Articles | Volume 7, issue 1
The Cryosphere, 7, 229–240, 2013
The Cryosphere, 7, 229–240, 2013

Research article 07 Feb 2013

Research article | 07 Feb 2013

Restoring mass conservation to shallow ice flow models over complex terrain

A. H. Jarosch1, C. G. Schoof2, and F. S. Anslow3 A. H. Jarosch et al.
  • 1Centre for Climate and Cryosphere, Institute of Meteorology and Geophysics, University of Innsbruck, Innsbruck, Austria
  • 2Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, Canada
  • 3Pacific Climate Impacts Consortium, University of Victoria, Victoria, Canada

Abstract. Numerical simulation of glacier dynamics in mountainous regions using zero-order, shallow ice models is desirable for computational efficiency so as to allow broad coverage. However, these models present several difficulties when applied to complex terrain. One such problem arises where steep terrain can spuriously lead to large ice fluxes that remove more mass from a grid cell than it originally contains, leading to mass conservation being violated. This paper describes a vertically integrated, shallow ice model using a second-order flux-limiting spatial discretization scheme that enforces mass conservation. An exact solution to ice flow over a bedrock step is derived for a given mass balance forcing as a benchmark to evaluate the model performance in such a difficult setting. This benchmark should serve as a useful test for modellers interested in simulating glaciers over complex terrain.