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Abstract. Two approaches to ice-sheet modeling are avail-
able. Analytical modeling is the traditional approach (Van
der Veen, 2016). It solves the force (momentum), mass, and
energy balances to obtain three-dimensional solutions over
time, beginning with the Navier–Stokes equations for the
force balance. Geometrical modeling employs simple geom-
etry to solve the force and mass balance in one dimension
along ice flow (Hughes, 2012a). It is useful primarily to pro-
vide the first-order physical basis of ice-sheet modeling for
students with little background in mathematics. The geomet-
ric approach uses changes in ice-bed coupling along flow to
calculate changes in ice elevation and thickness, using a float-
ing fraction φ along a flow line or flow band, where φ = 0
for sheet flow, 0< φ < 1 for stream flow, and φ = 1 for shelf
flow. An attempt is made to reconcile the two approaches.

1 Introduction

Cornelis “Kees” Van der Veen’s comparison of geometric
and analytic approaches to the force balance in glaciology in
The Cryosphere (Van der Veen, 2016) is most welcome be-
cause he takes seriously my geometrical approach to the lon-
gitudinal force balance (Hughes et al., 2016). The geometric
force balance is useful only for one-dimensional flow along
ice-sheet flow lines or flow bands of constant width. For two-
dimensional flow in the map plane, width becomes a variable
and geometrical areas become geometrical volumes, substan-
tially increasing geometrical complexity with little advance

in physical insight. The analytic force balance is typically ob-
tained by solving the Navier–Stokes equations, which can be
done in three dimensions and, when including the mass and
energy balances, becomes time dependent. The geometrical
approach has the advantage of being visual. It is useful for
visually understanding the force balance by comparing the
areas of right triangles and rectangles (or parallelograms).

2 Addressing Van der Veen (2016)

My interest in the force balance for ice sheets spans four
decades, beginning when I used glacial geology to recon-
struct former ice sheets from the bottom up based on the
strength of ice-bed coupling deduced from glacial geology,
an approach that also produced the concave surface of ice
streams for the first time (Denton and Hughes, 1981, chap. 5
and 6). I developed the geometric approach after observ-
ing the huge arcing transverse crevasses at the head of Byrd
Glacier, and realized it was actually pulling ice out of the
East Antarctic Ice Sheet (Hughes, 1992). Since then it has
been a work in progress.

Referring to Hughes (2008), Van der Veen (2016) states
on his page 1332 that I believe lateral drag vanishes at the
center of an ice stream. Lateral shear stress σxy vanishes, but
the lateral shear force does not. On the right side, stress σxy
acts on side area Ay and on the left side stress −σxy acts on
side area −Ay , with Ay and −Ay being vectors in opposite
y directions, so the shear force is always positive and opposes
longitudinal gravitational forcing.
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Van der Veen (2016) states that his Eq. (9) is similar to my
Eq. (36) in Hughes (2003), but it is not the same. We cannot
readily translate term by term the geometric balance in the
conventional notation of the force balance. It is just the same
equation that holds.

In the geometric force balance, the driving force is the
area of a right triangle and all the resisting forces are areas
of triangles and a rectangle (or parallelogram) that fit into
the triangle so the driving and resisting forces are identical.
All signs are positive in my Eq. (36). His σF is my flota-
tion stress, which does not appear in my 2003 paper. It ap-
pears in Hughes (2012a) and in Hughes et al. (2016). Van der
Veen (2016, p. 1333) states my σF is his R̃xx in his Eq. (1).
It is not. My σF always requires basal water deep enough to
uncouple ice from the bed or to supersaturate basal till; see
my Fig. 1. In ice streams, water height hW above the bed is
the height to which basal water would rise in a borehole, in-
cluding heights far above sea level (Kamb, 2001). There is
no such provision in Van der Veen (2016).

The proof that my σF is unique is found using my
equations, reproduced in my Table 1 from Table 12.1 in
Hughes (2012a). Substituting my equations for ∂(σFhI)/∂x,
τO, and τS expressed in terms of floating fraction φ into
PIα = ∂(σFhI)/∂x+ τO+ 2τS(hI/wI), my equation for the
force balance, gives 0= 0. In my geometric force balance,
resisting forces are represented by triangles and a rectangle
(or parallelogram) that exactly fit inside a big right triangle
that represents my driving force, so the area of my big trian-
gle is the same as summed component areas from resisting
forces within it, so 0= 0 must be obtained; see the visual
representation in my Fig. 2.

Referring to my Fig. 3 (left), Fig. 3 in Van der Veen (2016),
line AF should be parallel to line BE because they both show
ice pressure increasing linearly with depth. Line CE shows
how water pressure increases linearly with depth, as is ob-
vious at the calving front. In my geometrical force balance,
the longitudinal gravitational driving force is area ADF of
the big right triangle. Fitted inside ADF are a resisting flota-
tion force given by area BDE for floating ice fraction φ and
a resisting drag force given by area ABEF for the grounded
ice fraction 1−φ in my Fig. 1. Inside BDE is area CDE for
the resisting force from water pressure and area BCE for the
resisting force from the tensile strength of floating ice. Inside
area ABEF is the triangle above B for basal drag and the par-
allelogram below B for side drag. Resistance from basal drag
is the area of the triangle above B. Resistance from side drag
is the area of the parallelogram below B if lines BE and AF
are made parallel. If BE is made part of AF, a rectangle would
replace the parallelogram but the area would be unchanged;
see my Fig. 2. That is all there is to it. The only remaining
task is to replace forces with products of stresses and lengths
(for areas with zero or constant widths along x) upon which
the stresses act along a flow line (no width) or a flow band
(constant width). My solution for the force balance is exact
because forcing area ADF equals resisting areas ABEF, BCE,

Figure 1. Figure 4 from Hughes et al. (2016). Under an ice stream,
basal ice is grounded in the shaded areas and floating in the un-
shaded areas (top) as seen in a transverse cross section (bottom) for
incremental basal area wI1x.

and CDE inside ADF. All gravitational and resisting forces
in the longitudinal direction of ice flow are thereby included,
with ABEF representing the force from both basal and side
drag.

Van der Veen (2016) correctly states that his Eq. (16)
represents my longitudinal gravitational driving force, but
then he states it “does not represent the gravitational driv-
ing force” (p. 1335). It does. The analytic and geometric ap-
proaches to the force balance must be presented and under-
stood each on their own terms. Attempts to mix the two, as
Van der Veen (2016) did, leads only to confusion.

Van der Veen (2016) states on his page 1335 that a longi-
tudinal force balance along x must be made over incremen-
tal distance 1x that shrinks to zero. My longitudinal force
balance along x does; see Hughes (2012a, Appendix G) and
Hughes et al. (2016, p. 10). I subtract longitudinal force areas
over distance1xto get my longitudinal force balance Eq. (22)
in Hughes et al. (2016). However, Van der Veen (2016) is in-
correct in stating a longitudinal force balance must always be
made over length 1x. At the calving front of an ice shelf the
balance is obtained right at the calving front where 1x = 0,
as Robin (1958) proved 59 years ago geometrically.

Van der Veen (2016) states that his Fig. 4a, reproduced
in my Fig. 3 (right panels), should represent my geometrical
force balance because his area ADF equals his area APD. It
would if he divided his area APD into my smaller areas of
triangles and a rectangle shown in my Fig. 2, areas that resist
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Figure 2. Figure 5 from Hughes et al. (2016). Top: stresses at x and downstream from x that resist gravitational forcing. The bed supports
ice in the shaded area. Middle: the gravitational force inside the thick border is linked to σC, which represents all downstream resistance to
ice flow at point x. Bottom: gravitational forces (geometrical areas 1 through 8) and resisting stresses along incremental downstream length
1x at point x.

Figure 3. Figure 3 (left) and Fig. 4 (right) from Van der Veen (2016).
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Table 1. Resisting stresses linked to floating fraction ϕ = PF/PI of ice and gravitational forces numbered in Fig. 2 for the geometrical force
balance.

Basal water pressure at x; see gravity force 3:
PW = ρWghW

Ice overburden pressure at x; see gravity force (1+ 2+ 3+ 4):
PI = ρIghI

Upslope tensile stress at x; see gravity force 4:
σT = P I(1− ρI/ρW)φ

2

Downslope compressive stress at x due to τO and τS along x and σW at x = 0:
σC = P I− σT = P I−P I(1− ρI/ρW)φ

2

Downslope water-pressure stress at x; see gravity force 3:
σW = P I(ρI/ρW)φ

2

Upslope flotation stress at x from gravity force (3+ 4):
σF = σT+ σW = P Iφ

2

Longitudinal force balance at x from gravity force [(5+ 6+ 7+ 8)− (1+ 2+ 3+ 4)]:
PIα = ∂(σFhI)/∂x+ τO+ 2τS(hI/wI)

Flotation force gradient at x from gravity force [(7+ 8)− (3+ 4)]:
∂(σFhI)/∂x = PIφ(φαI+hI∂φ/∂x)

Basal shear stress at x from gravity force (5–1):
τO = PI(1−φ)2α−PIhI(1−φ)∂φ/∂x

Side shear stress at x from gravity force (6–2):
τS = PI(wI/hI)φ(1−φ)α+P IwI(1− 2φ)∂φ/∂x

Average downslope basal shear stress to x from gravity force 1:
τO = P IwIhI(1−φ)2/(wIx+AR)

Average downslope side shear stress to x from gravity force 2:
τS = PIwIhIφ(1−φ)/(2hIx+ 2LShS+CRhR)

gravitational forcing from his area ADF. He states that both
areas ADF and APD are “lithostatic stresses”. They are not.
Area ADF is my gravitational driving force and area APD is
the sum of my resisting forces opposing the driving force, as
he shows by his horizontal arrows in his Fig. 4a. There is no
surface slope in his Fig. 4a. That condition applies to an un-
confined linear ice shelf with constant thickness (Weertman,
1957; Robin, 1958), in which case only my areas 3 and 4 in
my Fig. 2 (bottom) add to give his area APD, since there are
no basal and side drag forces represented by my areas 1 and
2. Raymond (1983) analyzed deformation near interior ice
divides where the surface slope is also zero.

In his Fig. 4b, shown in my Fig. 3b, Van der Veen (2016)
correctly shows the geometrical force balance in my Fig. 2
(bottom) for a sloping ice surface above a horizontal bed.
From these figures we can both obtain the geometric longi-
tudinal force balance over incremental length 1x in analytic
form when 1x→ 0. In my Fig. 2 (bottom), my big right tri-
angles at x and x+1x are gravitational driving forces that
are respectively subdivided into areas 1, 2, 3, 4 and areas 5,
6, 7, 8, which resist gravitational motion along x.

Resistance from my σW may be akin to bridging
stresses across water-filled cavities discussed by Van der

Veen (2016). The existence of σW in the geometric force bal-
ance is not readily apparent from analytic solutions of the
Navier–Stokes equations, but Van der Veen (2016) may have
teased it out with his bridging stress, which forces him to add
resistance by including steep shear-stress gradients on each
side of his cavities. He maintains his cavities are small so
these gradients average out to zero along an ice stream, elim-
inating the need for my σW. They cannot average to zero if
his cavities are water-filled and get bigger and closer together
downstream, as required to progressively uncouple ice from
the bed. Then cavities themselves have a size and distribution
gradient. Figure 1, which is Fig. 4 in Hughes et al. (2016),
shows my concept of water-filled cavities in area wI1x un-
der an ice stream. We do not know which concept of cavities
is correct.

3 Concluding remarks

My geometrical force balance aims to teach the fundamen-
tals of glaciology to students with an inadequate background
in mathematics, usually students studying to be glacial ge-
ologists (Hughes, 2012a). My geometrical approach was de-
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signed to make maximum use of glacial geology in recon-
structing former ice sheets from the bottom up (Hughes,
1998, chap. 9 and 10; Fastook and Hughes, 2013) and in
demonstrating how basal thermal conditions produce glacial
geology under the Antarctic Ice Sheet today (Hughes, 1998,
chap. 3, Wilch and Hughes, 2000; Siegert, 2001). Previously
I had spent more time teaching calculus than glaciology be-
cause the Navier–Stokes equations had to be integrated in
the force balance. Everyone knows the area of a rectangle is
base times height, and of a triangle is half that; yet know-
ing that delivers the same results as integrating the Navier–
Stokes equations for linear sheet, stream, and shelf flow.

I developed the geometrical force balance over some
decades, from Hughes (1992) through to Hughes et
al. (2016). My papers are a work in progress; see pages 201–
202 of Hughes et al. (2016) regarding hW, hF, σW, and σF not
included in earlier papers. To access my most recent think-
ing, see Hughes (2012a) and Hughes et al. (2016). All the
earlier studies are flawed in various ways. The last ones may
also have flaws I have not detected. Some criticisms by Van
der Veen (2016) are directed at my earlier flawed papers.

This response gives me an opportunity to correct three
mistakes in Hughes (2012a) that will be apparent to careful
readers. The first line in Eq. (12.9) should be

∂(σFhI)/∂x = ∂

[
1
2
ρIgh

2
I φ

2
]/

∂x = PIφ(φαI+hI∂φ/∂x).

In the denominator of Eq. (17.18), r should be replaced by
(a− r). The first line of Eq. (22.18) should be

1h∗i /1x = φ
2
(
1hI

1x

)
i

+

(
hI

2

)
i

1φ2

1x
+
(τO)i

ρIgh
∗
I
+

2(τS)i

ρIgwI

=
(τ ∗O)i

ρIgh
∗
I
.

Equation (22.18) applies to sheet flow when φ = ∂φ/∂x = 0
and τ ∗O increases resistance from basal drag τO by including
side drag τS in flow bands with some side shear to allow for
the possibility of thermal convection in the form of rolls un-
der ice-stream tributaries (Hughes, 2012b). If φ > 0 in trib-
utaries supplying ice streams, and since tributaries are ubiq-
uitous in the sheet-flow interior of the Antarctic Ice Sheet
(Hughes, 2012b), side shear must be taken into account even
for sheet flow because tributaries are flow bands that move
faster than ice between these flow bands.
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