Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 4.713
IF4.713
IF 5-year value: 4.927
IF 5-year
4.927
CiteScore value: 8.0
CiteScore
8.0
SNIP value: 1.425
SNIP1.425
IPP value: 4.65
IPP4.65
SJR value: 2.353
SJR2.353
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 53
h5-index53
Preprints
https://doi.org/10.5194/tc-2020-276
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-2020-276
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

  28 Oct 2020

28 Oct 2020

Review status
This preprint is currently under review for the journal TC.

Significant water vapor fluxes from the Greenland Ice Sheet detected through water vapor isotopic (δ18O, δD, deuterium excess) measurements

Ben G. Kopec1, Pete D. Akers2, Eric S. Klein3, and Jeffery M. Welker1,4 Ben G. Kopec et al.
  • 1Department of Biological Sciences, University of Alaska Anchorage, Anchorage, 99508, AK, USA
  • 2Institut des Géosciences et l’Environnement, CNRS, Saint Martin d’Hères, 38400, France
  • 3Department of Geological Sciences, University of Alaska Anchorage, Anchorage, 99508, AK, USA
  • 4Ecology and Genetics Research Unit, University of Oulu, Oulu, 90014, Finland, and University of the Arctic-UArctic

Abstract. The summer of 2019 was marked by an extensive early onset of surface melt and record volume losses of the Greenland Ice Sheet (GrIS), which is part of a larger trend of increasing melt over time. Given the growing spatial extent of melt, the flux of water vapor from the ice to the atmosphere is becoming an increasingly important component of the GrIS mass balance that merits investigation and quantification. We examine the isotopic composition of water vapor from Thule Air Base, NW Greenland, particularly the deuterium excess (d-excess), to quantify the magnitude of GrIS vapor fluxes. To do this, we observe only water vapor transported off the ice sheet (i.e., when easterly winds occur) and during the active melt season. We find that the GrIS-derived water vapor d-excess values are controlled by two main factors: 1) the d-excess of the sublimating vapor, which is determined, in part, by the relative humidity and wind speed above the ice sheet, and 2) the proportion of sublimation- vs. marine-sourced moisture. Here, the GrIS melt extent serves as a proxy for the sublimation source and the North Atlantic Oscillation provides a measure of the meridional transport of marine moisture. We demonstrate that sublimation contributes ~20 % of the water vapor transported from the GrIS during the melt season. Sublimation is thus an important component of GrIS mass balance and the regional hydrologic cycle, and this flux will become more important in the coming years as further warming continues GrIS negative mass balance trends.

Ben G. Kopec et al.

Interactive discussion

Status: open (until 30 Dec 2020)
Status: open (until 30 Dec 2020)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement

Ben G. Kopec et al.

Data sets

Thule, Greenland, 10 minute water vapor isotopes (δ18O, δD, d-excess), August 2017 - August 2019 Pete D. Akers, Jeffrey M. Welker, and Ben G. Kopec https://doi.org/10.18739/A21J9779S

PROMICE automatic weather station data Geological Survey of Denmark and Greenland https://doi.org/10.22008/promice/data/aws

MEaSUREs Greenland Surface Melt Daily 25km EASE-Grid 2.0, Version 1 Thomas Mote https://doi.org/10.5067/MEASURES/CRYOSPHERE/nsidc-0533.001

Ben G. Kopec et al.

Viewed

Total article views: 233 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
170 60 3 233 19 3 4
  • HTML: 170
  • PDF: 60
  • XML: 3
  • Total: 233
  • Supplement: 19
  • BibTeX: 3
  • EndNote: 4
Views and downloads (calculated since 28 Oct 2020)
Cumulative views and downloads (calculated since 28 Oct 2020)

Viewed (geographical distribution)

Total article views: 196 (including HTML, PDF, and XML) Thereof 193 with geography defined and 3 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved

No saved metrics found.

Discussed

No discussed metrics found.
Latest update: 25 Nov 2020
Publications Copernicus
Download
Short summary
Significant mass loss to the Greenland Ice Sheet has occurred over recent decades, marked by a record summer melt season in 2019. Water vapor fluxes from the ice sheet surface, including sublimation and meltwater evaporation, are a growing component of the mass balance. Using water vapor isotope measurements in northwest Greenland, we identify the signal of these fluxes and show how they correspond with melt extent. These vapor fluxes contribute ~20 % of water vapor advected off the ice sheet.
Significant mass loss to the Greenland Ice Sheet has occurred over recent decades, marked by a...
Citation