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Abstract. Bayesian hierarchical modeling can assist the
study of glacial dynamics and ice flow properties. This ap-
proach will allow glaciologists to make fully probabilistic
predictions for the thickness of a glacier at unobserved spa-
tiotemporal coordinates, and it will also allow for the deriva-
tion of posterior probability distributions for key physical pa-
rameters such as ice viscosity and basal sliding. The goal of
this paper is to develop a proof of concept for a Bayesian
hierarchical model constructed, which uses exact analytical
solutions for the shallow ice approximation (SIA) introduced
by Bueler et al. (2005). A suite of test simulations utilizing
these exact solutions suggests that this approach is able to ad-
equately model numerical errors and produce useful physical
parameter posterior distributions and predictions. A byprod-
uct of the development of the Bayesian hierarchical model
is the derivation of a novel finite difference method for solv-
ing the SIA partial differential equation (PDE). An additional
novelty of this work is the correction of numerical errors in-
duced through a numerical solution using a statistical model.
This error-correcting process models numerical errors that
accumulate forward in time and spatial variation of numeri-
cal errors between the dome, interior, and margin of a glacier.

1 Introduction

The shallow ice approximation (SIA) is a nonlinear par-
tial differential equation (PDE) that describes ice flow when
glacier thickness is relatively small compared to the horizon-
tal dimensions. Derived from the principle of mass conser-

vation, the SIA PDE depends on two key physical parame-
ters: ice viscosity and basal sliding (sometimes described as
basal friction or drag). The primary objective of this paper is
to develop a Bayesian hierarchical model (BHM) for glacier
flow utilizing the framework espoused by Wikle (2016) and
Cressie and Wikle (2015), which allows one to (1) infer
ice viscosity and basal sliding parameters and (2) make
probabilistic predictions for glacial thickness at unobserved
spatiotemporal coordinates. This BHM relies upon a finite
difference scheme for solving the SIA that is inspired by
the Lax–Wendroff method (Hudson, 1998). To validate this
BHM, we utilize exact analytical solutions from Bueler et al.
(2005). Hence, in addition to the development of a BHM
for shallow glaciers, this paper serves as a case study for
the strategy of using exact analytical solutions to validate
or tune BHMs governed by physical dynamics. Moreover,
the BHM developed can be applied to the general “physical–
statistical” problem (Berliner, 2003). This BHM is verified
and diagnosed through a combination of assessments of pos-
terior probability intervals, checks of predictive accuracy for
glacial thickness prediction, and a comparison between ob-
served and expected errors due to the numerical solution of
the SIA.

1.1 An overview of Bayesian modeling and BHMs

Before describing how BHMs are used in physical–statistical
models, particularly for geophysical problems, a very brief
overview of Bayesian modeling and Bayesian hierarchical
modeling is given for the uninitiated reader. A main com-
ponent of Bayesian statistics is the use of probability distri-
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Figure 1. Schematic of a simple Bayesian hierarchical model; here, θ represents physical parameters, S represents unobserved scientific
quantities of interest, and Y represents the observed data.

butions to model parameters thought to be fixed quantities
(i.e., scientific constants); this assumption allows one to use
rules of conditional probability (i.e., Bayes’ theorem) to de-
rive probability distributions for scientific quantities of inter-
est, such as physical constants or predictions of future quan-
tities of a system being studied. Typically, the major assump-
tions required as input to the analysis are prior distributions
for parameters as well as a probabilistic model for the data.
The output is a probability distribution for parameters or pre-
dictions conditional on data that have been collected or ob-
served; canonically, this is referred to as the posterior distri-
bution.

A BHM is a Bayesian model in which the probabilistic
model for data is specified in a hierarchy. Working with such
a hierarchy has a number of advantages – it is usually easier
to conceptualize the probabilistic model for the data, and it is
also easier to model various parts of a system of interest mod-
ularly instead of all at once. Such an approach is conducive
to the construction of a probabilistic model that tightly cor-
responds to a scientific system of interest, which is naturally
thought of in separate components or modules. In a BHM,
the rules of conditional probability can be used to specify the
relevant distributions. For example, let us consider a mock
system that has parameter vector θ , an intermediate unob-
served vector S, and observations Y . θ might be statistical or
physical parameters, S could be a quantity of scientific in-
terest, and Y could be noisy observations of S. A schematic
for such a model is given in Fig. 1, and the joint probability
distribution is

p(Y ,S,θ)= p(θ)p(S|θ)p(Y |S,θ). (1)

The distribution p(θ) represents prior beliefs about parame-
ters before data are collected, while p(S|θ) represents prior
knowledge or assumptions for how S is generated given
parameters. For instance, this prior knowledge could en-
tail clustering or some dependence between the elements
of S. The process that models Y conditional on S and θ is
p(Y |S,θ). The posterior distribution of scientific quantities
of interest, p(θ ,S|Y ), is proportional to p(Y ,S,θ) by Bayes’
theorem. Estimates and assessments of uncertainty of scien-

tific parameters and quantities can be extracted from the pos-
terior distribution.

1.2 An overview of physical–statistical modeling with
BHMs

The case for applying Bayesian hierarchical modeling and
methodology in geophysics is strongly made by Berliner
(2003), which he describes as “physical–statistical model-
ing”. Particularly, employing the Bayesian hierarchical ap-
proach has the primary advantage of incorporating all rel-
evant sources of uncertainty and randomness into one co-
herent probabilistic framework. The sources typically mod-
eled together are (1) measurement errors in the data collec-
tion process; (2) lack of full knowledge of the precise func-
tional form of the underlying physical equations describing
the physical phenomenon being modeled, or else simplifi-
cation of the physical system description; (3) numerical er-
rors induced while approximating the solution to a system
of PDEs; and (4) lack of precise knowledge of fundamen-
tal parameters (constants) in the underlying PDEs describing
said phenomenon. In the Bayesian hierarchical framework
(Berliner, 1996; Wikle, 2016; Cressie and Wikle, 2015) each
of these sources of uncertainty is modeled by conditioning
on the appropriate quantities, and inference is performed by
sampling from or approximating the posterior distribution
(the distribution of the unknown quantities of interest con-
ditional on the observed data).

At the highest level of a BHM, prior probability distribu-
tions are laid out for the physical parameters of interest. At
the intermediary level, a probability distribution for the phys-
ical process of interest is laid out conditional on the param-
eters, which is typically motivated by a numerical scheme
for solving PDEs. In particular, this level may be modeled as
the sum of the output from a numerical solver and an error-
correcting process. Finally, at the observed level, a probabil-
ity distribution is set forth for the observed data conditional
on the latent physical process and other relevant measure-
ment parameters, which include variances of measuring pro-
cedures or devices. The product of these probability distri-
butions specifies the joint distribution of all relevant quan-
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Figure 2. Schematic of a prototypical physical–statistical Bayesian
hierarchical model. At the top layer, physical parameters, initial
conditions, and boundary conditions are fed into a numerical solver,
and the output of this is corrected with an error-correcting process;
finally, the actual observations are dependent on the actual physical
process values.

tities, which is proportional to the posterior distribution by
the definition of conditional probability. While a traditional
analysis may handle each of these disparate sources of un-
certainty in an ad hoc and disjointed fashion, the Bayesian
hierarchical approach leverages probability measures to co-
hesively model major sources of uncertainty and undertake
inference in a principled manner. Figure 2 diagrams what a
prototypical physical–statistical Bayesian hierarchical model
might look like.

While the BHM approach to physical–statistical problems
offers many advantages, it is not an infallible approach. In
particular, while constructing a BHM may be straightfor-
ward, actually fitting a BHM to data can be computation-
ally difficult. In the analysis that follows, there are only
one to two physical parameters and the likelihood func-
tion is tractable, so posterior computation is not difficult.
In more complex scenarios with many physical parameters
(e.g., a basal sliding field with a parameter for each grid
point), it becomes more difficult to compute the posterior or
draw samples from it. There are now many new tools, how-
ever, for Bayesian inference of complicated and high dimen-
sional posterior distributions, such as Stan (Stan Develop-
ment Team, 2018) and INLA (Rue et al., 2017). Another po-
tential difficulty in using BHMs for physical–statistical prob-
lems is that solving for a set of dynamical equations with

a numerical method can be computationally onerous, gen-
erally speaking; while this is not a detriment in the work
that follows, this can be a problem for posterior computation.
One way to circumvent this issue is to emulate a numerical
solver, using techniques as in Hooten et al. (2011). Another
methodology that can be used to efficiently solve PDEs using
Bayesian numerical analysis comes from Owhadi and Scovel
(2017). Finally, Calderhead et al. (2008) suggest methodol-
ogy to avoid explicitly solving ordinary differential equations
by using Gaussian processes.

To put the contributions of this work into context,
we briefly review glaciology papers that have employed
Bayesian modeling. In Berliner et al. (2008), a Bayesian hi-
erarchical approach is used to model ice streams in one spa-
tial dimension, and an error-correcting process is utilized to
account for a simplification in the physical model. A com-
bination of Markov chain Monte Carlo and empirical Bayes
methodology is used to fit the model, and basal shear stress
and resistive stresses are included. Furthermore, wavelets are
used for dimensionality reduction purposes in order to make
the computations more feasible. In Pralong and Gudmunds-
son (2011), a Bayesian model is constructed for an ice stream
where the likelihood and prior are Gaussian. The observed
data are surface topography, horizontal and vertical surface
velocities, and the latent system state is basal topography and
slipperiness. The goal is to infer the system state given the
observed data, and ultimately a maximum a posteriori point
estimate is used for inference in conjunction with an iterative
method for posterior maximization. Physics is incorporated
by solving for the steady state solution with a finite element
method (FEM) solver, given the system state. In Brinkerhoff
et al. (2016) a flowline model of the SIA is considered with
vertically integrated velocities. Gaussian process priors are
used for all unknowns, and the Metropolis–Hastings algo-
rithm is used to fit the model. The approach yields convinc-
ing results in simulations and a real data set. In Isaac et al.
(2015), numerical methods are presented for solving a non-
linear Stokes equation boundary value problem for an ice
sheet in Antarctica. The method ultimately uses a low rank
approximation to a covariance matrix for the posterior distri-
bution of a basal parameter field. Finally, and perhaps most
directly related to this research, in Minchew et al. (2015) in-
terferometric synthetic aperture radar (InSAR) is used to de-
termine velocity fields at Langjökull and Hofsjökull in early
June 2012. The velocity directions match the surface gradi-
ent, but magnitudes do not appear to coincide with the theo-
retical predictions of other authors (likely due to the inappro-
priate modeling of basal sliding).

The same approach within this work can be used for non-
SIA problems in cryosphere science, and the Bayesian hier-
archical model does not necessitate analytical solutions; the
analytical solutions are used for the evaluation of the partic-
ular BHM in the paper based upon the SIA. However, in gen-
eral, the biggest difficulty will be in developing a statistical
error-correcting process that appropriately models numerical
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errors for an arbitrary scenario, where a numerical solver for
a different set of dynamical equations is used. In the SIA
context, we can rely on prior studies of Bueler et al. (2005)
to tell us something about how the numerical errors will look
in the SIA case – i.e., spatial variation in the scale of nu-
merical errors between the dome, interior, and margin. This
error pattern will not hold in general for other geometries and
systems, and so different prior studies must be utilized or, if
these do not exist, the hierarchical model must be extended
to include a more general model for the error-correcting pro-
cess (e.g., a spatially varying field for the log of the scale of
numerical errors with a Gaussian process prior).

The main differentiating contribution of this paper is to
utilize the exact analytical solutions from Bueler et al. (2005)
to evaluate the BHM employed. An additional novelty is the
derivation and utilization of a novel finite difference method
for solving the SIA PDE that operates in two spatial dimen-
sions; consequently, the Bayesian model employed also op-
erates in two spatial dimensions, in addition to time. Finally,
we explicitly model the errors due to a numerical solver with
a spatiotemporal statistical process, which accounts for dif-
ferent scales of spatial variability within the dome, within
the interior, and within the margin of the glacier, as well as
accumulation of numerical errors forward in time.

2 Description of models

2.1 Shallow ice approximation

The physics of glaciers is an extensive topic; hence, only the
portions which are most relevant to this paper are described.
The reader is pointed to the comprehensive works by Cuf-
fey and Paterson (2010) and van der Veen (2017) for further
reading on the subject. PDEs for glaciers are derived from the
following considerations. First, glaciers are modeled as very
slowly moving and viscous fluids. By applying the principle
of mass conservation, the net ice flux moving in or out of
an infinitesimal column of the glacier located at some spatial
coordinate, plus the net mass change due to precipitation or
melting, yields the change in the height of the column over
an infinitesimal time interval. Such a heuristic argument pro-
vides a PDE in two dimensions for a glacier, with averaged
velocities in two spatial dimensions. The PDE relates the
time derivative of the thickness of the glacier to the flux and
net mass change (i.e., mass balance). The main assumptions
are that ice is isotropic and homogeneous and also that longi-
tudinal and transverse stress terms can be ignored, which is
reasonable when the overall thickness of the glacier is small
in comparison to its width. Under these assumptions, the ve-
locity of the ice is made up of two additive components. The
first component of the velocity is based upon deformation
due to gravity, which acts in the direction of steepest descent
of the surface and is a function of the ice viscosity param-
eter. The second component of velocity also acts along the

gradient of the glacier surface and is a function of the basal
sliding parameter field. The formulations stem from Glen’s
flow law (Glen, 1955, 1958) and Weertman’s sliding relation
(Weertman, 1964).

Written in terms of glacial thickness, H(x,y, t), the SIA
PDE is

Ht =−[uH ]x − [vH ]y + ḃ

−[uH ]x =−
[
−C0γ (−ρgH [H +R]x)H

+
2B
n+ 2

(ρgα)n−1H n+1 (−ρgH [H +R]x)
]
x

−[vH ]y =−
[
−C0γ

(
−ρgH [H +R]y

)
H

+
2B
n+ 2

(ρgα)n−1H n+1 (
−ρgH [H +R]y

)]
y

α =

√
[H +R]2

x + [H +R]2
y .

Here H(x,y, t) is the thickness of the glacier at spatial co-
ordinate (x,y) and time t , u is the average velocity in the
x direction, and v is the average velocity in the y direction.
This model is vertically integrated, and hence only two spa-
tial dimensions are modeled. R(x,y, t) is the bedrock eleva-
tion, which is assumed to be constant in time and thus can
be written as R(x,y); ḃ(x,y, t) is the mass balance field, B
and C0γ are physical parameters governing the viscosity and
basal sliding; ρ governs the mass density of the ice; and fi-
nally n is Glen’s flow law constant, typically set to 3. Initial
conditions (i.e., H(x,y,0)) are assumed to be given, and the
boundary condition H ≥ 0 is assumed, just as in Table 2 of
Bueler et al. (2005). Additional derivations and details on
the SIA are covered in a variety of sources, including Fowler
and Larson (1978), Hutter (1982), Hutter (1983), and Flow-
ers et al. (2005).

It is important to make explicit that there are some limi-
tations of this PDE. Besides ignoring longitudinal and trans-
verse stress terms, the PDE does not model subglacial hy-
drology, tunneling systems, jökulhlaups, or surges, the dy-
namics of which are believed to contribute to dynamics of
glaciers as a whole. Nonetheless, one hopes these equations
may serve as a first approximation for shallow glacier dy-
namics. In addition to dynamics, another important physical
consideration of glaciers is the relationship between temper-
ature and viscosity, which follows an Arrhenius relationship
(Cuffey and Paterson, 2010). However, in the context of Ice-
landic glaciers like Langjökull, this is not consequential since
they are temperate (i.e., their temperature is at melting point).

2.2 Bayesian hierarchical model

In this section, we provide an overview and setup of the BHM
employed in addition to notation for the key parameters, both
statistical and physical. The reader is referred, however, to
Table 1 for a summary of the model parameters utilized and
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Table 1. A summary of main parameters and notation utilized.

Parameter name Symbol Description

Time index j A subscript which refers to discrete time points
Spatial index i A subscript which refers to discrete spatial points
All spatial points for a time index ., j Refers to entire spatial field at time j
Ice viscosity B Key physical parameter driving the SIA
Basal sliding C0γ Basal sliding field and key parameter driving the SIA
Max basal sliding µmax Parameter for the basal sliding field of

test case E in Bueler et al. (2005)
Physical parameters θ Refers to physical parameters
Measurement error σ Measurement error of surface elevation measurements
Error-correcting covariance matrix 6 Covariance matrix used for the error-correcting process
Error-correcting parameters (σdome,σinterior,σmargin,φ) Parameters corresponding to 6
Mass balance field ḃ.,j Mass balance field at time index j
Initial surface elevation S0 Initial surface height of the glacier

a schematic illustrating the BHM in Fig. 3. We use index i to
refer to spatial coordinates (for this model space is assumed
to be discretized into squares) and index j to refer to time co-
ordinates. Furthermore, the notation S.,j refers to the surface
elevation at all spatial coordinates for a particular time index
j . Keeping in line with the Bayesian hierarchical modeling
framework from Wikle (2016) and Cressie and Wikle (2015),
we delineate the models used for the data level, process level,
and parameter level. The primary inferential goals are to in-
fer physical process parameters (i.e., ice viscosity and basal
sliding) and to predict the height of the glacier at various
time points and spatial locations besides those that have been
observed (aligned to a grid for which we have bedrock and
initial surface height conditions). Within the Bayesian frame-
work, all inferential goals may be achieved by determining
the posterior distribution of these quantities (i.e., their prob-
ability distributions conditioned on observed data).

At the data level, the observed height for each grid point
is modeled with a normal distribution (denoted with the no-
tation N(µ,τ 2), where µ is the mean and τ 2 is the variance),
where the mean is the physical process value, and the vari-
ance is assumed to be known. In particular it is assumed that
Y ij ∼N(Sij ,σ

2), where Y ij is the observed surface eleva-
tion of the glacier at location i and time index j , Sij is the
latent (i.e., unobserved) surface elevation at location i and
time index j (equivalent to sum of the glacier thickness and
bedrock level), and σ 2 is the variance of the measurement
errors for the surface height observations, a fixed and known
quantity. The number of observed spatial indices is assumed
to be much smaller than the number of total spatial indices
modeled at the latent level.

At the process level, S.,j = f (S0,B, ḃ,C0γ,j)+Xj ,
where f is a numerical solution to the SIA at time index j ,
andXj is an error-correcting process at time index j . A finite
difference version of the SIA PDE is described in full detail
in Appendix A. In principle, however, the function f may be
derived from other numerical solvers. Additionally, it should

be made clear that f is the output of a numerical solver for
the underlying dynamics. Also, S0 denotes the glacier sur-
face elevation values at the initial time point, which are as-
sumed to be known; e.g., with high precision light detection
and ranging (lidar) initial conditions provided by the Institute
of Earth Sciences at the University of Iceland (IES-UI). ḃ.,j
is the mass balance field for time index j at all the grid points,
which is assumed to be fixed and known for the purpose of
this analysis. B is the ice viscosity parameter and C0γ is the
basal sliding field, which itself is parameterized with µmax as
in Eq. (16) of Bueler et al. (2005) and, furthermore, is static
in time. For compact notation, θ is used to refer to B in test
cases B–D and (B,µmax) jointly in test case E.

Since we believe numerical errors will accumulate over
time (Bueler et al., 2005), we define the error-correcting
process as follows: Xj+1 =Xj + εj+1, where εj+1 is
MVN(0,6). (MVN stands for multivariate normal, and the
first argument is the mean and the second is the covariance.)
6 is block diagonal, with three blocks for indices corre-
sponding to the margin, interior, and dome of the glacier
(the margin is defined as the last grid squares before the
glacier drops to 0 thickness, and the dome is the origin grid
square), respectively. Each block is defined from a square-
exponential kernel with the same length scale, denoted by φ,
but distinct marginal variances, σ 2

interior, σ
2
margin, and σ 2

dome.
The motivation for using different marginal variance param-
eters is to account for the widely different errors exhibited at
the dome, interior, and margin, as is demonstrated by Bueler
et al. (2005) and Jarosch et al. (2013). This error-correcting
process leads to a tractable likelihood function, as is shown
in Appendix B.

Finally, at the parameter level, B and µmax are endowed
with truncated normal distributions as priors. B has a normal
prior with mean 3.5×10−24 and standard deviation 3×10−24,
truncated to have support [1,70]×10−24. µmax has a normal
prior with mean 3×10−11 and standard deviation 1×10−11,
truncated to have support [1,70]×10−12. (Units are s−1 Pa−3
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 θ parameter level: ice viscosity and basal sliding.

f(θ,j,S_0,b) numerical solver for the SIA PDE.

        t_0           t_0+△t   t_0+2△t       t_0+3△t   t_0+4△t   t_0+5△t   ……         t_0+T△t

        t_0           t_0+△t   t_0+2△t       t_0+3△t   t_0+4△t   t_0+5△t   ……         t_0+T△t

X_j, Σ error correcting statistical model.

Time

Time

S_j physical process level:  glacier thickness values at discrete time points.

        Y_0                                                                                   Y_5         …..            Y_T

Y, σ data level: glacier thickness at regularly spaced time intervals and sparsely sampled and fixed spatial locations.

Figure 3. Schematic of the physical–statistical BHM that has been constructed based on the SIA PDE. The main parameters and variables
for each module of the physical–statistical model are highlighted in red. The main levels of a physical–statistical model shown in Fig. 2 are
displayed here, along with the parameters and variables describing each level.

for ice viscosity and Pa−1 m s−1 for basal sliding.) The prior
supports for B and µmax provide plausible values for temper-
ate ice caps.

It is prudent to discuss the motivations and justifications
of the various modeling choices employed in the model pre-
viously delineated. The data level is assumed to have inde-
pendent normal errors with fixed variance; this is justified
because of the uniformity of the measuring technology used
from site to site (e.g., digital GPS) and symmetry of errors. In
contrast, the precise functional form of the data level is cho-
sen somewhat arbitrarily as a Gaussian, which affords one
analytical convenience. Similarly, the error-correcting pro-
cess at the process level uses a zero mean Gaussian process
with a parameterized covariance kernel (e.g., square expo-
nential), mostly as an analytically manageable way to in-
duce spatial correlation in the error-correcting process. Spa-

tial correlation in numerical errors has been demonstrated,
for example, in Bueler et al. (2005).

Moreover, it is appropriate to consider potential variations
of this model for slightly different scenarios; naturally, these
could fall into alternate choices of covariance kernel at the
process level (e.g., Matérn, to allow for a less smooth error-
correcting process) and varying errors at the data level, for
example to account for compaction or densification that oc-
curs between seasons. For the latter, a suggestion is to use
conjugate inverse-gamma distributions for the variances, so
that sampling can be accomplished with a Gibbs sampler.
Additionally, as aforementioned, one can conceivably use
any numerical solver for a PDE at the process level. Fu-
ture variations may consider utilizing non-zero mean Gaus-
sian processes for the error-correcting process, which may be
more computationally costly yet perhaps more realistic. Gen-
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Figure 4. An illustration marking the 25 measurement sites on the glacier. This is a top level view of the glacier, where the blue points
indicate the glacier, the red points indicate the measurement locations, and the black points indicate locations surrounding the glacier with
no glacial thickness.

erally, this model can be adapted to any science or engineer-
ing system that is driven by physically meaningful parame-
ters, whose dynamics are solved by noisy numerical meth-
ods, and for which noisy and continuous data are collected
with well-probed errors.

The mathematical details for how to do posterior compu-
tation within this model are given in Appendix B, which in-
cludes a derivation of an approximation to the log-likelihood
that allows for computational efficiency. In summary, we
compute the posterior of physical parameters directly on a
grid since there are at most two physical parameters, and we
use samples from the posterior distribution of physical pa-
rameters to generate predictions for glacier thickness in the
future.

3 Experiments to assess the Bayesian hierarchical
model

3.1 Analytical solutions

In Bueler et al. (2005), analytical solutions to the SIA are
presented as benchmarks for numerical solvers of the SIA.
As opposed to using other benchmarks such as the EISMINT
experiment (Payne et al., 2000), which itself is based on nu-
merical modeling and hence subject to numerical errors, the
benchmark solutions provided in this work can be treated as
ground truth to compare to. (This is in the sense that these
are exact solutions of the SIA, but it must be stressed that the
SIA is an approximation of the true physical dynamics gov-
erning a glacier.) These analytical solutions serve as a basis

www.the-cryosphere.net/12/2229/2018/ The Cryosphere, 12, 2229–2248, 2018
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Table 2. Ice viscosity posterior intervals.

Test case Actual viscosity 3 SD credibility interval
(10−25 s−1 Pa−3) (10−25 s−1 Pa−3)

Bueler B 32 [7,34]
Bueler C 32 [5,33]
Bueler D 32 [11,42]

Table 3. Results of prediction at t0+ 100 years. RMSE stands for
root mean squared error. This is calculated by taking the average of
the squared difference between the actual glacial thickness values
and predicted glacial thickness values, and then taking the square
root.

Test case Dome RMSE Interior RMSE Margin RMSE
(m) (m) (m)

Bueler B 66 20 75
Bueler C 76 22 82
Bueler D 1.4 17 49

Table 4. Error-correcting process hyperparameters; σ 2
dome is the

error-correcting process variance at the dome, σ 2
interior is the error-

correcting process variance at the interior, σ 2
margin is the error-

correcting process variance at the margin, and φ is the length scale
parameter.

Test case σ 2
dome σ 2

interior σ 2
margin φ

(m2) (m2) (m2) (km)

Bueler B 1 0.1 15 71
Bueler C 1 0.15 15 64
Bueler D 0.1 0.1 10 62
Bueler E 0.1 0.1 10 60

for simulating data sets to validate the Bayesian hierarchi-
cal approaches developed in this paper. In other words, the
exact analytical solutions provide the latent process in the
BHM, conditioning on given initial conditions and mass bal-
ance functions. Hence to simulate data from the BHM, one
can bypass the need to numerically solve the PDE and intro-
duce errors.

We make use of four analytical solutions from Bueler et al.
(2005) that are summarized here, but the reader is referred
to the original paper for the exact mathematical formulation
and derivation of these analytical solutions. All of the ana-
lytical solutions assume a flat bedrock. Test case B includes
no mass balance or basal sliding, and, consequently, the mo-
tion of the glacier is only attributable to deformation due to
gravity. Test case C makes use of a mass balance field that
is inversely proportional to time and directly proportional to
thickness, but there is no basal sliding field modeled. Simi-
larly, test case D utilizes a mass balance field with no basal
sliding field modeled. In distinction from test case C, how-

Figure 5. Grid map used to interpret the following box plots in
Fig. 6. Eight randomly chosen grid points are selected for testing
predictions; these are not the same as the measurement locations.
Only one quadrant of the glacier is shown due to symmetry, as is
done in Figs. 9, 10, and 12 of Bueler et al. (2005), and the width of
each cell is 105 m. Additionally, the red squares indicate locations
at or close to the margin, the blue squares indicate locations that are
between the dome and margin of the glacier, and the black squares
indicate locations at or close to the dome of the glacier. Moreover,
glacier grid squares with non-zero thickness are shaded in grey to
indicate the glacier location.

ever, the mass balance field of test case D is such that the
overall solution for glacial thickness is periodic in time. Fi-
nally, in contrast to the other tests, test case E has a spatially
varying basal sliding field, yet the overall solution is static in
time. Note that test A was not utilized in this study because
it is a steady state solution without a varying mass balance or
basal sliding field.

3.2 Simulation study test details

Conditions of the simulation study have been chosen to
closely emulate the data collected at Langjökull ice cap by
the IES-UI. In particular, 20 years of data are assumed, which
is comparable to data provided by the IES. 25 fixed measure-
ment sites are used for bi-annual surface elevation measure-
ments, which are geographically distributed on the glacier in
a manner that is comparable to the real data provided by the
IES-UI. Figure 4 illustrates the locations of these measure-
ment sites on the glacier. Surface elevation measurements
for these sites are taken twice a year (i.e., for summer and
winter mass balance measurements). The surface elevation
measurements are generated by adding Gaussian noise (zero
mean, unit variance) to the analytical solutions at the spa-
tiotemporal coordinates of the fixed measurement sites. The
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Figure 6. Thickness prediction samples 100 years from t0 for test case B (i.e., no mass balance field or basal sliding). Triangles indicate the
actual thickness values from the analytical solution. Panel (a) shows predictions that are close to the margin (red squares of Fig. 5), panel
(b) shows predictions that are between the dome and margin of the glacier (blue squares of Fig. 5), and panel (c) shows predictions that are
towards the dome of the glacier (black squares of Fig. 5). Refer to Fig. 5 for a grid map to spatially reference each of the box plots. As can be
expected according to Bueler et al. (2005), the largest errors occur at the dome and the margin. Note on interpretation: the middle of each box
is the median, the interquartile range is denoted by the box, and 1.5 of the interquartile range beyond the first and third quartile is illustrated
with the whiskers. Those points that are more than 1.5 of the interquartile range beyond the first and third quartiles are outliers, and they are
denoted with circles.

choice of unit variance is larger than the errors produced by
digital GPS measurements. Remaining physical parameters
were chosen using the values from Table 2 in Bueler et al.

(2005) to allow for comparisons to this work and the EIS-
MINT I experiment (Payne et al., 2000).
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Figure 7. Comparison of posterior and prior distributions of ice viscosity for test case D (i.e., mass balance field producing a periodic SIA
solution).

4 Results

Validation and diagnostics of the BHM were achieved
through a combination of an assessment of posterior prob-
ability intervals, a test of the predictive error of thickness
values 100 years from the initial time point t0, and a com-
parison between observed and expected values for numeri-
cal errors based on the error-correcting process utilized. As
is discussed in more detail below, these assessments suggest
that the BHM is useful for inference of posterior probabil-
ity distributions for physical parameters, prediction of fu-
ture glacial thickness values on the order of 100 years, and
the modeling of numerical errors at the margin, interior, and
dome of the glacier.

Table 2 contains posterior credibility intervals for ice vis-
cosity in test cases B–D. A 3 SD credibility interval was com-
puted with mean±3 standard deviations of the posterior sam-
ples. In all of these test cases, the 3 SD credibility interval
covers the actual ice viscosity. Furthermore, as is apparent in
Table 3, the predictive error, relative to thickness values on

the order of a kilometer, appears be small overall, particularly
at the interior; predictive error is the root mean squared dif-
ference between predictions and the exact analytical values
for each of the test cases. Note that test E was not included
with the predictive checks since it is static in time. Consistent
with Bueler et al. (2005) and Jarosch et al. (2013), however,
errors are greatest at the margin and dome of the glacier (evi-
dent in Fig. 6). Nonetheless, the predictive distributions cover
the actual thicknesses even at these extremes. This illustrates
the utility of the BHM for accounting for errors induced by
the numerical solution of the SIA. Additionally, an illustra-
tion comparing the posterior and prior distributions for test
case D is shown in Fig. 7.

To investigate the frequentist properties of the posterior
probability distribution for ice viscosity (i.e., its performance
under repeated sampling of data), 500 simulations were com-
pleted under repeated sampling of the surface elevation data
at the 25 fixed measurement sites for test cases B–D. The
coverage of ice viscosity for a 3 SD interval was computed
for each of the simulations, where coverage for a given in-
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Figure 8. A comparison of posteriors under strong and weak prior information for the error-correcting process in test case D (i.e., mass
balance field producing a periodic SIA solution); prior information for the error-correcting process leads to a less biased posterior, though
with slightly more posterior uncertainty.

terval is binary; either the actual parameter value is in the
interval or it is not. For test case B, in 499 of 500 simulations
the 3 SD credibility interval covered the actual value of ice
viscosity. In test cases C and D, the 3 SD credibility interval
covered the actual value of ice viscosity in all of the simula-
tions. This suggests that the frequentist coverage probability
of the credibility interval is at least 99 %.

For test case E, one assumes that the field is described by
parameterized Eq. (16) of Bueler et al. (2005). That is, in
polar coordinates with radius r and angle 2,

C0γ (r,2)=
µmax4(r − r1)(r2− r)4(2− θ1)(θ2−2)

(r2− r1)2(θ2− θ1)2
(2)

for θ1 <2< θ2 and r1 < r < r2, and C0γ = 0 otherwise.
In addition to ice viscosity, the inferential object of inter-
est is the scale parameter µmax. The 3 SD posterior cred-

ibility interval for B is [1,43] in units of 10−25 s−1 Pa−3,
and for µmax it is [1,50] in units of 10−12 Pa−1 ms−1. The
actual values for B and µmax are 32× 10−25 s−1 Pa−3 and
25×10−12 s−1 Pa−1 ms−1, respectively. Hence, the credibil-
ity intervals cover both parameters. A figure illustrating the
posterior distribution of µmax is given in the Supplement.

While the credibility intervals achieved coverage of the ac-
tual values of the parameters, it was noticed that the poste-
rior distribution for physical parameters and predictions are
biased. Brynjarsdóttir and O’Hagan (2014) exhibit the same
phenomenon in a simple physical system with a single phys-
ical parameter, and they demonstrate that the bias of a phys-
ical parameter posterior distribution reduces as better prior
information is encoded to model the difference between the
output of a computer simulator of a physical system and the
actual physical process values (i.e., what we have termed as
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Figure 9. A comparison of posteriors in test case D (i.e., mass balance field producing a periodic SIA solution) under different sampling
periods: data sampled once every 10 years, every 5 years, once a year, and twice a year. The general trend is that the posterior tends to become
less biased as the period of sampling decreases, although the posterior becomes more diffuse. The University of Iceland Institute of Earth
Sciences Glaciology Team takes measurements twice a year for summer and winter mass balance measurements.

an error-correcting process). To demonstrate that this also
holds in the BHM presented in this paper, we consider the
following comparison. To assign prior information to the
error-correcting process, we consider a discrete parameter
set for σ 2

interior, σ
2
margin, and σ 2

dome : {0.1,1,10,100} in units
of square meters, which corresponds to different orders of
magnitude for variability. In one case, we ignore prior infor-
mation from Bueler et al. (2005) and put equal probability
mass on the parameter space for these parameters. In the sec-
ond case, we encode more realistic prior information into the
scales of errors at the three regions: equal mass on 10 and
100 at the margin, equal mass on 0.1 and 1 at the interior,
and equal mass at 1 and 10 at the dome (all units are square
meters). In both cases, the parameter φ is fixed at 70 km to
place emphasis on the scales of error. The results of inferring
the posterior distribution for ice viscosity B are shown in
Fig. 8. Consistent with Brynjarsdóttir and O’Hagan (2014),
the posterior distribution of the physical parameterB is much

less biased when prior information is encoded into the error-
correcting process.

To assess how the posterior distribution for ice viscosity
evolves under different sampling plans of the data, we con-
ducted a series of simulations in test case D under varying
sampling periods. In particular, we considered data samples
once every 10 years, once every 5 years, once a year, and
twice a year; the resulting posteriors for ice viscosity are
in Fig. 9. The general pattern is that the bias of the poste-
rior distributions reduces as the period gets shorter, although
the posterior becomes more diffuse. The result that some
posterior uncertainty does not go away with more collected
data is also consistent with the results in Brynjarsdóttir and
O’Hagan (2014). The particular period we chose in this anal-
ysis (data collected twice a year) was meant to model how the
UI-IES Glaciology Team collects data, that is, twice a year
due to summer and winter mass balance measurements.

To assess the accumulating error-correcting process
model, we estimated the marginal variances of the error-
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Figure 10. An illustration comparing the expected variability of the error-correcting process (as per the Bayesian hierarchical model) to the
observed variability of residuals at the interior, margin, and dome for test case B (i.e., no mass balance field or basal sliding). These residuals
are the differences between the observed data and the numerical solution.

correcting process for each of the time points with observed
data in test case B, by examining the residuals formed by
the difference between the numerical solver and the ob-
served data. According to the model, the standard deviation
of these residuals at the interior of the glacier should grow

as
√
σ 2+ tσ 2

interior, where t is the number of time steps (and
likewise at the dome and margin). Figure 10 shows a match
between observed and expected in this regard, and, in partic-
ular, the 99 % confidence bands appear to cover the expected
variability as time progresses. Also apparent from this figure
is that, as time progresses, the errors at the margin, dome,
and interior contribute more error than measurement error,
which is on the order of 1 m. Moreover, this is also evident
in Table 4, since after 200 time steps from t0 (i.e., 20 years),
the marginal variances will be 200σ 2

interior, 200σ 2
margin, and

200σ 2
dome based on the accumulating errors model; all of

these values exceed 1, the measurement variance.

5 Summary, discussion, and future work

The primary contribution of this work has been to construct
a BHM for glacier flow based on the SIA that operates in
two spatial dimensions and time, which successfully mod-

els numerical errors induced by a numerical solver that ac-
cumulate with time and vary spatially. This BHM leads to
full posterior probability distributions for physical parame-
ters as well as a principled method for making predictions
that takes into account both numerical errors and uncertainty
in key physical parameters. Furthermore, the BHM operates
in two spatial dimensions and time, which, to our knowledge,
is new to the field of glaciology. An additional contribution
is the derivation of a novel finite difference method for solv-
ing the SIA. When tested using simulated data sets based
on analytical solutions to the SIA from Bueler et al. (2005),
the results herein indicate that our approach is able to infer
meaningful probability distributions for glacial parameters,
and, furthermore, this approach makes probabilistic predic-
tions for glacial thickness that adequately account for the er-
ror induced by using a numerical solver of the SIA. A future
goal is to create an R package for fitting a generalized ver-
sion of the model used within this work, where the function
f (.) is provided by the user. This will allow glaciologists to
extend the modeling approach we have developed to other
similar scenarios in which the physical dynamics are more
complex than the SIA. An additional scenario for which this
package can be useful is when the numerical method is not a
finite difference method, e.g., a FEM. To this end, we will at-
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tempt to utilize emulator inference (Hooten et al., 2011); this
will be crucial to ensure that the methodology scales well
computationally, since each posterior sample requires a for-
ward PDE solve. Finally, and perhaps most importantly, fu-
ture work will involve the application of the modeling and
methodologies developed within this paper to real data col-
lected by the IES-UI, which includes bedrock elevation and
mass balance measurements.

Data availability. R scripts and R data files have been included in
the Supplement to rerun the simulations utilized within this paper.
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Appendix A: Finite difference method for the shallow
ice approximation

Here a finite difference scheme is derived for the SIA PDE.
The overarching strategy in developing this finite discretiza-
tion scheme is to take a second-order Taylor expansion for
H(x,y, t) with x,y fixed, and then equate the resultant time
derivatives, Ht and Ht t , to functions of spatial derivatives by
using the original SIA PDE. That is, one starts with the ap-
proximation H(x,y, t +1t)≈H(x,y, t)+Ht (x,y, t)1t +
Ht t (x,y, t)1t

2/2 and uses the first equation of Sect. 2 to
write Ht and Ht t in terms of spatial derivatives. Finally, cen-
tral differences in space are substituted for the spatial deriva-
tives. This finite difference scheme is motivated by the Lax–
Wendroff (Hudson, 1998) method, which is generally better
than finite difference methods that use only a single-order
Taylor expansion (indeed, in the advection–diffusion equa-
tion such methods may be unconditionally unstable).

In the following derivations, note that the subscripts mean
“derivative with respect to” (e.g., Ht means derivative of H
with respect to t):

Ht =−[uH ]x − [vH ]y + ḃ

Ht t =−[uH ]xt − [vH ]yt + b̈.

Now we solve for these derivatives in terms of spatial
derivatives in H(x,y, t), the glacier thickness, and R(x,y),
the bedrock level. The derivation makes repeated use of the
differentiation rule for products, the chain rule for differenti-
ation, and equality of partial derivatives. (e.g., Hxt =Htx).

− [uH ]x =−C0γρgT1+
2B
n+ 2

(ρg)nT2

T1 =
[
2HHx(Hx +Rx)+H 2(Hxx +Rxx)

]

T2 =
[[
αn−1

]
x

[
H n+2Hx +H

n+2Rx

]
+αn−1[

(n+ 2)H n+1H 2
x + (n+ 2)H n+1HxRx

+H n+2Hxx +H
n+2Rxx

]]
By symmetry in x and y, −[vH ]y can be analogously de-
rived:

− [vH ]y =−C0γρgT3+
2B
n+ 2

(ρg)nT4

T3 =
[
2HHy(Hy +Ry)+H 2(Hyy +Ryy)

]

T4 =

[[
αn−1

]
y

[
H n+2Hy +H

n+2Ry

]
+αn−1[

(n+ 2)H n+1H 2
y + (n+ 2)H n+1HyRy

+H n+2Hyy +H
n+2Ryy

]]
.

Derivatives [αn−1
]x and [αn−1

]y :

[αn−1
]x =

n− 1
2

(S2
x +S

2
y)

n−3
2 (2SxSxx + 2SySyx)

[αn−1
]y =

n− 1
2

(S2
x +S

2
y)

n−3
2 (2SySyy + 2SxSxy).

Now we derive −[uH ]xt :

−[uH ]xt =−C0γρgT1t +
2B
n+ 2

(ρg)nT2t .

T1t =
[
2HtH 2

x + 4HHxHxt + 2HHxtRx + 2HHxRxt

+ 2HtHxRx + 2HHtHxx +H 2Hxxt + 2HHtRxx

+H 2Rxxt

]

T2t = [T5+ T6+ T7+ T8]

T5 =
[
αn−1

]
xt
H n+2Hx

T6 =
[
αn−1

]
xt
H n+2Rx

T7 =
[
αn−1

]
x

[
(n+ 2)H n+1HtHx +H

n+2Hxt

+(n+ 2)H n+1HtRx +H
n+2Rxt

]
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T8 =
[
αn−1

]
xt
H n+2Hx +α

n−1
x (n+ 2)H n+1HtHx

+αn−1
x H n+2Hxt +

[
αn−1

]
xt
H n+2Rx

+αn−1
x (n+ 2)H n+1HtRx +α

n−1
x H n+2Rxt

+

[
αn−1

]
t
(n+ 2)H (n+1)H 2

x

+αn−1 (n+ 2)(n+ 1)H nHtH
2
x

+αn−1 (n+ 2)H n+12HxHxt

+

[
αn−1

]
t
(n+ 2)H n+1HxRx

+αn−1 (n+ 2)(n+ 1)H nHtHxRx

+αn−1 (n+ 2)H n+1HxtRx

+αn−1 (n+ 2)H n+1HxRxt

+

[
αn−1

]
t
H n+2Hxx

+αn−1 (n+ 2)H n+1HtHxx

+αn−1H n+2Hxxt

+

[
αn−1

]
t
H n+2Rxx

+αn−1 (n+ 2)H n+1HtRxx

+αn−1H n+2Rxxt

Note that terms with a time derivative of bedrock such as Rxt
can be set to 0 since R is assumed to be static in time. How-
ever, we keep the time derivatives for R in the above equa-
tion for full generality in case a scenario is revisited where
this does not hold. Next we derive

[
αn−1]

t
:

[
αn−1

]
t
=
n− 1

2

(
S2
x +S

2
y

) n−3
2 (

2SxSxt + 2SySyt
)
.

Next we derive
[
αn−1]

tx
:[

αn−1
]
tx
=

n− 1
2

[
n− 3

2

(
S2
x +S

2
y

) n−5
2 (

2SxSxx + 2SySyx
)

(
2SxSxt + 2SySyt

)
+

(
S2
x +S

2
y

) n−3
2(

2SyxSyt + 2SySytx + 2SxxSxt + 2SxSxtx
)]
.

Next we derive
[
αn−1]

ty
:[

αn−1
]
ty
=

n− 1
2

[
n− 3

2

(
S2
x +S

2
y

) n−5
2 (

2SxSxy + 2SySyy
)

(
2SxSxt + 2SySyt

)
+

(
S2
x +S

2
y

) n−3
2(

2SxySxt + 2SxSxty + 2SyySyt + 2SySyty
)]
.

Note that Stx = Rtx+Htx =Htx since R is assumed to be
fixed as a function of t . Note that the same argument holds
for other derivatives of S with respect to t . Next we derive
Htx,Htxx,Hty , and Htyy,Htyx :

Htx =−[uH ]xx − [vH ]yx + ḃtx,
Htxx =−[uH ]xxx − [vH ]yxx + ḃtxx,
Hty =−[uH ]xy − [vH ]yy + ḃty,
Htyy =−[uH ]xyy − [vH ]yyy + ḃtyy,
Htyx =−[uH ]xxy − [vH ]yyx + ḃtyx .

Hence, these partial derivatives allow us to substitute purely
spatial derivatives into the forward in time approximation for
H . Without loss of generality, we use a central difference ap-
proximation for all spatial derivatives. Furthermore, we used
1t = 0.1 years and1x =1y = 105 m for the analysis in this
paper. In total, 441 grid squares were modeled (i.e., 21 by 21)
with the dome grid square at the origin. While a coarse grid
was chosen for computational convenience, it is expected that
numerical errors will go to zero as the grid width goes to
zero, as is demonstrated both by Bueler et al. (2005) and
Jarosch et al. (2013).

Appendix B: Model fitting

In the following subsections, we go through the key details
regarding Bayesian computation for the model used in this
work. Assume n total grid points are modeled, of which
m� n are observed. Let Xj ∈ Rn be the error-correcting
process at time j , Sj ∈ Rn be the latent glacier surface values
at time j , f (θ ,j) ∈ Rn be shorthand for the output of the nu-
merical solver at time point j , and εj be an independent and
identically distributed (i.i.d) multivariate normal noise term
at time j with mean 0 and covariance matrix 6. MVN stands
for multivariate normal, and the first argument is the mean
and the second is the covariance. Furthermore, assume that
data are collected regularly at every kth time point, such that
one observes Y k,Y 2k, . . .,YNk ∈ Rm, and the corresponding
observation error Zk,Z2k, . . .ZNk is i.i.d MVN(0,σ 2I ). For
convenience, we denote Nk as T . Finally, let A ∈ Rm×n be
a matrix which selects the grid squares of the latent process
S that are observed; that is, its rows are unit basis vectors
corresponding to those indices that are observed.
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B1 Calculating the likelihood p(Y k, . . .,Y T |θ)

In this subsection, we derive both the likelihood of the ob-
served data: p(Y k, . . .,Y T |θ) and an approximation to the
likelihood.

Though Sect. 2.2 specifies the BHM in greater detail, the
process and data levels of the BHM (i.e., conditioning on θ )
are concisely written as follows.

Xj =Xj−1+ εj

Sj = f (θ ,j)+Xj

Y ck = ASck +Zck

Assume j ∈ 1,2, . . .T and c ∈ 1,2, . . .N ; hence there are
N total spatial vectors observed with a period of length k.
Furthermore, X1 is marginally MVN(0,6). That is, the pro-
cess level vectors, Sj , are modeled conditional on the param-
eter level and the error-correcting process. The data level vec-
tors, Y ck , are generated conditional on the process level Sck .
Throughout the following, we condition on θ being fixed.

B1.1 The exact likelihood

Conditional on θ , the distribution of (Y k, . . .,Y T ), viewed
as one long random vector, is multivariate normal.
Also, conditional on θ , the mean of (Y k, . . .,Y T ) is
(Af (θ ,k), . . .Af (θ ,T )) because both (Xk, . . .,XT ) and
(Zk, . . .,ZT ) have mean 0. It suffices to thus derive the co-
variance matrix for (Y k, . . .,Y T ) conditional on θ . To do this,
we note that Var(Y ck)= Var(ASck +Zck)= Var(ASck)+
Var(Zck)= [A(ck6)Aᵀ

] + σ 2I . Additionally, for a < b:

Cov(Y a,Y b)= Cov(ASa +Za,ASb+Zb)
= Cov(ASa,ASb)
= Cov(A[f (θ ,a)+Xa],A[f (θ ,b)+Xb])
= Cov(AXa,AXb)
= Var(AXa)
= [A(a6)Aᵀ

]

Therefore, the covariance matrix for the observed data can
be written as M⊗ (A6Aᵀ)+ σ 2I , where Mij = kmin(i,j)

and M ∈ RN×N . This is a useful matrix representation be-
cause the inverse of M is band-limited and sparse, for which
there exist efficient computationally efficient linear algebraic
routines (Rue, 2001).

B1.2 An approximation to the likelihood

The joint distribution p(Y k, . . .,Y T |θ) can be written
as p(Y k|θ)p(Y 2k|Y k,θ). . .p(Y T |Y k, . . .,Y (N−1)k,θ). Since
we expect that the data level errors are quite small (on the
order of 1 m) in comparison to the overall surface elevation
measurements (on the order of 1 km), we can approximate
p(S(c−1)k|Y k, . . .,Y (c−1)k,θ) with p(S(c−1)k|Y (c−1)k,θ).
Consequently, p(Y ck|Y k, . . .,Y (c−1)k,θ) will be close to

p(Y ck|Y (c−1)k,θ). From the above recursive relationship, we
can write

Y ck = Y (c−1)k +A
[
f (θ ,ck)− f (θ , (c− 1)k)

]
+Zck −Z(c−1)k +

ck∑
j=(c−1)k+1

Aεj .

This expression motivates approximating
p(Y ck|Y k, . . .,Y (c−1)k,θ) as MVN distribution with
mean Y (c−1)k+A[f (θ ,ck)−f (θ , (c−1)k)] and covariance
matrix A(k6)Aᵀ

+ 2σ 2I . A similar expression shows that
p(Y k) is multivariate normal with mean Af (θ ,k) and
covariance matrix A(k6)Aᵀ

+ σ 2I . Nonetheless, we must
be clear: p(Y ck|Y (c−1)k,θ) does not exactly follow a MVN
with mean Y (c−1)k +A[f (θ ,ck)− f (θ , (c− 1)k)] and
covariance matrix A(k6)Aᵀ

+2σ 2I ; this is because Z(c−1)k
and Y (c−1)k are dependent. A simple example illustrating
this approximation is presented in the Supplement.

B2 Posterior computation

Posterior inference is accomplished with grid sampling (Gel-
man et al., 2013); this approach directly computes the poste-
rior distribution, p(θ |Y k, . . .,Y T ) of the parameter, propor-
tional to p(Y k, . . .,Y T |θ)p(θ), on a grid of plausible values.
The likelihood is derived in the previous subsection. Parame-
ters for the error-correcting process are selected using knowl-
edge elicited from the studies of Bueler et al. (2005). To ver-
ify the sensitivity of grid sampling to the grid width, three
grid widths for B are considered: 0.25, 0.50, and 1, and the
grid’s range is from [1,70] (all in units of 10−25 s−1 Pa−3).
The summary statistics for generating 106 posterior samples
from more to less fine (0.25, 0.50, 1) are given below.

– The minimum is (5.25,5.00,6.00).

– The first quartile is (23.8,23.5,24.0).

– The median is (27.0,26.5, 27.0).

– The mean is (27.1,26.7,27.1).

– The third quartile is (30.5,30.0,30.0).

– The max is (51.50,49.0,51.0).

The similarity of summary statistics across grid widths indi-
cates that the posterior samples are not very sensitive to grid
width; a grid width of 0.50 was used for the analyses within.
Moreover, the posterior samples in this check were generated
for test case D (i.e., mass balance field producing a periodic
solution to the SIA).

B3 Making spatiotemporal predictions of glacial
surface elevation

In this section, we give details for how to make predic-
tions under the proposed Bayesian model. Denote STend ∈
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Rn for future glacier elevation values we want to make a
prediction for at time point Tend. Our goal is to approxi-
mate the posterior predictive distribution p(STend |Y k, . . .Y T ).
To make this computationally simple, our first assump-
tion (as in the computation of the likelihood) is to sug-
gest that p(ST |Y k, . . .Y T ,θ) is approximately equivalent to
p(ST |Y T ,θ). This is because relative to the overall glacier
surface elevation values (an average of about 2000 m), the
measurement errors are small, on the order of 1 m. More-
over, based on the model specified above, we know that
STend =XT +

∑Tend
j=T+1εj+f (θ ,Tend). This suggests the fol-

lowing iterative procedure to generate a posterior sample for
the prediction of STend : for each independent sample θ l from
p(θ |Y k, . . .,Y T ), generate a sample from a multivariate nor-
mal whose mean is 0 and covariance given by (Tend− T )6,
add the sample to f (θ l,Tend), and then add this sum to a
sample from p(XT |θ = θ l,Y T ).

We must then determine how to sample from the
distribution of p(XT |θ = θ l,Y T ). Let XTobs ∈ Rm be
a subvector of XT corresponding to the indices that
are observed at the data level, and XTpred ∈ Rn−m be
a subvector of XT corresponding to unobserved in-
dices. The distribution for p(XTobs |θ ,Y T ) is multivari-
ate normal due to conjugacy. The precision, denoted
by Qobs, is σ−2I + [A(T6)Aᵀ

]
−1. The mean, denoted

by µobs, is Q−1
obs(σ

−2IY T + [A(T6)Aᵀ
]
−1Af (θ ,T ))−

Af (θ ,T ). p(XTpred |XTobs ,θ ,Y T ) is multivariate normal,
whose mean and variance can be derived with the
well-known conditional multivariate normal formula, as
in Theorem 2.44 of Wasserman (2013). That is, the
mean is T6pred,obsQobs and the variance is T6pred,pred−

T6pred,obsQobsT6obs,pred. Here, 6pred,obs is the submatrix
of 6 that contains the rows of 6 that correspond to the in-
dices that are to be predicted, and the columns correspond
to the indices which are observed. 6obs,pred is analogously
defined.
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