Articles | Volume 12, issue 7
The Cryosphere, 12, 2229–2248, 2018
https://doi.org/10.5194/tc-12-2229-2018
The Cryosphere, 12, 2229–2248, 2018
https://doi.org/10.5194/tc-12-2229-2018

Research article 11 Jul 2018

Research article | 11 Jul 2018

A Bayesian hierarchical model for glacial dynamics based on the shallow ice approximation and its evaluation using analytical solutions

Giri Gopalan et al.

Related authors

Development of a subglacial lake monitored with radio-echo sounding: case study from the eastern Skaftá cauldron in the Vatnajökull ice cap, Iceland
Eyjólfur Magnússon, Finnur Pálsson, Magnús T. Gudmundsson, Thórdís Högnadóttir, Cristian Rossi, Thorsteinn Thorsteinsson, Benedikt G. Ófeigsson, Erik Sturkell, and Tómas Jóhannesson
The Cryosphere, 15, 3731–3749, https://doi.org/10.5194/tc-15-3731-2021,https://doi.org/10.5194/tc-15-3731-2021, 2021
Short summary
Cryogenic cave carbonates in the Dolomites (northern Italy): insights into Younger Dryas cooling and seasonal precipitation
Gabriella Koltai, Christoph Spötl, Alexander H. Jarosch, and Hai Cheng
Clim. Past, 17, 775–789, https://doi.org/10.5194/cp-17-775-2021,https://doi.org/10.5194/cp-17-775-2021, 2021
Short summary
Annual and inter-annual variability and trends of albedo of Icelandic glaciers
Andri Gunnarsson, Sigurdur M. Gardarsson, Finnur Pálsson, Tómas Jóhannesson, and Óli G. B. Sveinsson
The Cryosphere, 15, 547–570, https://doi.org/10.5194/tc-15-547-2021,https://doi.org/10.5194/tc-15-547-2021, 2021
Short summary
Inequality-constrained free-surface evolution in a full Stokes ice flow model (evolve_glacier v1.1)
Anna Wirbel and Alexander Helmut Jarosch
Geosci. Model Dev., 13, 6425–6445, https://doi.org/10.5194/gmd-13-6425-2020,https://doi.org/10.5194/gmd-13-6425-2020, 2020
Short summary
Future evolution and uncertainty of river flow regime change in a deglaciating river basin
Jonathan D. Mackay, Nicholas E. Barrand, David M. Hannah, Stefan Krause, Christopher R. Jackson, Jez Everest, Guðfinna Aðalgeirsdóttir, and Andrew R. Black
Hydrol. Earth Syst. Sci., 23, 1833–1865, https://doi.org/10.5194/hess-23-1833-2019,https://doi.org/10.5194/hess-23-1833-2019, 2019
Short summary

Related subject area

Discipline: Ice sheets | Subject: Numerical Modelling
A comparison of the performance of depth-integrated ice-dynamics solvers
Alexander Robinson, Daniel Goldberg, and William H. Lipscomb
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-239,https://doi.org/10.5194/tc-2021-239, 2021
Revised manuscript accepted for TC
Short summary
A new vertically integrated, MOno-Layer Higher-Order ice flow model (MOLHO)
Thiago Dias dos Santos, Mathieu Morlighem, and Douglas Brinkerhoff
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-280,https://doi.org/10.5194/tc-2021-280, 2021
Revised manuscript accepted for TC
Short summary
Marine ice sheet experiments with the Community Ice Sheet Model
Gunter R. Leguy, William H. Lipscomb, and Xylar S. Asay-Davis
The Cryosphere, 15, 3229–3253, https://doi.org/10.5194/tc-15-3229-2021,https://doi.org/10.5194/tc-15-3229-2021, 2021
Short summary
The transferability of adjoint inversion products between different ice flow models
Jowan M. Barnes, Thiago Dias dos Santos, Daniel Goldberg, G. Hilmar Gudmundsson, Mathieu Morlighem, and Jan De Rydt
The Cryosphere, 15, 1975–2000, https://doi.org/10.5194/tc-15-1975-2021,https://doi.org/10.5194/tc-15-1975-2021, 2021
Short summary
The impact of recent and future calving events on the Larsen C ice shelf
Tom Mitcham, G. Hilmar Gudmundsson, and Jonathan L. Bamber
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-105,https://doi.org/10.5194/tc-2021-105, 2021
Preprint under review for TC
Short summary

Cited articles

Berliner, L. M.: Hierarchical Bayesian Time Series Models, in: Maximum Entropy and Bayesian Methods, edited by: Hanson, K. M. and Silver, R. N., Springer Netherlands, Dordrecht, 15–22, 1996. a
Berliner, L. M.: Physical-statistical modeling in geophysics, J. Geophys. Res.-Atmos., 108, 8776, https://doi.org/10.1029/2002JD002865, 2003. a, b
Berliner, L. M., Jezek, K., Cressie, N., Kim, Y., Lam, C. Q., and van der Veen, C. J.: Modeling dynamic controls on ice streams: a Bayesian statistical approach, J. Glaciol., 54, 705–714, https://doi.org/10.3189/002214308786570917, 2008. a
Brinkerhoff, D. J., Aschwanden, A., and Truffer, M.: Bayesian Inference of Subglacial Topography Using Mass Conservation, Front. Earth Sci., 4, 8, https://doi.org/10.3389/feart.2016.00008, 2016. a
Brynjarsdóttir, J. and O'Hagan, A.: Learning about physical parameters: the importance of model discrepancy, Inverse Probl., 30, 114007, https://doi.org/10.1088/0266-5611/30/11/114007, 2014. a, b, c
Download
Short summary
Geophysical systems can often contain scientific parameters whose values are uncertain, complex underlying dynamics, and field measurements with errors. These components are naturally modeled together within what is known as a Bayesian hierarchical model (BHM). This paper constructs such a model for shallow glaciers based on an approximation of the underlying dynamics. The evaluation of this model is aided by the use of exact analytical solutions from the literature.