-2089-2013, 2013
Revised manuscript not accepted (discussion: closed, 7 comments)
03 May 2013
Snow density retrieval using SAR data: algorithm validation and applications in part of North Western Himalaya
P. K. Thakur, R. D. Garg, S. P. Aggarwal, P. K. Garg, Snehmani, and J. Shi
The Cryosphere Discuss., 7, 1927–1960, https://doi.org/10.5194/tcd-7-1927-2013, https://doi.org/10.5194/tcd-7-1927-2013, 2013
Revised manuscript not accepted (discussion: closed, 4 comments)
03 Apr 2013
The snowdrift effect on snow deposition: insights from a comparison of a snow pit profile and meteorological observations
M. Ding, C. Xiao, R. Zhang, D. Qin, B. Jin, B. Sun, L. Bian, J. Ming, C. Li, A. Xie, W. Yang, and Y. Ma
The Cryosphere Discuss., 7, 1415–1439, https://doi.org/10.5194/tcd-7-1415-2013, https://doi.org/10.5194/tcd-7-1415-2013, 2013
Revised manuscript not accepted (discussion: closed, 10 comments)
03 Apr 2013
The effect of black carbon on reflectance of snow in the accumulation area of glaciers in the Baspa basin, Himachal Pradesh, India
A. V. Kulkarni, G. Vinay Kumar, H. S. Negi, J. Srinivasan, and S. K. Satheesh
The Cryosphere Discuss., 7, 1359–1382, https://doi.org/10.5194/tcd-7-1359-2013, https://doi.org/10.5194/tcd-7-1359-2013, 2013
Revised manuscript has not been submitted (discussion: closed, 4 comments)
12 Feb 2013
An inventory of glacier changes between 1973 and 2011 for the Geladandong Mountain area, China
J. Zhang, D. Braaten, X. Li, J. She, and F. Tao
The Cryosphere Discuss., 7, 507–531, https://doi.org/10.5194/tcd-7-507-2013, https://doi.org/10.5194/tcd-7-507-2013, 2013
Revised manuscript has not been submitted (discussion: closed, 8 comments)
08 Feb 2013
Characterizing supraglacial lake drainage and freezing on the Greenland Ice Sheet
N. Selmes, T. Murray, and T. D. James
The Cryosphere Discuss., 7, 475–505, https://doi.org/10.5194/tcd-7-475-2013, https://doi.org/10.5194/tcd-7-475-2013, 2013
Revised manuscript has not been submitted (discussion: closed, 6 comments)
22 Jan 2013
Radar stratigraphy connecting Lake Vostok and Dome C, East Antarctica, constrains the EPICA/DMC ice core time scale
M. G. P. Cavitte, D. D. Blankenship, D. A. Young, M. J. Siegert, and E. Le Meur
The Cryosphere Discuss., 7, 321–342, https://doi.org/10.5194/tcd-7-321-2013, https://doi.org/10.5194/tcd-7-321-2013, 2013
Revised manuscript not accepted (discussion: closed, 4 comments)
16 Jan 2013
North Atlantic warming and declining volume of arctic sea ice
V. A. Alexeev, V. V. Ivanov, R. Kwok, and L. H. Smedsrud
The Cryosphere Discuss., 7, 245–265, https://doi.org/10.5194/tcd-7-245-2013, https://doi.org/10.5194/tcd-7-245-2013, 2013
Revised manuscript not accepted (discussion: closed, 7 comments)
08 Jan 2013
Numerical simulations of Gurenhekou Glacier on the Tibetan Plateau using a full-Stokes ice dynamical model
L. Zhao, L. Tian, T. Zwinger, R. Ding, J. Zong, Q. Ye, and J. C. Moore
The Cryosphere Discuss., 7, 145–173, https://doi.org/10.5194/tcd-7-145-2013, https://doi.org/10.5194/tcd-7-145-2013, 2013
Revised manuscript not accepted (discussion: closed, 6 comments)
02 Jan 2013
Sensitivity of alpine glacial change detection and mass balance to sampling and datum inconsistencies
T. Goulden, C. Hopkinson, and M. N. Demuth
The Cryosphere Discuss., 7, 55–101, https://doi.org/10.5194/tcd-7-55-2013, https://doi.org/10.5194/tcd-7-55-2013, 2013
Revised manuscript not accepted (discussion: closed, 4 comments)
02 Jan 2013
Spatial and temporal variations of glacier extent across the Southern Patagonian Icefield since the 1970s
A. White and L. Copland
The Cryosphere Discuss., 7, 1–34, https://doi.org/10.5194/tcd-7-1-2013, https://doi.org/10.5194/tcd-7-1-2013, 2013
Revised manuscript not accepted (discussion: closed, 6 comments)
21 Dec 2012
Glacier volume estimation as an ill-posed boundary value problem
D. B. Bahr, W. T. Pfeffer, and G. Kaser
The Cryosphere Discuss., 6, 5405–5420, https://doi.org/10.5194/tcd-6-5405-2012, https://doi.org/10.5194/tcd-6-5405-2012, 2012
Revised manuscript not accepted (discussion: closed, 3 comments)
19 Dec 2012
The Arctic Sea ice in the CMIP3 climate model ensemble – variability and anthropogenic change
L. K. Behrens, T. Martin, V. A. Semenov, and M. Latif
The Cryosphere Discuss., 6, 5317–5344, https://doi.org/10.5194/tcd-6-5317-2012, https://doi.org/10.5194/tcd-6-5317-2012, 2012
Preprint withdrawn (discussion: closed, 3 comments)
27 Nov 2012
Increased glacier runoff enhances the penetration of warm Atlantic water into a large Greenland fjord
A. J. Sole, A. J. Payne, P. W. Nienow, P. Christoffersen, F. R. Cottier, and M. E. Inall
The Cryosphere Discuss., 6, 4861–4896, https://doi.org/10.5194/tcd-6-4861-2012, https://doi.org/10.5194/tcd-6-4861-2012, 2012
Revised manuscript not accepted (discussion: closed, 4 comments)
16 Oct 2012
Multi decadal glacier area fluctuations in Pan-Arctic
S. H. Mernild and J. K. Malmros
The Cryosphere Discuss., 6, 4417–4446, https://doi.org/10.5194/tcd-6-4417-2012, https://doi.org/10.5194/tcd-6-4417-2012, 2012
Revised manuscript has not been submitted (discussion: closed, 3 comments)
12 Oct 2012
Thinning and slowdown of Greenland's Mittivakkat Gletscher
S. H. Mernild, N. T. Knudsen, M. J. Hoffman, J. C. Yde, W. H. Lipscomb, E. Hanna, J. K. Malmros, and R. S. Fausto
The Cryosphere Discuss., 6, 4387–4415, https://doi.org/10.5194/tcd-6-4387-2012, https://doi.org/10.5194/tcd-6-4387-2012, 2012
Revised manuscript not accepted (discussion: closed, 4 comments)
01 Oct 2012
Inhomogeneous snow distribution and depletion patterns at grid scale in a shallow snowpack region
H. Li, J. Wang, Z. Tang, and J. Wang
The Cryosphere Discuss., 6, 4171–4203, https://doi.org/10.5194/tcd-6-4171-2012, https://doi.org/10.5194/tcd-6-4171-2012, 2012
Revised manuscript not accepted (discussion: closed, 4 comments)
27 Sep 2012
Changes in seasonal snow liquid water content during the snowmelt period in the Western Tianshan Mountains, China
H. Lu, W. S. Wei, M. Z. Liu, X. Han, and W. Hong
The Cryosphere Discuss., 6, 4137–4169, https://doi.org/10.5194/tcd-6-4137-2012, https://doi.org/10.5194/tcd-6-4137-2012, 2012
Revised manuscript not accepted (discussion: closed, 4 comments)
26 Sep 2012
Mechanical effect of mélange-induced buttressing on embayment-terminating glacier dynamics
D. Seneca Lindsey and T. K. Dupont
The Cryosphere Discuss., 6, 4123–4136, https://doi.org/10.5194/tcd-6-4123-2012, https://doi.org/10.5194/tcd-6-4123-2012, 2012
Revised manuscript has not been submitted (discussion: closed, 8 comments)
24 Sep 2012
Surface deformation detected by the space-observed small baseline SAR interferometry over permafrost environment in Tibet Plateau, China
F. Chen and H. Lin
The Cryosphere Discuss., 6, 4071–4099, https://doi.org/10.5194/tcd-6-4071-2012, https://doi.org/10.5194/tcd-6-4071-2012, 2012
Revised manuscript not accepted (discussion: closed, 4 comments)
23 Aug 2012
Projecting Antarctic ice discharge using response functions from SeaRISE ice-sheet models
A. Levermann, R. Winkelmann, S. Nowicki, J. L. Fastook, K. Frieler, R. Greve, H. H. Hellmer, M. A. Martin, M. Mengel, A. J. Payne, D. Pollard, T. Sato, R. Timmermann, W. L. Wang, and R. A. Bindschadler
The Cryosphere Discuss., 6, 3447–3489, https://doi.org/10.5194/tcd-6-3447-2012, https://doi.org/10.5194/tcd-6-3447-2012, 2012
Revised manuscript not accepted (discussion: closed, 4 comments)
06 Aug 2012
The recent retreat of Mexican glaciers on Citlaltépetl Volcano detected using ASTER data
J. Cortés-Ramos and H. Delgado-Granados
The Cryosphere Discuss., 6, 3149–3176, https://doi.org/10.5194/tcd-6-3149-2012, https://doi.org/10.5194/tcd-6-3149-2012, 2012
Revised manuscript not accepted (discussion: closed, 4 comments)
23 Jul 2012
A computationally efficient model for the Greenland ice sheet
J. Haqq-Misra, P. Applegate, B. Tuttle, R. Nicholas, and K. Keller
The Cryosphere Discuss., 6, 2751–2788, https://doi.org/10.5194/tcd-6-2751-2012, https://doi.org/10.5194/tcd-6-2751-2012, 2012
Revised manuscript not accepted (discussion: closed, 7 comments)
01 Jun 2012
Recession, thinning, and slowdown of Greenland's Mittivakkat Gletscher
S. H. Mernild, N. T. Knudsen, J. C. Yde, M. J. Hoffman, W. H. Lipscomb, R. S. Fausto, E. Hanna, and J. K. Malmros
The Cryosphere Discuss., 6, 2005–2036, https://doi.org/10.5194/tcd-6-2005-2012, https://doi.org/10.5194/tcd-6-2005-2012, 2012
Preprint withdrawn (discussion: closed, 7 comments)
26 Mar 2012
Formation and metamorphism of stratified firn at sites located under spatial variations of accumulation rate and wind speed on the East Antarctic ice divide near Dome Fuji
S. Fujita, H. Enomoto, K. Fukui, Y. Iizuka, H. Motoyama, F. Nakazawa, S. Sugiyama, and S. Surdyk
The Cryosphere Discuss., 6, 1205–1267, https://doi.org/10.5194/tcd-6-1205-2012, https://doi.org/10.5194/tcd-6-1205-2012, 2012
Revised manuscript not accepted (discussion: closed, 5 comments)
17 Feb 2012
Longer spring snowmelt: spatial and temporal variations of snowmelt trends detected by passive microwave from 1988 to 2010 in the Yukon River Basin
K. A. Semmens and J. M. Ramage
The Cryosphere Discuss., 6, 715–735, https://doi.org/10.5194/tcd-6-715-2012, https://doi.org/10.5194/tcd-6-715-2012, 2012
Revised manuscript not accepted (discussion: closed, 6 comments)
14 Feb 2012
Uncertainty in future solid ice discharge from Antarctica
R. Winkelmann, A. Levermann, K. Frieler, and M. A. Martin
The Cryosphere Discuss., 6, 673–714, https://doi.org/10.5194/tcd-6-673-2012, https://doi.org/10.5194/tcd-6-673-2012, 2012
Revised manuscript has not been submitted (discussion: closed, 2 comments)
03 Feb 2012
Quantification of ikaite in Antarctic sea ice
M. Fischer, D. N. Thomas, A. Krell, G. Nehrke, J. Göttlicher, L. Norman, C. Riaux-Gobin, and G. S. Dieckmann
The Cryosphere Discuss., 6, 505–530, https://doi.org/10.5194/tcd-6-505-2012, https://doi.org/10.5194/tcd-6-505-2012, 2012
Revised manuscript not accepted (discussion: closed, 3 comments)
21 Dec 2011
Glacier ice in rock glaciers: a case study in the Vanoise Massif, Northern French Alps
S. Monnier, C. Camerlynck, F. Rejiba, C. Kinnard, and P.-Y. Galibert
The Cryosphere Discuss., 5, 3597–3626, https://doi.org/10.5194/tcd-5-3597-2011, https://doi.org/10.5194/tcd-5-3597-2011, 2011
Revised manuscript has not been submitted (discussion: closed, 7 comments)
05 Dec 2011
Optimisation of quasi-3D electrical resistivity imaging – application and inversion for investigating heterogeneous mountain permafrost
D. Schwindt and C. Kneisel
The Cryosphere Discuss., 5, 3383–3421, https://doi.org/10.5194/tcd-5-3383-2011, https://doi.org/10.5194/tcd-5-3383-2011, 2011
Revised manuscript has not been submitted (discussion: closed, 4 comments)
03 Dec 2011
Recent acceleration of ice loss in the Northern Patagonia Icefield based on an updated decennial evolution
P. López and G. Casassa
The Cryosphere Discuss., 5, 3323–3381, https://doi.org/10.5194/tcd-5-3323-2011, https://doi.org/10.5194/tcd-5-3323-2011, 2011
Revised manuscript has not been submitted (discussion: closed, 7 comments)
26 Oct 2011
Transfer function models to quantify the delay between air and ground temperatures in thawed active layers
E. Zenklusen Mutter, J. Blanchet, and M. Phillips
The Cryosphere Discuss., 5, 2935–2966, https://doi.org/10.5194/tcd-5-2935-2011, https://doi.org/10.5194/tcd-5-2935-2011, 2011
Revised manuscript not accepted (discussion: closed, 4 comments)
19 Oct 2011
Ice shelf flexures modeled with a 2-D elastic flow line model
Y. V. Konovalov
The Cryosphere Discuss., 5, 2841–2863, https://doi.org/10.5194/tcd-5-2841-2011, https://doi.org/10.5194/tcd-5-2841-2011, 2011
Revised manuscript has not been submitted (discussion: closed, 3 comments)
28 Sep 2011
Brief communication "Modeled rain on snow in CLM3 warms soil under thick snow cover and cools it under thin"
J. Putkonen, H. P. Jacobson, and K. Rennert
The Cryosphere Discuss., 5, 2557–2570, https://doi.org/10.5194/tcd-5-2557-2011, https://doi.org/10.5194/tcd-5-2557-2011, 2011
Preprint withdrawn (discussion: closed, 5 comments)
26 Sep 2011
A multi-parameter hydrochemical characterization of proglacial runoff, Cordillera Blanca, Peru
P. Burns, B. Mark, and J. McKenzie
The Cryosphere Discuss., 5, 2483–2521, https://doi.org/10.5194/tcd-5-2483-2011, https://doi.org/10.5194/tcd-5-2483-2011, 2011
Preprint withdrawn (discussion: closed, 3 comments)
21 Sep 2011
An Antarctic monitoring initiative for fast ice and comparison with the Arctic
P. Heil, S. Gerland, and M. A. Granskog
The Cryosphere Discuss., 5, 2437–2463, https://doi.org/10.5194/tcd-5-2437-2011, https://doi.org/10.5194/tcd-5-2437-2011, 2011
Revised manuscript has not been submitted (discussion: closed, 2 comments)
22 Jun 2011
Brief communication "Snow profile associated measurements (SPAM) – a new instrument for quick snow profile measurements"
P. Lahtinen
The Cryosphere Discuss., 5, 1737–1748, https://doi.org/10.5194/tcd-5-1737-2011, https://doi.org/10.5194/tcd-5-1737-2011, 2011
Revised manuscript not accepted (discussion: closed, 4 comments)
21 Apr 2011
Application of asymptotic radiative transfer theory for the retrievals of snow parameters using reflection and transmission observations
H. S. Negi, A. Kokhanovsky, and D. K. Perovich
The Cryosphere Discuss., 5, 1239–1262, https://doi.org/10.5194/tcd-5-1239-2011, https://doi.org/10.5194/tcd-5-1239-2011, 2011
Preprint withdrawn (discussion: closed, 8 comments)
11 Mar 2011
Modelling the temperature evolution of permafrost and seasonal frost in southern Norway during the 20th and 21st century
T. Hipp, B. Etzelmüller, H. Farbrot, and T. V. Schuler
The Cryosphere Discuss., 5, 811–854, https://doi.org/10.5194/tcd-5-811-2011, https://doi.org/10.5194/tcd-5-811-2011, 2011
Revised manuscript not accepted (discussion: closed, 6 comments)
02 Mar 2011
Changes in seasonal snow cover in Hindu Kush-Himalayan region
D. R. Gurung, A. V. Kulkarni, A. Giriraj, K. S. Aung, B. Shrestha, and J. Srinivasan
The Cryosphere Discuss., 5, 755–777, https://doi.org/10.5194/tcd-5-755-2011, https://doi.org/10.5194/tcd-5-755-2011, 2011
Revised manuscript has not been submitted (discussion: closed, 3 comments)
25 Feb 2011
Glacier changes on Sierra Velluda massif, Chile (37° S): mountain glaciers of an intensively-used mid-latitude landscape
A. Fernández, A. Santana, E. Jaque, C. Martínez, and R. Sáez
The Cryosphere Discuss., 5, 685–720, https://doi.org/10.5194/tcd-5-685-2011, https://doi.org/10.5194/tcd-5-685-2011, 2011
Revised manuscript not accepted (discussion: closed, 6 comments)
14 Feb 2011
Comparison of direct and geodetic mass balances on an annual time scale
A. Fischer, H. Schneider, G. Merkel, and R. Sailer
The Cryosphere Discuss., 5, 565–604, https://doi.org/10.5194/tcd-5-565-2011, https://doi.org/10.5194/tcd-5-565-2011, 2011
Revised manuscript not accepted (discussion: closed, 4 comments)
01 Feb 2011
Glacial debris cover and melt water production for glaciers in the Altay, Russia
C. Mayer, A. Lambrecht, W. Hagg, and Y. Narozhny
The Cryosphere Discuss., 5, 401–430, https://doi.org/10.5194/tcd-5-401-2011, https://doi.org/10.5194/tcd-5-401-2011, 2011
Revised manuscript has not been submitted (discussion: closed, 4 comments)
31 Jan 2011
Modelling the spatial pattern of ground thaw in a small basin in the arctic tundra
S. Endrizzi, W. L. Quinton, and P. Marsh
The Cryosphere Discuss., 5, 367–400, https://doi.org/10.5194/tcd-5-367-2011, https://doi.org/10.5194/tcd-5-367-2011, 2011
Revised manuscript has not been submitted (discussion: closed, 3 comments)
28 Jan 2011
Geophysical evidence for soft bed sliding at Jakobshavn Isbrae, West Greenland
A. E. Block and R. E. Bell
The Cryosphere Discuss., 5, 339–366, https://doi.org/10.5194/tcd-5-339-2011, https://doi.org/10.5194/tcd-5-339-2011, 2011
Revised manuscript has not been submitted (discussion: closed, 5 comments)
18 Jan 2011
Petermann Glacier, North Greenland: massive calving in 2010 and the past half century
O. M. Johannessen, M. Babiker, and M. W. Miles
The Cryosphere Discuss., 5, 169–181, https://doi.org/10.5194/tcd-5-169-2011, https://doi.org/10.5194/tcd-5-169-2011, 2011
Revised manuscript not accepted (discussion: closed, 7 comments)
07 Jan 2011
A model study of the energy and mass balance of Chhota Shigri glacier in the Western Himalaya, India
F. Pithan
The Cryosphere Discuss., 5, 95–129, https://doi.org/10.5194/tcd-5-95-2011, https://doi.org/10.5194/tcd-5-95-2011, 2011
Preprint withdrawn (discussion: closed, 7 comments)
07 Jan 2011
Snow characteristics, distribution and disappearance in a subtropical volcano (Teide, Canary Islands)
R. Martín Moreno
The Cryosphere Discuss., 5, 75–93, https://doi.org/10.5194/tcd-5-75-2011, https://doi.org/10.5194/tcd-5-75-2011, 2011
Revised manuscript has not been submitted (discussion: closed, 3 comments)
07 Jan 2011
Velocity structure, front position changes and calving of the tidewater glacier Kronebreen, Svalbard
M. Sund, T. Eiken, and C. Rolstad Denby
The Cryosphere Discuss., 5, 41–73, https://doi.org/10.5194/tcd-5-41-2011, https://doi.org/10.5194/tcd-5-41-2011, 2011
Revised manuscript not accepted (discussion: closed, 4 comments)
20 Dec 2010
Reply to the Comment of Leclercq et al. on "100-year mass changes in the Swiss Alps linked to the Atlantic Multidecadal Oscillation"
M. Huss, R. Hock, A. Bauder, and M. Funk
The Cryosphere Discuss., 4, 2587–2592, https://doi.org/10.5194/tcd-4-2587-2010, https://doi.org/10.5194/tcd-4-2587-2010, 2010
Revised manuscript not accepted (discussion: closed, 3 comments)
17 Nov 2010
Comment on "100-year mass changes in the Swiss Alps linked to the Atlantic Multidecadal Oscillation" by Matthias Huss et al. (2010)
P. W. Leclercq, R. S. W. van de Wal, and J. Oerlemans
The Cryosphere Discuss., 4, 2475–2481, https://doi.org/10.5194/tcd-4-2475-2010, https://doi.org/10.5194/tcd-4-2475-2010, 2010
Revised manuscript has not been submitted (discussion: closed, 4 comments)
12 Nov 2010
Photogrammetric determination of spatio-temporal velocity fields at Glaciar San Rafael in the Northern Patagonian Icefield
H.-G. Maas, G. Casassa, D. Schneider, E. Schwalbe, and A. Wendt
The Cryosphere Discuss., 4, 2415–2432, https://doi.org/10.5194/tcd-4-2415-2010, https://doi.org/10.5194/tcd-4-2415-2010, 2010
Preprint withdrawn (discussion: closed, 3 comments)
25 Oct 2010
Present and LGM permafrost from climate simulations: contribution of statistical downscaling
G. Levavasseur, M. Vrac, D. M. Roche, D. Paillard, A. Martin, and J. Vandenberghe
The Cryosphere Discuss., 4, 2233–2275, https://doi.org/10.5194/tcd-4-2233-2010, https://doi.org/10.5194/tcd-4-2233-2010, 2010
Revised manuscript not accepted (discussion: closed, 8 comments)
10 Sep 2010
Do crustal deformations observed by GPS in Tierra del Fuego (Argentina) reflect glacial-isostatic adjustment?
L. Mendoza, A. Richter, J. L. Hormaechea, R. Perdomo, D. Del Cogliano, R. Dietrich, and M. Fritsche
The Cryosphere Discuss., 4, 1635–1645, https://doi.org/10.5194/tcd-4-1635-2010, https://doi.org/10.5194/tcd-4-1635-2010, 2010
Revised manuscript has not been submitted (discussion: closed, 4 comments)
25 Aug 2010
Interplay between linear, dissipative and permanently critical mechanical processes in Arctic sea ice
A. Chmel, V. Smirnov, and A. Panov
The Cryosphere Discuss., 4, 1433–1448, https://doi.org/10.5194/tcd-4-1433-2010, https://doi.org/10.5194/tcd-4-1433-2010, 2010
Revised manuscript not accepted (discussion: closed, 4 comments)
01 Apr 2010
The role of glaciers in stream flow from the Nepal Himalaya
D. Alford and R. Armstrong
The Cryosphere Discuss., 4, 469–494, https://doi.org/10.5194/tcd-4-469-2010, https://doi.org/10.5194/tcd-4-469-2010, 2010
Revised manuscript has not been submitted (discussion: closed, 11 comments)
03 Mar 2010
Degree-day modelling of the surface mass balance of Urumqi Glacier No. 1, Tian Shan, China
E. Huintjes, H. Li, T. Sauter, Z. Li, and C. Schneider
The Cryosphere Discuss., 4, 207–232, https://doi.org/10.5194/tcd-4-207-2010, https://doi.org/10.5194/tcd-4-207-2010, 2010
Revised manuscript has not been submitted (discussion: closed, 6 comments)
02 Dec 2009
Surface melt magnitude retrieval over Ross Ice Shelf, Antarctica using coupled MODIS near-IR and thermal satellite measurements
D. J. Lampkin and C. C. Karmosky
The Cryosphere Discuss., 3, 1069–1107, https://doi.org/10.5194/tcd-3-1069-2009, https://doi.org/10.5194/tcd-3-1069-2009, 2009
Revised manuscript has not been submitted (discussion: closed, 5 comments)
30 Oct 2009
Quasi-3-D resistivity imaging – mapping of heterogeneous frozen ground conditions using electrical resistivity tomography
C. Kneisel, A. Bast, and D. Schwindt
The Cryosphere Discuss., 3, 895–918, https://doi.org/10.5194/tcd-3-895-2009, https://doi.org/10.5194/tcd-3-895-2009, 2009
Preprint withdrawn (discussion: closed, 5 comments)
17 Sep 2009
A comparison of different methods of evaluating glacier response characteristics: application to glacier AX010, Nepal Himalaya
S. Adhikari, S. J. Marshall, and P. Huybrechts
The Cryosphere Discuss., 3, 765–804, https://doi.org/10.5194/tcd-3-765-2009, https://doi.org/10.5194/tcd-3-765-2009, 2009
Revised manuscript has not been submitted (discussion: closed, 6 comments)
21 Jul 2009
Simulation of the satellite radar altimeter sea ice thickness retrieval uncertainty
R. T. Tonboe, L. T. Pedersen, and C. Haas
The Cryosphere Discuss., 3, 513–559, https://doi.org/10.5194/tcd-3-513-2009, https://doi.org/10.5194/tcd-3-513-2009, 2009
Revised manuscript has not been submitted (discussion: closed, 4 comments)
26 Jan 2009
Climatology and ablation at the South Greenland ice sheet margin from automatic weather station observations
D. van As, C. E. Bøggild, S. Nielsen, A. P. Ahlstrøm, R. S. Fausto, S. Podlech, and M. L. Andersen
The Cryosphere Discuss., 3, 117–158, https://doi.org/10.5194/tcd-3-117-2009, https://doi.org/10.5194/tcd-3-117-2009, 2009
Revised manuscript has not been submitted (discussion: closed, 7 comments)
22 Jan 2009
The Gregoriev Ice Cap evolution according to the 2-D ice flowline model for various climatic scenarios in the future
Y. V. Konovalov and O. V. Nagornov
The Cryosphere Discuss., 3, 77–115, https://doi.org/10.5194/tcd-3-77-2009, https://doi.org/10.5194/tcd-3-77-2009, 2009
Revised manuscript not accepted (discussion: closed, 3 comments)
03 Nov 2008
Comparison of airborne radar altimeter and ground-based Ku-band radar measurements on the ice cap Austfonna, Svalbard
O. Brandt, R. L. Hawley, J. Kohler, J. O. Hagen, E. M. Morris, T. Dunse, J. B. T. Scott, and T. Eiken
The Cryosphere Discuss., 2, 777–810, https://doi.org/10.5194/tcd-2-777-2008, https://doi.org/10.5194/tcd-2-777-2008, 2008
Revised manuscript has not been submitted (discussion: closed, 6 comments)
28 Oct 2008
Model resolution influence on simulated sea ice decline
J. O. Sewall
The Cryosphere Discuss., 2, 759–776, https://doi.org/10.5194/tcd-2-759-2008, https://doi.org/10.5194/tcd-2-759-2008, 2008
Revised manuscript has not been submitted (discussion: closed, 4 comments)
14 Jul 2008
Applicability of the Shallow Ice Approximation inferred from model inter-comparison using various glacier geometries
M. Schäfer, O. Gagliardini, F. Pattyn, and E. Le Meur
The Cryosphere Discuss., 2, 557–599, https://doi.org/10.5194/tcd-2-557-2008, https://doi.org/10.5194/tcd-2-557-2008, 2008
Revised manuscript not accepted (discussion: closed, 6 comments)
29 May 2008
Lessons from the short history of ice sheet model intercomparison
E. Bueler
The Cryosphere Discuss., 2, 399–412, https://doi.org/10.5194/tcd-2-399-2008, https://doi.org/10.5194/tcd-2-399-2008, 2008
Revised manuscript has not been submitted (discussion: closed, 3 comments)
07 Jan 2008
Mountain glaciers of NE Asia in the near future: a projection based on climate-glacier systems' interaction
M. D. Ananicheva, A. N. Krenke, and E. Hanna
The Cryosphere Discuss., 2, 1–21, https://doi.org/10.5194/tcd-2-1-2008, https://doi.org/10.5194/tcd-2-1-2008, 2008
Revised manuscript not accepted (discussion: closed, 5 comments)
10 Sep 2007
High-resolution simulations of the surface mass balance of Greenland at the end of this century
G. Krinner and N. Julien
The Cryosphere Discuss., 1, 351–383, https://doi.org/10.5194/tcd-1-351-2007, https://doi.org/10.5194/tcd-1-351-2007, 2007
Revised manuscript has not been submitted (discussion: closed, 3 comments)
20 Jun 2007
The effect of the north-east ice stream on the Greenland ice sheet in changing climates
R. Greve and S. Otsu
The Cryosphere Discuss., 1, 41–76, https://doi.org/10.5194/tcd-1-41-2007, https://doi.org/10.5194/tcd-1-41-2007, 2007
Revised manuscript has not been submitted (discussion: closed, 7 comments)