Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 4.713
IF4.713
IF 5-year value: 4.927
IF 5-year
4.927
CiteScore value: 8.0
CiteScore
8.0
SNIP value: 1.425
SNIP1.425
IPP value: 4.65
IPP4.65
SJR value: 2.353
SJR2.353
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 53
h5-index53
TC | Articles | Volume 12, issue 7
The Cryosphere, 12, 2229–2248, 2018
https://doi.org/10.5194/tc-12-2229-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
The Cryosphere, 12, 2229–2248, 2018
https://doi.org/10.5194/tc-12-2229-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 11 Jul 2018

Research article | 11 Jul 2018

A Bayesian hierarchical model for glacial dynamics based on the shallow ice approximation and its evaluation using analytical solutions

Giri Gopalan et al.

Related authors

Free–Surface Flow as a Variational Inequality (evolve_glacier v1.1): Numerical Aspects of a Glaciological Application
Anna Wirbel and Alexander Helmut Jarosch
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-58,https://doi.org/10.5194/gmd-2020-58, 2020
Preprint under review for GMD
Short summary
Annual and interannual variability and trends of albedo for Icelandic glaciers
Andri Gunnarsson, Sigurdur M. Gardarsson, Finnur Pálsson, Tómas Jóhannesson, and Óli G. B. Sveinsson
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-328,https://doi.org/10.5194/tc-2019-328, 2020
Preprint under review for TC
Short summary
Future evolution and uncertainty of river flow regime change in a deglaciating river basin
Jonathan D. Mackay, Nicholas E. Barrand, David M. Hannah, Stefan Krause, Christopher R. Jackson, Jez Everest, Guðfinna Aðalgeirsdóttir, and Andrew R. Black
Hydrol. Earth Syst. Sci., 23, 1833–1865, https://doi.org/10.5194/hess-23-1833-2019,https://doi.org/10.5194/hess-23-1833-2019, 2019
Short summary
The Open Global Glacier Model (OGGM) v1.1
Fabien Maussion, Anton Butenko, Nicolas Champollion, Matthias Dusch, Julia Eis, Kévin Fourteau, Philipp Gregor, Alexander H. Jarosch, Johannes Landmann, Felix Oesterle, Beatriz Recinos, Timo Rothenpieler, Anouk Vlug, Christian T. Wild, and Ben Marzeion
Geosci. Model Dev., 12, 909–931, https://doi.org/10.5194/gmd-12-909-2019,https://doi.org/10.5194/gmd-12-909-2019, 2019
Short summary
Glacio-hydrological melt and run-off modelling: application of a limits of acceptability framework for model comparison and selection
Jonathan D. Mackay, Nicholas E. Barrand, David M. Hannah, Stefan Krause, Christopher R. Jackson, Jez Everest, and Guðfinna Aðalgeirsdóttir
The Cryosphere, 12, 2175–2210, https://doi.org/10.5194/tc-12-2175-2018,https://doi.org/10.5194/tc-12-2175-2018, 2018
Short summary

Related subject area

Discipline: Ice sheets | Subject: Numerical Modelling
Bayesian calibration of firn densification models
Vincent Verjans, Amber A. Leeson, Christopher Nemeth, C. Max Stevens, Peter Kuipers Munneke, Brice Noël, and Jan Melchior van Wessem
The Cryosphere, 14, 3017–3032, https://doi.org/10.5194/tc-14-3017-2020,https://doi.org/10.5194/tc-14-3017-2020, 2020
Short summary
A kinematic formalism for tracking ice–ocean mass exchange on the Earth's surface and estimating sea-level change
Surendra Adhikari, Erik R. Ivins, Eric Larour, Lambert Caron, and Helene Seroussi
The Cryosphere, 14, 2819–2833, https://doi.org/10.5194/tc-14-2819-2020,https://doi.org/10.5194/tc-14-2819-2020, 2020
Short summary
Results of the third Marine Ice Sheet Model Intercomparison Project (MISMIP+)
Stephen L. Cornford, Helene Seroussi, Xylar S. Asay-Davis, G. Hilmar Gudmundsson, Rob Arthern, Chris Borstad, Julia Christmann, Thiago Dias dos Santos, Johannes Feldmann, Daniel Goldberg, Matthew J. Hoffman, Angelika Humbert, Thomas Kleiner, Gunter Leguy, William H. Lipscomb, Nacho Merino, Gaël Durand, Mathieu Morlighem, David Pollard, Martin Rückamp, C. Rosie Williams, and Hongju Yu
The Cryosphere, 14, 2283–2301, https://doi.org/10.5194/tc-14-2283-2020,https://doi.org/10.5194/tc-14-2283-2020, 2020
Short summary
Quantifying the effect of ocean bed properties on ice sheet geometry over 40,000 years with a full-Stokes model
Clemens Schannwell, Reinhard Drews, Todd A. Ehlers, Olaf Eisen, Christoph Mayer, Mika Malinen, Emma C. Smith, and Hannes Eisermann
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-98,https://doi.org/10.5194/tc-2020-98, 2020
Revised manuscript accepted for TC
Short summary
Ocean-forced evolution of the Amundsen Sea catchment, West Antarctica, by 2100
Alanna V. Alevropoulos-Borrill, Isabel J. Nias, Antony J. Payne, Nicholas R. Golledge, and Rory J. Bingham
The Cryosphere, 14, 1245–1258, https://doi.org/10.5194/tc-14-1245-2020,https://doi.org/10.5194/tc-14-1245-2020, 2020

Cited articles

Berliner, L. M.: Hierarchical Bayesian Time Series Models, in: Maximum Entropy and Bayesian Methods, edited by: Hanson, K. M. and Silver, R. N., Springer Netherlands, Dordrecht, 15–22, 1996. a
Berliner, L. M.: Physical-statistical modeling in geophysics, J. Geophys. Res.-Atmos., 108, 8776, https://doi.org/10.1029/2002JD002865, 2003. a, b
Berliner, L. M., Jezek, K., Cressie, N., Kim, Y., Lam, C. Q., and van der Veen, C. J.: Modeling dynamic controls on ice streams: a Bayesian statistical approach, J. Glaciol., 54, 705–714, https://doi.org/10.3189/002214308786570917, 2008. a
Brinkerhoff, D. J., Aschwanden, A., and Truffer, M.: Bayesian Inference of Subglacial Topography Using Mass Conservation, Front. Earth Sci., 4, 8, https://doi.org/10.3389/feart.2016.00008, 2016. a
Brynjarsdóttir, J. and O'Hagan, A.: Learning about physical parameters: the importance of model discrepancy, Inverse Probl., 30, 114007, https://doi.org/10.1088/0266-5611/30/11/114007, 2014. a, b, c
Publications Copernicus
Download
Short summary
Geophysical systems can often contain scientific parameters whose values are uncertain, complex underlying dynamics, and field measurements with errors. These components are naturally modeled together within what is known as a Bayesian hierarchical model (BHM). This paper constructs such a model for shallow glaciers based on an approximation of the underlying dynamics. The evaluation of this model is aided by the use of exact analytical solutions from the literature.
Geophysical systems can often contain scientific parameters whose values are uncertain, complex...
Citation