Articles | Volume 12, issue 7
The Cryosphere, 12, 2229–2248, 2018
https://doi.org/10.5194/tc-12-2229-2018
The Cryosphere, 12, 2229–2248, 2018
https://doi.org/10.5194/tc-12-2229-2018

Research article 11 Jul 2018

Research article | 11 Jul 2018

A Bayesian hierarchical model for glacial dynamics based on the shallow ice approximation and its evaluation using analytical solutions

Giri Gopalan et al.

Related authors

Development of a subglacial lake monitored with radio-echo sounding: case study from the eastern Skaftá cauldron in the Vatnajökull ice cap, Iceland
Eyjólfur Magnússon, Finnur Pálsson, Magnús T. Gudmundsson, Thórdís Högnadóttir, Cristian Rossi, Thorsteinn Thorsteinsson, Benedikt G. Ófeigsson, Erik Sturkell, and Tómas Jóhannesson
The Cryosphere, 15, 3731–3749, https://doi.org/10.5194/tc-15-3731-2021,https://doi.org/10.5194/tc-15-3731-2021, 2021
Short summary
Annual and inter-annual variability and trends of albedo of Icelandic glaciers
Andri Gunnarsson, Sigurdur M. Gardarsson, Finnur Pálsson, Tómas Jóhannesson, and Óli G. B. Sveinsson
The Cryosphere, 15, 547–570, https://doi.org/10.5194/tc-15-547-2021,https://doi.org/10.5194/tc-15-547-2021, 2021
Short summary
Inequality-constrained free-surface evolution in a full Stokes ice flow model (evolve_glacier v1.1)
Anna Wirbel and Alexander Helmut Jarosch
Geosci. Model Dev., 13, 6425–6445, https://doi.org/10.5194/gmd-13-6425-2020,https://doi.org/10.5194/gmd-13-6425-2020, 2020
Short summary
Future evolution and uncertainty of river flow regime change in a deglaciating river basin
Jonathan D. Mackay, Nicholas E. Barrand, David M. Hannah, Stefan Krause, Christopher R. Jackson, Jez Everest, Guðfinna Aðalgeirsdóttir, and Andrew R. Black
Hydrol. Earth Syst. Sci., 23, 1833–1865, https://doi.org/10.5194/hess-23-1833-2019,https://doi.org/10.5194/hess-23-1833-2019, 2019
Short summary
The Open Global Glacier Model (OGGM) v1.1
Fabien Maussion, Anton Butenko, Nicolas Champollion, Matthias Dusch, Julia Eis, Kévin Fourteau, Philipp Gregor, Alexander H. Jarosch, Johannes Landmann, Felix Oesterle, Beatriz Recinos, Timo Rothenpieler, Anouk Vlug, Christian T. Wild, and Ben Marzeion
Geosci. Model Dev., 12, 909–931, https://doi.org/10.5194/gmd-12-909-2019,https://doi.org/10.5194/gmd-12-909-2019, 2019
Short summary

Related subject area

Discipline: Ice sheets | Subject: Numerical Modelling
Marine ice sheet experiments with the Community Ice Sheet Model
Gunter R. Leguy, William H. Lipscomb, and Xylar S. Asay-Davis
The Cryosphere, 15, 3229–3253, https://doi.org/10.5194/tc-15-3229-2021,https://doi.org/10.5194/tc-15-3229-2021, 2021
Short summary
The transferability of adjoint inversion products between different ice flow models
Jowan M. Barnes, Thiago Dias dos Santos, Daniel Goldberg, G. Hilmar Gudmundsson, Mathieu Morlighem, and Jan De Rydt
The Cryosphere, 15, 1975–2000, https://doi.org/10.5194/tc-15-1975-2021,https://doi.org/10.5194/tc-15-1975-2021, 2021
Short summary
Inferring the basal sliding coefficient field for the Stokes ice sheet model under rheological uncertainty
Olalekan Babaniyi, Ruanui Nicholson, Umberto Villa, and Noémi Petra
The Cryosphere, 15, 1731–1750, https://doi.org/10.5194/tc-15-1731-2021,https://doi.org/10.5194/tc-15-1731-2021, 2021
Short summary
The tipping points and early warning indicators for Pine Island Glacier, West Antarctica
Sebastian H. R. Rosier, Ronja Reese, Jonathan F. Donges, Jan De Rydt, G. Hilmar Gudmundsson, and Ricarda Winkelmann
The Cryosphere, 15, 1501–1516, https://doi.org/10.5194/tc-15-1501-2021,https://doi.org/10.5194/tc-15-1501-2021, 2021
Short summary
Sensitivity of ice sheet surface velocity and elevation to variations in basal friction and topography in the full Stokes and shallow-shelf approximation frameworks using adjoint equations
Gong Cheng, Nina Kirchner, and Per Lötstedt
The Cryosphere, 15, 715–742, https://doi.org/10.5194/tc-15-715-2021,https://doi.org/10.5194/tc-15-715-2021, 2021
Short summary

Cited articles

Berliner, L. M.: Hierarchical Bayesian Time Series Models, in: Maximum Entropy and Bayesian Methods, edited by: Hanson, K. M. and Silver, R. N., Springer Netherlands, Dordrecht, 15–22, 1996. a
Berliner, L. M.: Physical-statistical modeling in geophysics, J. Geophys. Res.-Atmos., 108, 8776, https://doi.org/10.1029/2002JD002865, 2003. a, b
Berliner, L. M., Jezek, K., Cressie, N., Kim, Y., Lam, C. Q., and van der Veen, C. J.: Modeling dynamic controls on ice streams: a Bayesian statistical approach, J. Glaciol., 54, 705–714, https://doi.org/10.3189/002214308786570917, 2008. a
Brinkerhoff, D. J., Aschwanden, A., and Truffer, M.: Bayesian Inference of Subglacial Topography Using Mass Conservation, Front. Earth Sci., 4, 8, https://doi.org/10.3389/feart.2016.00008, 2016. a
Brynjarsdóttir, J. and O'Hagan, A.: Learning about physical parameters: the importance of model discrepancy, Inverse Probl., 30, 114007, https://doi.org/10.1088/0266-5611/30/11/114007, 2014. a, b, c
Download
Short summary
Geophysical systems can often contain scientific parameters whose values are uncertain, complex underlying dynamics, and field measurements with errors. These components are naturally modeled together within what is known as a Bayesian hierarchical model (BHM). This paper constructs such a model for shallow glaciers based on an approximation of the underlying dynamics. The evaluation of this model is aided by the use of exact analytical solutions from the literature.