Articles | Volume 11, issue 4
https://doi.org/10.5194/tc-11-1685-2017
https://doi.org/10.5194/tc-11-1685-2017
Comment/reply
 | 
21 Jul 2017
Comment/reply |  | 21 Jul 2017

Reply to “Basal buoyancy and fast-moving glaciers: in defense of analytic force balance” by C. J. van der Veen (2016)

Terence J. Hughes

Related authors

Instability of Northeast Siberian ice sheet during glacials
Zhongshi Zhang, Qing Yan, Elizabeth J. Farmer, Camille Li, Gilles Ramstein, Terence Hughes, Martin Jakobsson, Matt O'Regan, Ran Zhang, Ning Tan, Camille Contoux, Christophe Dumas, and Chuncheng Guo
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-79,https://doi.org/10.5194/cp-2018-79, 2018
Revised manuscript not accepted
Short summary
Sheet, stream, and shelf flow as progressive ice-bed uncoupling: Byrd Glacier, Antarctica and Jakobshavn Isbrae, Greenland
T. Hughes, A. Sargent, J. Fastook, K. Purdon, J. Li, J.-B. Yan, and S. Gogineni
The Cryosphere, 10, 193–225, https://doi.org/10.5194/tc-10-193-2016,https://doi.org/10.5194/tc-10-193-2016, 2016
Short summary
Quantifying the Jakobshavn Effect: Jakobshavn Isbrae, Greenland, compared to Byrd Glacier, Antarctica
T. Hughes, A. Sargent, J. Fastook, K. Purdon, J. Li, J.-B. Yan, and S. Gogineni
The Cryosphere Discuss., https://doi.org/10.5194/tcd-8-2043-2014,https://doi.org/10.5194/tcd-8-2043-2014, 2014
Revised manuscript not accepted

Related subject area

Numerical Modelling
Antarctic sensitivity to oceanic melting parameterizations
Antonio Juarez-Martinez, Javier Blasco, Alexander Robinson, Marisa Montoya, and Jorge Alvarez-Solas
The Cryosphere, 18, 4257–4283, https://doi.org/10.5194/tc-18-4257-2024,https://doi.org/10.5194/tc-18-4257-2024, 2024
Short summary
Analytical solutions for the advective–diffusive ice column in the presence of strain heating
Daniel Moreno-Parada, Alexander Robinson, Marisa Montoya, and Jorge Alvarez-Solas
The Cryosphere, 18, 4215–4232, https://doi.org/10.5194/tc-18-4215-2024,https://doi.org/10.5194/tc-18-4215-2024, 2024
Short summary
Ice viscosity governs hydraulic fracture that causes rapid drainage of supraglacial lakes
Tim Hageman, Jessica Mejía, Ravindra Duddu, and Emilio Martínez-Pañeda
The Cryosphere, 18, 3991–4009, https://doi.org/10.5194/tc-18-3991-2024,https://doi.org/10.5194/tc-18-3991-2024, 2024
Short summary
Microstructure-based modelling of snow mechanics: experimental evaluation of the cone penetration test
Clémence Herny, Pascal Hagenmuller, Guillaume Chambon, Isabel Peinke, and Jacques Roulle
The Cryosphere, 18, 3787–3805, https://doi.org/10.5194/tc-18-3787-2024,https://doi.org/10.5194/tc-18-3787-2024, 2024
Short summary
Snow redistribution in an intermediate-complexity snow hydrology modelling framework
Louis Quéno, Rebecca Mott, Paul Morin, Bertrand Cluzet, Giulia Mazzotti, and Tobias Jonas
The Cryosphere, 18, 3533–3557, https://doi.org/10.5194/tc-18-3533-2024,https://doi.org/10.5194/tc-18-3533-2024, 2024
Short summary

Cited articles

Denton, G. H. and Hughes, T. J. (Eds.): The Last Great Ice Sheets, Wiley Interscience, New York, 484 pp., 1981.
Fastook, J. L. and Hughes, T. J.: New perspectives on paleoglaciology, Quaternary Sci. Rev., 80, 169–194, 2013.
Hughes, T.: On the pulling power of ice streams, J. Glaciol., 38, 125–151, 1992.
Hughes, T. J.: Holistic ice sheet modeling: a first-order approach (monograph), University of Maine, 188 pp., 2008.
Hughes, T.: Holistic Ice Sheet Modeling: A First-Order Approach, Nova Publishers, New York, 261 pp., 2012a.
Short summary
Two approaches to ice-sheet modeling are available. Analytical modeling is the traditional approach. It solves the force (momentum), mass, and energy balances to obtain three-dimensional solutions over time. Geometrical modeling employs simple geometry to solve the force and mass balance in one dimension along ice flow. It is useful primarily to provide the first-order physical basis of ice-sheet modeling for students with little background in mathematics. The two approaches are compared.