Articles | Volume 12, issue 7
https://doi.org/10.5194/tc-12-2229-2018
https://doi.org/10.5194/tc-12-2229-2018
Research article
 | 
11 Jul 2018
Research article |  | 11 Jul 2018

A Bayesian hierarchical model for glacial dynamics based on the shallow ice approximation and its evaluation using analytical solutions

Giri Gopalan, Birgir Hrafnkelsson, Guðfinna Aðalgeirsdóttir, Alexander H. Jarosch, and Finnur Pálsson

Related authors

Brief communication: Stalagmite damage by cave ice flow quantitatively assessed by fluid–structure interaction simulations
Alexander H. Jarosch, Paul Hofer, and Christoph Spötl
The Cryosphere, 18, 4811–4816, https://doi.org/10.5194/tc-18-4811-2024,https://doi.org/10.5194/tc-18-4811-2024, 2024
Short summary
Proglacial lake evolution and outburst flood hazard at Fjallsjökull glacier, southeast Iceland
Greta Hoe Wells, Þorsteinn Sæmundsson, Finnur Pálsson, Guðfinna Aðalgeirsdóttir, Eyjólfur Magnússon, Reginald L. Hermanns, and Snævarr Guðmundsson
EGUsphere, https://doi.org/10.5194/egusphere-2024-2002,https://doi.org/10.5194/egusphere-2024-2002, 2024
Short summary
A hydrogeological conceptual model of aquifers in catchments headed by temperate glaciers
Aude Vincent, Clémence Daigre, Ophélie Fischer, Guðfinna Aðalgeirsdóttir, Sophie Violette, Jane Hart, Snævarr Guðmundsson, and Finnur Pálsson
Hydrol. Earth Syst. Sci., 28, 3475–3494, https://doi.org/10.5194/hess-28-3475-2024,https://doi.org/10.5194/hess-28-3475-2024, 2024
Short summary
Modeled Greenland Ice Sheet evolution constrained by ice-core-derived Holocene elevation histories
Mikkel Langgaard Lauritzen, Anne Munck Solgaard, Nicholas Mossor Rathmann, Bo Møllesøe Vinther, Aslak Grindsted, Brice Noël, Guðfinna Aðalgeirsdóttir, and Christine Schøtt Hvidberg
EGUsphere, https://doi.org/10.5194/egusphere-2024-2223,https://doi.org/10.5194/egusphere-2024-2223, 2024
Short summary
Geothermal heat source estimations through ice flow modelling at Mýrdalsjökull, Iceland
Alexander H. Jarosch, Eyjólfur Magnússon, Krista Hannesdóttir, Joaquín M. C. Belart, and Finnur Pálsson
The Cryosphere, 18, 2443–2454, https://doi.org/10.5194/tc-18-2443-2024,https://doi.org/10.5194/tc-18-2443-2024, 2024
Short summary

Related subject area

Discipline: Ice sheets | Subject: Numerical Modelling
Antarctic sensitivity to oceanic melting parameterizations
Antonio Juarez-Martinez, Javier Blasco, Alexander Robinson, Marisa Montoya, and Jorge Alvarez-Solas
The Cryosphere, 18, 4257–4283, https://doi.org/10.5194/tc-18-4257-2024,https://doi.org/10.5194/tc-18-4257-2024, 2024
Short summary
Analytical solutions for the advective–diffusive ice column in the presence of strain heating
Daniel Moreno-Parada, Alexander Robinson, Marisa Montoya, and Jorge Alvarez-Solas
The Cryosphere, 18, 4215–4232, https://doi.org/10.5194/tc-18-4215-2024,https://doi.org/10.5194/tc-18-4215-2024, 2024
Short summary
Ice viscosity governs hydraulic fracture that causes rapid drainage of supraglacial lakes
Tim Hageman, Jessica Mejía, Ravindra Duddu, and Emilio Martínez-Pañeda
The Cryosphere, 18, 3991–4009, https://doi.org/10.5194/tc-18-3991-2024,https://doi.org/10.5194/tc-18-3991-2024, 2024
Short summary
Biases in ice sheet models from missing noise-induced drift
Alexander A. Robel, Vincent Verjans, and Aminat A. Ambelorun
The Cryosphere, 18, 2613–2623, https://doi.org/10.5194/tc-18-2613-2024,https://doi.org/10.5194/tc-18-2613-2024, 2024
Short summary
Sensitivity of Future Projections of the Wilkes Subglacial Basin Ice Sheet to Grounding Line Melt Parameterizations
Yu Wang, Chen Zhao, Rupert Gladstone, Thomas Zwinger, Ben Galton-Fenzi, and Poul Christoffersen
EGUsphere, https://doi.org/10.5194/egusphere-2024-1005,https://doi.org/10.5194/egusphere-2024-1005, 2024
Short summary

Cited articles

Berliner, L. M.: Hierarchical Bayesian Time Series Models, in: Maximum Entropy and Bayesian Methods, edited by: Hanson, K. M. and Silver, R. N., Springer Netherlands, Dordrecht, 15–22, 1996. a
Berliner, L. M.: Physical-statistical modeling in geophysics, J. Geophys. Res.-Atmos., 108, 8776, https://doi.org/10.1029/2002JD002865, 2003. a, b
Berliner, L. M., Jezek, K., Cressie, N., Kim, Y., Lam, C. Q., and van der Veen, C. J.: Modeling dynamic controls on ice streams: a Bayesian statistical approach, J. Glaciol., 54, 705–714, https://doi.org/10.3189/002214308786570917, 2008. a
Brinkerhoff, D. J., Aschwanden, A., and Truffer, M.: Bayesian Inference of Subglacial Topography Using Mass Conservation, Front. Earth Sci., 4, 8, https://doi.org/10.3389/feart.2016.00008, 2016. a
Brynjarsdóttir, J. and O'Hagan, A.: Learning about physical parameters: the importance of model discrepancy, Inverse Probl., 30, 114007, https://doi.org/10.1088/0266-5611/30/11/114007, 2014. a, b, c
Download
Short summary
Geophysical systems can often contain scientific parameters whose values are uncertain, complex underlying dynamics, and field measurements with errors. These components are naturally modeled together within what is known as a Bayesian hierarchical model (BHM). This paper constructs such a model for shallow glaciers based on an approximation of the underlying dynamics. The evaluation of this model is aided by the use of exact analytical solutions from the literature.