Articles | Volume 10, issue 2
https://doi.org/10.5194/tc-10-727-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/tc-10-727-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
A Retrospective, Iterative, Geometry-Based (RIGB) tilt-correction method for radiation observed by automatic weather stations on snow-covered surfaces: application to Greenland
Department of Earth System Science, University of California, Irvine, California, USA
Charles S. Zender
Department of Earth System Science, University of California, Irvine, California, USA
Dirk van As
Geological Survey of Denmark and Greenland (GEUS), Copenhagen, Denmark
Paul C. J. P. Smeets
Institute for Marine and Atmospheric Research, Utrecht University (UU/IMAU), Utrecht, the Netherlands
Michiel R. van den Broeke
Institute for Marine and Atmospheric Research, Utrecht University (UU/IMAU), Utrecht, the Netherlands
Related authors
No articles found.
Shfaqat A. Khan, Helene Seroussi, Mathieu Morlighem, William Colgan, Veit Helm, Gong Cheng, Danjal Berg, Valentina R. Barletta, Nicolaj K. Larsen, William Kochtitzky, Michiel van den Broeke, Kurt H. Kjær, Andy Aschwanden, Brice Noël, Jason E. Box, Joseph A. MacGregor, Robert S. Fausto, Kenneth D. Mankoff, Ian M. Howat, Kuba Oniszk, Dominik Fahrner, Anja Løkkegaard, Eigil Y. H. Lippert, and Javed Hassan
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-348, https://doi.org/10.5194/essd-2024-348, 2024
Preprint under review for ESSD
Short summary
Short summary
The surface elevation of the Greenland Ice Sheet is changing due to surface mass balance processes and ice dynamics, each exhibiting distinct spatiotemporal patterns. Here, we employ satellite and airborne altimetry data with fine spatial (1 km) and temporal (monthly) resolutions to document this spatiotemporal evolution from 2003 to 2023. This dataset of fine-resolution altimetry data in both space and time will support studies of ice mass loss and useful for GIS ice sheet modelling.
Sanne B. M. Veldhuijsen, Willem Jan van de Berg, Peter Kuipers Munneke, Nicolaj Hansen, Fredrik Boberg, Christoph Kittel, Charles Amory, and Michiel R. van den Broeke
EGUsphere, https://doi.org/10.5194/egusphere-2024-2855, https://doi.org/10.5194/egusphere-2024-2855, 2024
Short summary
Short summary
Perennial firn aquifers (PFAs), year-round bodies of liquid water within firn, can potentially impact ice-shelf and ice-sheet stability. We developed a fast XGBoost firn emulator to predict 21st-century distribution of PFAs in Antarctica for 12 climatic forcings datasets. Our findings suggest that under low emission scenarios, PFAs remain confined to the Antarctic Peninsula. However, under a high-emission scenario, PFAs are projected to expand to a region in West Antarctica and East Antarctica.
Maria T. Kappelsberger, Martin Horwath, Eric Buchta, Matthias O. Willen, Ludwig Schröder, Sanne B. M. Veldhuijsen, Peter Kuipers Munneke, and Michiel R. van den Broeke
The Cryosphere, 18, 4355–4378, https://doi.org/10.5194/tc-18-4355-2024, https://doi.org/10.5194/tc-18-4355-2024, 2024
Short summary
Short summary
The interannual variations in the height of the Antarctic Ice Sheet (AIS) are mainly due to natural variations in snowfall. Precise knowledge of these variations is important for the detection of any long-term climatic trends in AIS surface elevation. We present a new product that spatially resolves these height variations over the period 1992–2017. The product combines the strengths of atmospheric modeling results and satellite altimetry measurements.
Horst Machguth, Andrew Tedstone, Peter Kuipers Munneke, Max Brils, Brice Noël, Nicole Clerx, Nicolas Jullien, Xavier Fettweis, and Michiel van den Broeke
EGUsphere, https://doi.org/10.5194/egusphere-2024-2750, https://doi.org/10.5194/egusphere-2024-2750, 2024
Short summary
Short summary
Due to increasing air temperatures, surface melt expands to higher elevations on the Greenland ice sheet. This is visible on satellite imagery in the form of rivers of meltwater running across the surface of the ice sheet. We compare model results of meltwater at high elevations on the ice sheet to satellite observations. We find that each of the models shows strengths and weaknesses. A detailed look into the model results reveals potential reasons for the differences between models.
Christiaan T. van Dalum, Willem Jan van de Berg, Srinidhi N. Gadde, Maurice van Tiggelen, Tijmen van der Drift, Erik van Meijgaard, Lambertus H. van Ulft, and Michiel R. van den Broeke
The Cryosphere, 18, 4065–4088, https://doi.org/10.5194/tc-18-4065-2024, https://doi.org/10.5194/tc-18-4065-2024, 2024
Short summary
Short summary
We present a new version of the polar Regional Atmospheric Climate Model (RACMO), version 2.4p1, and show first results for Greenland, Antarctica and the Arctic. We provide an overview of all changes and investigate the impact that they have on the climate of polar regions. By comparing the results with observations and the output from the previous model version, we show that the model performs well regarding the surface mass balance of the ice sheets and near-surface climate.
Sanne B. M. Veldhuijsen, Willem Jan van de Berg, Peter Kuipers Munneke, and Michiel R. van den Broeke
The Cryosphere, 18, 1983–1999, https://doi.org/10.5194/tc-18-1983-2024, https://doi.org/10.5194/tc-18-1983-2024, 2024
Short summary
Short summary
We use the IMAU firn densification model to simulate the 21st-century evolution of Antarctic firn air content. Ice shelves on the Antarctic Peninsula and the Roi Baudouin Ice Shelf in Dronning Maud Land are particularly vulnerable to total firn air content (FAC) depletion. Our results also underline the potentially large vulnerability of low-accumulation ice shelves to firn air depletion through ice slab formation.
Baptiste Vandecrux, Robert S. Fausto, Jason E. Box, Federico Covi, Regine Hock, Åsa K. Rennermalm, Achim Heilig, Jakob Abermann, Dirk van As, Elisa Bjerre, Xavier Fettweis, Paul C. J. P. Smeets, Peter Kuipers Munneke, Michiel R. van den Broeke, Max Brils, Peter L. Langen, Ruth Mottram, and Andreas P. Ahlstrøm
The Cryosphere, 18, 609–631, https://doi.org/10.5194/tc-18-609-2024, https://doi.org/10.5194/tc-18-609-2024, 2024
Short summary
Short summary
How fast is the Greenland ice sheet warming? In this study, we compiled 4500+ temperature measurements at 10 m below the ice sheet surface (T10m) from 1912 to 2022. We trained a machine learning model on these data and reconstructed T10m for the ice sheet during 1950–2022. After a slight cooling during 1950–1985, the ice sheet warmed at a rate of 0.7 °C per decade until 2022. Climate models showed mixed results compared to our observations and underestimated the warming in key regions.
Lena G. Buth, Valeria Di Biase, Peter Kuipers Munneke, Stef Lhermitte, Sanne B. M. Veldhuijsen, Sophie de Roda Husman, Michiel R. van den Broeke, and Bert Wouters
EGUsphere, https://doi.org/10.5194/egusphere-2023-2000, https://doi.org/10.5194/egusphere-2023-2000, 2023
Preprint archived
Short summary
Short summary
Liquid meltwater which is stored in air bubbles in the compacted snow near the surface of Antarctica can affect ice shelf stability. In order to detect the presence of such firn aquifers over large scales, satellite remote sensing is needed. In this paper, we present our new detection method using radar satellite data as well as the results for the whole Antarctic Peninsula. Firn aquifers are found in the north and northwest of the peninsula, in agreement with locations predicted by models.
Qi Tang, Jean-Christophe Golaz, Luke P. Van Roekel, Mark A. Taylor, Wuyin Lin, Benjamin R. Hillman, Paul A. Ullrich, Andrew M. Bradley, Oksana Guba, Jonathan D. Wolfe, Tian Zhou, Kai Zhang, Xue Zheng, Yunyan Zhang, Meng Zhang, Mingxuan Wu, Hailong Wang, Cheng Tao, Balwinder Singh, Alan M. Rhoades, Yi Qin, Hong-Yi Li, Yan Feng, Yuying Zhang, Chengzhu Zhang, Charles S. Zender, Shaocheng Xie, Erika L. Roesler, Andrew F. Roberts, Azamat Mametjanov, Mathew E. Maltrud, Noel D. Keen, Robert L. Jacob, Christiane Jablonowski, Owen K. Hughes, Ryan M. Forsyth, Alan V. Di Vittorio, Peter M. Caldwell, Gautam Bisht, Renata B. McCoy, L. Ruby Leung, and David C. Bader
Geosci. Model Dev., 16, 3953–3995, https://doi.org/10.5194/gmd-16-3953-2023, https://doi.org/10.5194/gmd-16-3953-2023, 2023
Short summary
Short summary
High-resolution simulations are superior to low-resolution ones in capturing regional climate changes and climate extremes. However, uniformly reducing the grid size of a global Earth system model is too computationally expensive. We provide an overview of the fully coupled regionally refined model (RRM) of E3SMv2 and document a first-of-its-kind set of climate production simulations using RRM at an economic cost. The key to this success is our innovative hybrid time step method.
Inès N. Otosaka, Andrew Shepherd, Erik R. Ivins, Nicole-Jeanne Schlegel, Charles Amory, Michiel R. van den Broeke, Martin Horwath, Ian Joughin, Michalea D. King, Gerhard Krinner, Sophie Nowicki, Anthony J. Payne, Eric Rignot, Ted Scambos, Karen M. Simon, Benjamin E. Smith, Louise S. Sørensen, Isabella Velicogna, Pippa L. Whitehouse, Geruo A, Cécile Agosta, Andreas P. Ahlstrøm, Alejandro Blazquez, William Colgan, Marcus E. Engdahl, Xavier Fettweis, Rene Forsberg, Hubert Gallée, Alex Gardner, Lin Gilbert, Noel Gourmelen, Andreas Groh, Brian C. Gunter, Christopher Harig, Veit Helm, Shfaqat Abbas Khan, Christoph Kittel, Hannes Konrad, Peter L. Langen, Benoit S. Lecavalier, Chia-Chun Liang, Bryant D. Loomis, Malcolm McMillan, Daniele Melini, Sebastian H. Mernild, Ruth Mottram, Jeremie Mouginot, Johan Nilsson, Brice Noël, Mark E. Pattle, William R. Peltier, Nadege Pie, Mònica Roca, Ingo Sasgen, Himanshu V. Save, Ki-Weon Seo, Bernd Scheuchl, Ernst J. O. Schrama, Ludwig Schröder, Sebastian B. Simonsen, Thomas Slater, Giorgio Spada, Tyler C. Sutterley, Bramha Dutt Vishwakarma, Jan Melchior van Wessem, David Wiese, Wouter van der Wal, and Bert Wouters
Earth Syst. Sci. Data, 15, 1597–1616, https://doi.org/10.5194/essd-15-1597-2023, https://doi.org/10.5194/essd-15-1597-2023, 2023
Short summary
Short summary
By measuring changes in the volume, gravitational attraction, and ice flow of Greenland and Antarctica from space, we can monitor their mass gain and loss over time. Here, we present a new record of the Earth’s polar ice sheet mass balance produced by aggregating 50 satellite-based estimates of ice sheet mass change. This new assessment shows that the ice sheets have lost (7.5 x 1012) t of ice between 1992 and 2020, contributing 21 mm to sea level rise.
Sanne B. M. Veldhuijsen, Willem Jan van de Berg, Max Brils, Peter Kuipers Munneke, and Michiel R. van den Broeke
The Cryosphere, 17, 1675–1696, https://doi.org/10.5194/tc-17-1675-2023, https://doi.org/10.5194/tc-17-1675-2023, 2023
Short summary
Short summary
Firn is the transition of snow to glacier ice and covers 99 % of the Antarctic ice sheet. Knowledge about the firn layer and its variability is important, as it impacts satellite-based estimates of ice sheet mass change. Also, firn contains pores in which nearly all of the surface melt is retained. Here, we improve a semi-empirical firn model and simulate the firn characteristics for the period 1979–2020. We evaluate the performance with field and satellite measures and test its sensitivity.
Chengzhu Zhang, Jean-Christophe Golaz, Ryan Forsyth, Tom Vo, Shaocheng Xie, Zeshawn Shaheen, Gerald L. Potter, Xylar S. Asay-Davis, Charles S. Zender, Wuyin Lin, Chih-Chieh Chen, Chris R. Terai, Salil Mahajan, Tian Zhou, Karthik Balaguru, Qi Tang, Cheng Tao, Yuying Zhang, Todd Emmenegger, Susannah Burrows, and Paul A. Ullrich
Geosci. Model Dev., 15, 9031–9056, https://doi.org/10.5194/gmd-15-9031-2022, https://doi.org/10.5194/gmd-15-9031-2022, 2022
Short summary
Short summary
Earth system model (ESM) developers run automated analysis tools on data from candidate models to inform model development. This paper introduces a new Python package, E3SM Diags, that has been developed to support ESM development and use routinely in the development of DOE's Energy Exascale Earth System Model. This tool covers a set of essential diagnostics to evaluate the mean physical climate from simulations, as well as several process-oriented and phenomenon-based evaluation diagnostics.
Marte G. Hofsteenge, Nicolas J. Cullen, Carleen H. Reijmer, Michiel van den Broeke, Marwan Katurji, and John F. Orwin
The Cryosphere, 16, 5041–5059, https://doi.org/10.5194/tc-16-5041-2022, https://doi.org/10.5194/tc-16-5041-2022, 2022
Short summary
Short summary
In the McMurdo Dry Valleys (MDV), foehn winds can impact glacial meltwater production and the fragile ecosystem that depends on it. We study these dry and warm winds at Joyce Glacier and show they are caused by a different mechanism than that found for nearby valleys, demonstrating the complex interaction of large-scale winds with the mountains in the MDV. We find that foehn winds increase sublimation of ice, increase heating from the atmosphere, and increase the occurrence and rates of melt.
Lena G. Buth, Bert Wouters, Sanne B. M. Veldhuijsen, Stef Lhermitte, Peter Kuipers Munneke, and Michiel R. van den Broeke
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-127, https://doi.org/10.5194/tc-2022-127, 2022
Manuscript not accepted for further review
Short summary
Short summary
Liquid meltwater which is stored in air bubbles in the compacted snow near the surface of Antarctica can affect ice shelf stability. In order to detect the presence of such firn aquifers over large scales, satellite remote sensing is needed. In this paper, we present our new detection method using radar satellite data as well as the results for the whole Antarctic Peninsula. Firn aquifers are found in the north and northwest of the peninsula, in agreement with locations predicted by models.
Max Brils, Peter Kuipers Munneke, Willem Jan van de Berg, and Michiel van den Broeke
Geosci. Model Dev., 15, 7121–7138, https://doi.org/10.5194/gmd-15-7121-2022, https://doi.org/10.5194/gmd-15-7121-2022, 2022
Short summary
Short summary
Firn covers the Greenland ice sheet (GrIS) and can temporarily prevent mass loss. Here, we present the latest version of our firn model, IMAU-FDM, with an application to the GrIS. We improved the density of fallen snow, the firn densification rate and the firn's thermal conductivity. This leads to a higher air content and 10 m temperatures. Furthermore we investigate three case studies and find that the updated model shows greater variability and an increased sensitivity in surface elevation.
Rohi Muthyala, Åsa K. Rennermalm, Sasha Z. Leidman, Matthew G. Cooper, Sarah W. Cooley, Laurence C. Smith, and Dirk van As
The Cryosphere, 16, 2245–2263, https://doi.org/10.5194/tc-16-2245-2022, https://doi.org/10.5194/tc-16-2245-2022, 2022
Short summary
Short summary
In situ measurements of meltwater discharge through supraglacial stream networks are rare. The unprecedentedly long record of discharge captures diurnal and seasonal variability. Two major findings are (1) a change in the timing of peak discharge through the melt season that could impact meltwater delivery in the subglacial system and (2) though the primary driver of stream discharge is shortwave radiation, longwave radiation and turbulent heat fluxes play a major role during high-melt episodes.
Matthew K. Laffin, Charles S. Zender, Melchior van Wessem, and Sebastián Marinsek
The Cryosphere, 16, 1369–1381, https://doi.org/10.5194/tc-16-1369-2022, https://doi.org/10.5194/tc-16-1369-2022, 2022
Short summary
Short summary
The collapses of the Larsen A and B ice shelves on the Antarctic Peninsula (AP) occurred while the ice shelves were covered with large melt lakes, and ocean waves damaged the ice shelf fronts, triggering collapse. Observations show föhn winds were present on both ice shelves and increased surface melt and drove sea ice away from the ice front. Collapsed ice shelves experienced enhanced surface melt driven by föhn winds, whereas extant ice shelves are affected less by föhn-wind-induced melt.
Chloe A. Whicker, Mark G. Flanner, Cheng Dang, Charles S. Zender, Joseph M. Cook, and Alex S. Gardner
The Cryosphere, 16, 1197–1220, https://doi.org/10.5194/tc-16-1197-2022, https://doi.org/10.5194/tc-16-1197-2022, 2022
Short summary
Short summary
Snow and ice surfaces are important to the global climate. Current climate models use measurements to determine the reflectivity of ice. This model uses physical properties to determine the reflectivity of snow, ice, and darkly pigmented impurities that reside within the snow and ice. Therefore, the modeled reflectivity is more accurate for snow/ice columns under varying climate conditions. This model paves the way for improvements in the portrayal of snow and ice within global climate models.
Christiaan T. van Dalum, Willem Jan van de Berg, and Michiel R. van den Broeke
The Cryosphere, 16, 1071–1089, https://doi.org/10.5194/tc-16-1071-2022, https://doi.org/10.5194/tc-16-1071-2022, 2022
Short summary
Short summary
In this study, we improve the regional climate model RACMO2 and investigate the climate of Antarctica. We have implemented a new radiative transfer and snow albedo scheme and do several sensitivity experiments. When fully tuned, the results compare well with observations and snow temperature profiles improve. Moreover, small changes in the albedo and the investigated processes can lead to a strong overestimation of melt, locally leading to runoff and a reduced surface mass balance.
Mark G. Flanner, Julian B. Arnheim, Joseph M. Cook, Cheng Dang, Cenlin He, Xianglei Huang, Deepak Singh, S. McKenzie Skiles, Chloe A. Whicker, and Charles S. Zender
Geosci. Model Dev., 14, 7673–7704, https://doi.org/10.5194/gmd-14-7673-2021, https://doi.org/10.5194/gmd-14-7673-2021, 2021
Short summary
Short summary
We present the technical formulation and evaluation of a publicly available code and web-based model to simulate the spectral albedo of snow. Our model accounts for numerous features of the snow state and ambient conditions, including the the presence of light-absorbing matter like black and brown carbon, mineral dust, volcanic ash, and snow algae. Carbon dioxide snow, found on Mars, is also represented. The model accurately reproduces spectral measurements of clean and contaminated snow.
Zhongyang Hu, Peter Kuipers Munneke, Stef Lhermitte, Maaike Izeboud, and Michiel van den Broeke
The Cryosphere, 15, 5639–5658, https://doi.org/10.5194/tc-15-5639-2021, https://doi.org/10.5194/tc-15-5639-2021, 2021
Short summary
Short summary
Antarctica is shrinking, and part of the mass loss is caused by higher temperatures leading to more snowmelt. We use computer models to estimate the amount of melt, but this can be inaccurate – specifically in the areas with the most melt. This is because the model cannot account for small, darker areas like rocks or darker ice. Thus, we trained a computer using artificial intelligence and satellite images that showed these darker areas. The model computed an improved estimate of melt.
Adrian Chappell, Nicholas Webb, Mark Hennen, Charles Zender, Philippe Ciais, Kerstin Schepanski, Brandon Edwards, Nancy Ziegler, Sandra Jones, Yves Balkanski, Daniel Tong, John Leys, Stephan Heidenreich, Robert Hynes, David Fuchs, Zhenzhong Zeng, Marie Ekström, Matthew Baddock, Jeffrey Lee, and Tarek Kandakji
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-337, https://doi.org/10.5194/gmd-2021-337, 2021
Revised manuscript not accepted
Short summary
Short summary
Dust emissions influence global climate while simultaneously reducing the productive potential and resilience of landscapes to climate stressors, together impacting food security and human health. Our results indicate that tuning dust emission models to dust in the atmosphere has hidden dust emission modelling weaknesses and its poor performance. Our new approach will reduce uncertainty and driven by prognostic albedo improve Earth System Models of aerosol effects on future environmental change.
Kenneth D. Mankoff, Xavier Fettweis, Peter L. Langen, Martin Stendel, Kristian K. Kjeldsen, Nanna B. Karlsson, Brice Noël, Michiel R. van den Broeke, Anne Solgaard, William Colgan, Jason E. Box, Sebastian B. Simonsen, Michalea D. King, Andreas P. Ahlstrøm, Signe Bech Andersen, and Robert S. Fausto
Earth Syst. Sci. Data, 13, 5001–5025, https://doi.org/10.5194/essd-13-5001-2021, https://doi.org/10.5194/essd-13-5001-2021, 2021
Short summary
Short summary
We estimate the daily mass balance and its components (surface, marine, and basal mass balance) for the Greenland ice sheet. Our time series begins in 1840 and has annual resolution through 1985 and then daily from 1986 through next week. Results are operational (updated daily) and provided for the entire ice sheet or by commonly used regions or sectors. This is the first input–output mass balance estimate to include the basal mass balance.
Robert S. Fausto, Dirk van As, Kenneth D. Mankoff, Baptiste Vandecrux, Michele Citterio, Andreas P. Ahlstrøm, Signe B. Andersen, William Colgan, Nanna B. Karlsson, Kristian K. Kjeldsen, Niels J. Korsgaard, Signe H. Larsen, Søren Nielsen, Allan Ø. Pedersen, Christopher L. Shields, Anne M. Solgaard, and Jason E. Box
Earth Syst. Sci. Data, 13, 3819–3845, https://doi.org/10.5194/essd-13-3819-2021, https://doi.org/10.5194/essd-13-3819-2021, 2021
Short summary
Short summary
The Programme for Monitoring of the Greenland Ice Sheet (PROMICE) has been measuring climate and ice sheet properties since 2007. Here, we present our data product from weather and ice sheet measurements from a network of automatic weather stations mainly located in the melt area of the ice sheet. Currently the PROMICE automatic weather station network includes 25 instrumented sites in Greenland.
Maurice van Tiggelen, Paul C. J. P. Smeets, Carleen H. Reijmer, Bert Wouters, Jakob F. Steiner, Emile J. Nieuwstraten, Walter W. Immerzeel, and Michiel R. van den Broeke
The Cryosphere, 15, 2601–2621, https://doi.org/10.5194/tc-15-2601-2021, https://doi.org/10.5194/tc-15-2601-2021, 2021
Short summary
Short summary
We developed a method to estimate the aerodynamic properties of the Greenland Ice Sheet surface using either UAV or ICESat-2 elevation data. We show that this new method is able to reproduce the important spatiotemporal variability in surface aerodynamic roughness, measured by the field observations. The new maps of surface roughness can be used in atmospheric models to improve simulations of surface turbulent heat fluxes and therefore surface energy and mass balance over rough ice worldwide.
Christiaan T. van Dalum, Willem Jan van de Berg, and Michiel R. van den Broeke
The Cryosphere, 15, 1823–1844, https://doi.org/10.5194/tc-15-1823-2021, https://doi.org/10.5194/tc-15-1823-2021, 2021
Short summary
Short summary
Absorption of solar radiation is often limited to the surface in regional climate models. Therefore, we have implemented a new radiative transfer scheme in the model RACMO2, which allows for internal heating and improves the surface reflectivity. Here, we evaluate its impact on the surface mass and energy budget and (sub)surface temperature, by using observations and the previous model version for the Greenland ice sheet. New results match better with observations and introduce subsurface melt.
J. Melchior van Wessem, Christian R. Steger, Nander Wever, and Michiel R. van den Broeke
The Cryosphere, 15, 695–714, https://doi.org/10.5194/tc-15-695-2021, https://doi.org/10.5194/tc-15-695-2021, 2021
Short summary
Short summary
This study presents the first modelled estimates of perennial firn aquifers (PFAs) in Antarctica. PFAs are subsurface meltwater bodies that do not refreeze in winter due to the isolating effects of the snow they are buried underneath. They were first identified in Greenland, but conditions for their existence are also present in the Antarctic Peninsula. These PFAs can have important effects on meltwater retention, ice shelf stability, and, consequently, sea level rise.
Baojuan Huai, Michiel R. van den Broeke, and Carleen H. Reijmer
The Cryosphere, 14, 4181–4199, https://doi.org/10.5194/tc-14-4181-2020, https://doi.org/10.5194/tc-14-4181-2020, 2020
Short summary
Short summary
This study presents the surface energy balance (SEB) of the Greenland Ice Sheet (GrIS) using a SEB model forced with observations from automatic weather stations (AWSs). We correlate ERA5 with AWSs to show a significant positive correlation of GrIS summer surface temperature and melt with the Greenland Blocking Index and weaker and opposite correlations with the North Atlantic Oscillation. This analysis may help explain melting patterns in the GrIS with respect to circulation anomalies.
Kenneth D. Mankoff, Brice Noël, Xavier Fettweis, Andreas P. Ahlstrøm, William Colgan, Ken Kondo, Kirsty Langley, Shin Sugiyama, Dirk van As, and Robert S. Fausto
Earth Syst. Sci. Data, 12, 2811–2841, https://doi.org/10.5194/essd-12-2811-2020, https://doi.org/10.5194/essd-12-2811-2020, 2020
Short summary
Short summary
This work partitions regional climate model (RCM) runoff from the MAR and RACMO RCMs to hydrologic outlets at the ice margin and coast. Temporal resolution is daily from 1959 through 2019. Spatial grid is ~ 100 m, resolving individual streams. In addition to discharge at outlets, we also provide the streams, outlets, and basin geospatial data, as well as a script to query and access the geospatial or time series discharge data from the data files.
Xavier Fettweis, Stefan Hofer, Uta Krebs-Kanzow, Charles Amory, Teruo Aoki, Constantijn J. Berends, Andreas Born, Jason E. Box, Alison Delhasse, Koji Fujita, Paul Gierz, Heiko Goelzer, Edward Hanna, Akihiro Hashimoto, Philippe Huybrechts, Marie-Luise Kapsch, Michalea D. King, Christoph Kittel, Charlotte Lang, Peter L. Langen, Jan T. M. Lenaerts, Glen E. Liston, Gerrit Lohmann, Sebastian H. Mernild, Uwe Mikolajewicz, Kameswarrao Modali, Ruth H. Mottram, Masashi Niwano, Brice Noël, Jonathan C. Ryan, Amy Smith, Jan Streffing, Marco Tedesco, Willem Jan van de Berg, Michiel van den Broeke, Roderik S. W. van de Wal, Leo van Kampenhout, David Wilton, Bert Wouters, Florian Ziemen, and Tobias Zolles
The Cryosphere, 14, 3935–3958, https://doi.org/10.5194/tc-14-3935-2020, https://doi.org/10.5194/tc-14-3935-2020, 2020
Short summary
Short summary
We evaluated simulated Greenland Ice Sheet surface mass balance from 5 kinds of models. While the most complex (but expensive to compute) models remain the best, the faster/simpler models also compare reliably with observations and have biases of the same order as the regional models. Discrepancies in the trend over 2000–2012, however, suggest that large uncertainties remain in the modelled future SMB changes as they are highly impacted by the meltwater runoff biases over the current climate.
Christiaan T. van Dalum, Willem Jan van de Berg, Stef Lhermitte, and Michiel R. van den Broeke
The Cryosphere, 14, 3645–3662, https://doi.org/10.5194/tc-14-3645-2020, https://doi.org/10.5194/tc-14-3645-2020, 2020
Short summary
Short summary
The reflectivity of sunlight, which is also known as albedo, is often inadequately modeled in regional climate models. Therefore, we have implemented a new snow and ice albedo scheme in the regional climate model RACMO2. In this study, we evaluate a new RACMO2 version for the Greenland ice sheet by using observations and the previous model version. RACMO2 output compares well with observations, and by including new processes we improve the ability of RACMO2 to make future climate projections.
Heiko Goelzer, Sophie Nowicki, Anthony Payne, Eric Larour, Helene Seroussi, William H. Lipscomb, Jonathan Gregory, Ayako Abe-Ouchi, Andrew Shepherd, Erika Simon, Cécile Agosta, Patrick Alexander, Andy Aschwanden, Alice Barthel, Reinhard Calov, Christopher Chambers, Youngmin Choi, Joshua Cuzzone, Christophe Dumas, Tamsin Edwards, Denis Felikson, Xavier Fettweis, Nicholas R. Golledge, Ralf Greve, Angelika Humbert, Philippe Huybrechts, Sebastien Le clec'h, Victoria Lee, Gunter Leguy, Chris Little, Daniel P. Lowry, Mathieu Morlighem, Isabel Nias, Aurelien Quiquet, Martin Rückamp, Nicole-Jeanne Schlegel, Donald A. Slater, Robin S. Smith, Fiamma Straneo, Lev Tarasov, Roderik van de Wal, and Michiel van den Broeke
The Cryosphere, 14, 3071–3096, https://doi.org/10.5194/tc-14-3071-2020, https://doi.org/10.5194/tc-14-3071-2020, 2020
Short summary
Short summary
In this paper we use a large ensemble of Greenland ice sheet models forced by six different global climate models to project ice sheet changes and sea-level rise contributions over the 21st century.
The results for two different greenhouse gas concentration scenarios indicate that the Greenland ice sheet will continue to lose mass until 2100, with contributions to sea-level rise of 90 ± 50 mm and 32 ± 17 mm for the high (RCP8.5) and low (RCP2.6) scenario, respectively.
Adam M. Schneider, Charles S. Zender, and Stephen F. Price
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-247, https://doi.org/10.5194/gmd-2020-247, 2020
Preprint withdrawn
Short summary
Short summary
We enhance the Energy Exascale Earth System Model's land
component (ELM) to better represent multi-year snow (firn) on ice sheets. Our
developments reveal ELM deficiencies regarding firn density, a fundamental
property in glaciology. To improve firn density profiles, we fine tune
ELM's snowpack parameters using statistical modeling. Our findings demonstrate
how ELM can simulate both seasonal snow and firn on ice sheets and advance a
broader effort to better predict sea level rise.
Sophie Nowicki, Heiko Goelzer, Hélène Seroussi, Anthony J. Payne, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Patrick Alexander, Xylar S. Asay-Davis, Alice Barthel, Thomas J. Bracegirdle, Richard Cullather, Denis Felikson, Xavier Fettweis, Jonathan M. Gregory, Tore Hattermann, Nicolas C. Jourdain, Peter Kuipers Munneke, Eric Larour, Christopher M. Little, Mathieu Morlighem, Isabel Nias, Andrew Shepherd, Erika Simon, Donald Slater, Robin S. Smith, Fiammetta Straneo, Luke D. Trusel, Michiel R. van den Broeke, and Roderik van de Wal
The Cryosphere, 14, 2331–2368, https://doi.org/10.5194/tc-14-2331-2020, https://doi.org/10.5194/tc-14-2331-2020, 2020
Short summary
Short summary
This paper describes the experimental protocol for ice sheet models taking part in the Ice Sheet Model Intercomparion Project for CMIP6 (ISMIP6) and presents an overview of the atmospheric and oceanic datasets to be used for the simulations. The ISMIP6 framework allows for exploring the uncertainty in 21st century sea level change from the Greenland and Antarctic ice sheets.
Michael Kern, Robert Cullen, Bruno Berruti, Jerome Bouffard, Tania Casal, Mark R. Drinkwater, Antonio Gabriele, Arnaud Lecuyot, Michael Ludwig, Rolv Midthassel, Ignacio Navas Traver, Tommaso Parrinello, Gerhard Ressler, Erik Andersson, Cristina Martin-Puig, Ole Andersen, Annett Bartsch, Sinead Farrell, Sara Fleury, Simon Gascoin, Amandine Guillot, Angelika Humbert, Eero Rinne, Andrew Shepherd, Michiel R. van den Broeke, and John Yackel
The Cryosphere, 14, 2235–2251, https://doi.org/10.5194/tc-14-2235-2020, https://doi.org/10.5194/tc-14-2235-2020, 2020
Short summary
Short summary
The Copernicus Polar Ice and Snow Topography Altimeter will provide high-resolution sea ice thickness and land ice elevation measurements and the capability to determine the properties of snow cover on ice to serve operational products and services of direct relevance to the polar regions. This paper describes the mission objectives, identifies the key contributions the CRISTAL mission will make, and presents a concept – as far as it is already defined – for the mission payload.
Heiko Goelzer, Brice P. Y. Noël, Tamsin L. Edwards, Xavier Fettweis, Jonathan M. Gregory, William H. Lipscomb, Roderik S. W. van de Wal, and Michiel R. van den Broeke
The Cryosphere, 14, 1747–1762, https://doi.org/10.5194/tc-14-1747-2020, https://doi.org/10.5194/tc-14-1747-2020, 2020
Short summary
Short summary
Future sea-level change projections with process-based ice sheet models are typically driven with surface mass balance forcing derived from climate models. In this work we address the problems arising from a mismatch of the modelled ice sheet geometry with the one used by the climate model. The proposed remapping method reproduces the original forcing data closely when applied to the original geometry and produces a physically meaningful forcing when applied to different modelled geometries.
Brice Noël, Leonardus van Kampenhout, Willem Jan van de Berg, Jan T. M. Lenaerts, Bert Wouters, and Michiel R. van den Broeke
The Cryosphere, 14, 1425–1435, https://doi.org/10.5194/tc-14-1425-2020, https://doi.org/10.5194/tc-14-1425-2020, 2020
Short summary
Short summary
We present a reconstruction of historical (1950–2014) surface mass balance of the Greenland ice sheet using the Community Earth System Model (CESM2; ~111 km) to force a high-resolution regional climate model (RACMO2; ~11 km), which is further refined to 1 km spatial resolution. For the first time, an Earth-system-model-based product, assimilating no observations, can reconstruct realistic historical ice sheet surface mass balance as well as the mass loss acceleration that started in the 1990s.
Alison Delhasse, Christoph Kittel, Charles Amory, Stefan Hofer, Dirk van As, Robert S. Fausto, and Xavier Fettweis
The Cryosphere, 14, 957–965, https://doi.org/10.5194/tc-14-957-2020, https://doi.org/10.5194/tc-14-957-2020, 2020
Short summary
Short summary
The ERA5 reanalysis of the ECMWF replaced the ERA-Interim in August 2019 and has never been evaluated over Greenland. The aim was to evaluate the performance of ERA5 to simulate the near-surface climate of the Greenland Ice sheet (GrIS) against ERA-Interim and regional climate models with the help of in situ observations from the PROMICE dataset. We also highlighted that polar regional climate models are still a useful tool to study the GrIS climate compared to ERA5.
Matthias O. Willen, Martin Horwath, Ludwig Schröder, Andreas Groh, Stefan R. M. Ligtenberg, Peter Kuipers Munneke, and Michiel R. van den Broeke
The Cryosphere, 14, 349–366, https://doi.org/10.5194/tc-14-349-2020, https://doi.org/10.5194/tc-14-349-2020, 2020
Joseph M. Cook, Andrew J. Tedstone, Christopher Williamson, Jenine McCutcheon, Andrew J. Hodson, Archana Dayal, McKenzie Skiles, Stefan Hofer, Robert Bryant, Owen McAree, Andrew McGonigle, Jonathan Ryan, Alexandre M. Anesio, Tristram D. L. Irvine-Fynn, Alun Hubbard, Edward Hanna, Mark Flanner, Sathish Mayanna, Liane G. Benning, Dirk van As, Marian Yallop, James B. McQuaid, Thomas Gribbin, and Martyn Tranter
The Cryosphere, 14, 309–330, https://doi.org/10.5194/tc-14-309-2020, https://doi.org/10.5194/tc-14-309-2020, 2020
Short summary
Short summary
Melting of the Greenland Ice Sheet (GrIS) is a major source of uncertainty for sea level rise projections. Ice-darkening due to the growth of algae has been recognized as a potential accelerator of melting. This paper measures and models the algae-driven ice melting and maps the algae over the ice sheet for the first time. We estimate that as much as 13 % total runoff from the south-western GrIS can be attributed to these algae, showing that they must be included in future mass balance models.
Christiaan T. van Dalum, Willem Jan van de Berg, Quentin Libois, Ghislain Picard, and Michiel R. van den Broeke
Geosci. Model Dev., 12, 5157–5175, https://doi.org/10.5194/gmd-12-5157-2019, https://doi.org/10.5194/gmd-12-5157-2019, 2019
Short summary
Short summary
Climate models are often limited to relatively simple snow albedo schemes. Therefore, we have developed the SNOWBAL module to couple a climate model with a physically based wavelength dependent snow albedo model. Using SNOWBAL v1.2 to couple the snow albedo model TARTES with the regional climate model RACMO2 indicates a potential performance gain for the Greenland ice sheet.
Cheng Dang, Charles S. Zender, and Mark G. Flanner
The Cryosphere, 13, 2325–2343, https://doi.org/10.5194/tc-13-2325-2019, https://doi.org/10.5194/tc-13-2325-2019, 2019
Thomas J. Ballinger, Thomas L. Mote, Kyle Mattingly, Angela C. Bliss, Edward Hanna, Dirk van As, Melissa Prieto, Saeideh Gharehchahi, Xavier Fettweis, Brice Noël, Paul C. J. P. Smeets, Carleen H. Reijmer, Mads H. Ribergaard, and John Cappelen
The Cryosphere, 13, 2241–2257, https://doi.org/10.5194/tc-13-2241-2019, https://doi.org/10.5194/tc-13-2241-2019, 2019
Short summary
Short summary
Arctic sea ice and the Greenland Ice Sheet (GrIS) are melting later in the year due to a warming climate. Through analyses of weather station, climate model, and reanalysis data, physical links are evaluated between Baffin Bay open water duration and western GrIS melt conditions. We show that sub-Arctic air mass movement across this portion of the GrIS strongly influences late summer and autumn melt, while near-surface, off-ice winds inhibit westerly atmospheric heat transfer from Baffin Bay.
Vincent Verjans, Amber A. Leeson, C. Max Stevens, Michael MacFerrin, Brice Noël, and Michiel R. van den Broeke
The Cryosphere, 13, 1819–1842, https://doi.org/10.5194/tc-13-1819-2019, https://doi.org/10.5194/tc-13-1819-2019, 2019
Short summary
Short summary
Firn models rely on empirical approaches for representing the percolation and refreezing of meltwater through the firn column. We develop liquid water schemes of different levels of complexity for firn models and compare their performances with respect to observations of density profiles from Greenland. Our results demonstrate that physically advanced water schemes do not lead to better agreement with density observations. Uncertainties in other processes contribute more to model discrepancy.
Tyler C. Sutterley, Thorsten Markus, Thomas A. Neumann, Michiel van den Broeke, J. Melchior van Wessem, and Stefan R. M. Ligtenberg
The Cryosphere, 13, 1801–1817, https://doi.org/10.5194/tc-13-1801-2019, https://doi.org/10.5194/tc-13-1801-2019, 2019
Short summary
Short summary
Most of the Antarctic ice sheet is fringed by ice shelves, floating extensions of ice that help to modulate the flow of the glaciers that float into them. We use airborne laser altimetry data to measure changes in ice thickness of ice shelves around West Antarctica and the Antarctic Peninsula. Each of our target ice shelves is susceptible to short-term changes in ice thickness. The method developed here provides a framework for processing NASA ICESat-2 data over ice shelves.
Qi Tang, Stephen A. Klein, Shaocheng Xie, Wuyin Lin, Jean-Christophe Golaz, Erika L. Roesler, Mark A. Taylor, Philip J. Rasch, David C. Bader, Larry K. Berg, Peter Caldwell, Scott E. Giangrande, Richard B. Neale, Yun Qian, Laura D. Riihimaki, Charles S. Zender, Yuying Zhang, and Xue Zheng
Geosci. Model Dev., 12, 2679–2706, https://doi.org/10.5194/gmd-12-2679-2019, https://doi.org/10.5194/gmd-12-2679-2019, 2019
Kenneth D. Mankoff, William Colgan, Anne Solgaard, Nanna B. Karlsson, Andreas P. Ahlstrøm, Dirk van As, Jason E. Box, Shfaqat Abbas Khan, Kristian K. Kjeldsen, Jeremie Mouginot, and Robert S. Fausto
Earth Syst. Sci. Data, 11, 769–786, https://doi.org/10.5194/essd-11-769-2019, https://doi.org/10.5194/essd-11-769-2019, 2019
Short summary
Short summary
We have produced an open and reproducible estimate of Greenland Ice Sheet solid ice discharge from 1986 through 2017. Our results show three modes at the total ice-sheet scale: steady discharge from 1986 through 2000, increasing discharge from 2000 through 2005, and steady discharge from 2005 through 2017. The behavior of individual sectors and glaciers is more complicated. This work was done to provide a 100 % reproducible estimate to help constrain mass balance and sea-level rise estimates.
Leonardus van Kampenhout, Alan M. Rhoades, Adam R. Herrington, Colin M. Zarzycki, Jan T. M. Lenaerts, William J. Sacks, and Michiel R. van den Broeke
The Cryosphere, 13, 1547–1564, https://doi.org/10.5194/tc-13-1547-2019, https://doi.org/10.5194/tc-13-1547-2019, 2019
Short summary
Short summary
A new tool is evaluated in which the climate and surface mass balance (SMB) of the Greenland ice sheet are resolved at 55 and 28 km resolution, while the rest of the globe is modelled at ~110 km. The local refinement of resolution leads to improved accumulation (SMB > 0) compared to observations; however ablation (SMB < 0) is deteriorated in some regions. This is attributed to changes in cloud cover and a reduced effectiveness of a model-specific vertical downscaling technique.
Constantijn L. Jakobs, Carleen H. Reijmer, Peter Kuipers Munneke, Gert König-Langlo, and Michiel R. van den Broeke
The Cryosphere, 13, 1473–1485, https://doi.org/10.5194/tc-13-1473-2019, https://doi.org/10.5194/tc-13-1473-2019, 2019
Short summary
Short summary
We use 24 years of observations at Neumayer Station, East Antarctica, to calculate the surface energy balance and the associated surface melt, which we find to be mainly driven by the absorption of solar radiation. Meltwater can refreeze in the subsurface snow layers, thereby decreasing the surface albedo and hence allowing for more absorption of solar radiation. By implementing an albedo parameterisation, we show that this feedback accounts for a threefold increase in surface melt at Neumayer.
Katherine J. Evans, Joseph H. Kennedy, Dan Lu, Mary M. Forrester, Stephen Price, Jeremy Fyke, Andrew R. Bennett, Matthew J. Hoffman, Irina Tezaur, Charles S. Zender, and Miren Vizcaíno
Geosci. Model Dev., 12, 1067–1086, https://doi.org/10.5194/gmd-12-1067-2019, https://doi.org/10.5194/gmd-12-1067-2019, 2019
Short summary
Short summary
A robust validation of ice sheet models is presented using LIVVkit, version 2.1. It targets ice sheet and coupled Earth system models, and handles datasets and operations that require high-performance computing and storage. We apply LIVVkit to a Greenland ice sheet simulation to show the degree to which it captures the surface mass balance. LIVVkit identifies a positive bias due to insufficient melting compared to observations that is focused largely around Greenland's southwest region.
Baptiste Vandecrux, Michael MacFerrin, Horst Machguth, William T. Colgan, Dirk van As, Achim Heilig, C. Max Stevens, Charalampos Charalampidis, Robert S. Fausto, Elizabeth M. Morris, Ellen Mosley-Thompson, Lora Koenig, Lynn N. Montgomery, Clément Miège, Sebastian B. Simonsen, Thomas Ingeman-Nielsen, and Jason E. Box
The Cryosphere, 13, 845–859, https://doi.org/10.5194/tc-13-845-2019, https://doi.org/10.5194/tc-13-845-2019, 2019
Short summary
Short summary
The perennial snow, or firn, on the Greenland ice sheet each summer stores part of the meltwater formed at the surface, buffering the ice sheet’s contribution to sea level. We gathered observations of firn air content, indicative of the space available in the firn to retain meltwater, and find that this air content remained stable in cold regions of the firn over the last 65 years but recently decreased significantly in western Greenland.
Ludwig Schröder, Martin Horwath, Reinhard Dietrich, Veit Helm, Michiel R. van den Broeke, and Stefan R. M. Ligtenberg
The Cryosphere, 13, 427–449, https://doi.org/10.5194/tc-13-427-2019, https://doi.org/10.5194/tc-13-427-2019, 2019
Short summary
Short summary
We developed an approach to combine measurements of seven satellite altimetry missions over the Antarctic Ice Sheet. Our resulting monthly grids of elevation changes between 1978 and 2017 provide unprecedented details of the long-term and interannual variation. Derived mass changes agree well with contemporaneous data of surface mass balance and satellite gravimetry and show which regions were responsible for the significant accelerations of mass loss in recent years.
Cécile Agosta, Charles Amory, Christoph Kittel, Anais Orsi, Vincent Favier, Hubert Gallée, Michiel R. van den Broeke, Jan T. M. Lenaerts, Jan Melchior van Wessem, Willem Jan van de Berg, and Xavier Fettweis
The Cryosphere, 13, 281–296, https://doi.org/10.5194/tc-13-281-2019, https://doi.org/10.5194/tc-13-281-2019, 2019
Short summary
Short summary
Antarctic surface mass balance (ASMB), a component of the sea level budget, is commonly estimated through modelling as observations are scarce. The polar-oriented regional climate model MAR performs well in simulating the observed ASMB. MAR and RACMO2 share common biases we relate to drifting snow transport, with a 3 times larger magnitude than in previous estimates. Sublimation of precipitation in the katabatic layer modelled by MAR is of a magnitude similar to an observation-based estimate.
Michalea D. King, Ian M. Howat, Seongsu Jeong, Myoung J. Noh, Bert Wouters, Brice Noël, and Michiel R. van den Broeke
The Cryosphere, 12, 3813–3825, https://doi.org/10.5194/tc-12-3813-2018, https://doi.org/10.5194/tc-12-3813-2018, 2018
Short summary
Short summary
We derive the first continuous record of total ice discharged from all large Greenland outlet glaciers over the 2000–2016 period, resolving a distinct pattern of seasonal variability. We compare these results to glacier retreat and meltwater runoff and find that while runoff has a limited impact on ice discharge in summer, long-term changes in discharge are highly correlated to retreat. These results help to better understand Greenland outlet glacier sensitivity over a range of timescales.
Kang Yang, Laurence C. Smith, Leif Karlstrom, Matthew G. Cooper, Marco Tedesco, Dirk van As, Xiao Cheng, Zhuoqi Chen, and Manchun Li
The Cryosphere, 12, 3791–3811, https://doi.org/10.5194/tc-12-3791-2018, https://doi.org/10.5194/tc-12-3791-2018, 2018
Short summary
Short summary
A high-resolution spatially lumped hydrologic surface routing model is proposed to simulate meltwater transport over bare ice surfaces. In an ice-covered catchment, meltwater is routed by slow interfluve flow (~10−3–10−4 m s−1) followed by fast open-channel flow (~10−1 m s−1). Seasonal evolution of supraglacial stream-river networks substantially alters the magnitude and timing of moulin discharge with implications for subglacial hydrology and ice dynamics.
Nicole-Jeanne Schlegel, Helene Seroussi, Michael P. Schodlok, Eric Y. Larour, Carmen Boening, Daniel Limonadi, Michael M. Watkins, Mathieu Morlighem, and Michiel R. van den Broeke
The Cryosphere, 12, 3511–3534, https://doi.org/10.5194/tc-12-3511-2018, https://doi.org/10.5194/tc-12-3511-2018, 2018
Short summary
Short summary
Using NASA supercomputers and a novel framework, in which Sandia National Laboratories' statistical software is embedded in the Jet Propulsion Laboratory's ice sheet model, we run a range of 100-year warming scenarios for Antarctica. We find that 1.2 m of sea level contribution is achievable, but not likely. Also, we find that bedrock topography beneath the ice drives potential for regional sea level contribution, highlighting the need for accurate bedrock mapping of the ice sheet interior.
Jiangjun Ran, Miren Vizcaino, Pavel Ditmar, Michiel R. van den Broeke, Twila Moon, Christian R. Steger, Ellyn M. Enderlin, Bert Wouters, Brice Noël, Catharina H. Reijmer, Roland Klees, Min Zhong, Lin Liu, and Xavier Fettweis
The Cryosphere, 12, 2981–2999, https://doi.org/10.5194/tc-12-2981-2018, https://doi.org/10.5194/tc-12-2981-2018, 2018
Short summary
Short summary
To accurately predict future sea level rise, the mechanisms driving the observed mass loss must be better understood. Here, we combine data from the satellite gravimetry, surface mass balance, and ice discharge to analyze the mass budget of Greenland at various temporal scales. This study, for the first time, suggests the existence of a substantial meltwater storage during summer, with a peak value of 80–120 Gt in July. We highlight its importance for understanding ice sheet mass variability
Rajashree Tri Datta, Marco Tedesco, Cecile Agosta, Xavier Fettweis, Peter Kuipers Munneke, and Michiel R. van den Broeke
The Cryosphere, 12, 2901–2922, https://doi.org/10.5194/tc-12-2901-2018, https://doi.org/10.5194/tc-12-2901-2018, 2018
Short summary
Short summary
Surface melting on the East Antarctic Peninsula (East AP) has been linked to ice shelf collapse, including the Larsen A (1995) and Larsen B (2002) ice shelves. Regional climate models (RCMs) are a valuable tool to understand how wind patterns and general warming can impact the stability of ice shelves through surface melt. Here, we evaluate one such RCM (Modèle Atmosphérique Régionale) over the East AP, including the remaining Larsen C ice shelf, by comparing it to satellite and ground data.
Stefan R. M. Ligtenberg, Peter Kuipers Munneke, Brice P. Y. Noël, and Michiel R. van den Broeke
The Cryosphere, 12, 1643–1649, https://doi.org/10.5194/tc-12-1643-2018, https://doi.org/10.5194/tc-12-1643-2018, 2018
Short summary
Short summary
Firn is the transitional product between fresh snow and glacier ice, and a 10-100 m thick layer covers the Greenland ice sheet. It has the capacity to store meltwater and thereby mitigate runoff to the ocean. Using a model and improved atmospheric forcing, we simulate firn density and temperature that agrees well with observations from firn cores. Especially in the regions with substantial melt, and therefore the most sensitive to a warming climate, the results improved significantly.
Jan Melchior van Wessem, Willem Jan van de Berg, Brice P. Y. Noël, Erik van Meijgaard, Charles Amory, Gerit Birnbaum, Constantijn L. Jakobs, Konstantin Krüger, Jan T. M. Lenaerts, Stef Lhermitte, Stefan R. M. Ligtenberg, Brooke Medley, Carleen H. Reijmer, Kristof van Tricht, Luke D. Trusel, Lambertus H. van Ulft, Bert Wouters, Jan Wuite, and Michiel R. van den Broeke
The Cryosphere, 12, 1479–1498, https://doi.org/10.5194/tc-12-1479-2018, https://doi.org/10.5194/tc-12-1479-2018, 2018
Short summary
Short summary
We present a detailed evaluation of the latest version of the regional atmospheric climate model RACMO2.3p2 (1979-2016) over the Antarctic ice sheet. The model successfully reproduces the present-day climate and surface mass balance (SMB) when compared with an extensive set of observations and improves on previous estimates of the Antarctic climate and SMB.
This study shows that the latest version of RACMO2 can be used for high-resolution future projections over the AIS.
Helmut Rott, Wael Abdel Jaber, Jan Wuite, Stefan Scheiblauer, Dana Floricioiu, Jan Melchior van Wessem, Thomas Nagler, Nuno Miranda, and Michiel R. van den Broeke
The Cryosphere, 12, 1273–1291, https://doi.org/10.5194/tc-12-1273-2018, https://doi.org/10.5194/tc-12-1273-2018, 2018
Short summary
Short summary
We analysed volume change, mass balance and ice flow of glaciers draining into the Larsen A and Larsen B embayments on the Antarctic Peninsula for 2011 to 2013 and 2013 to 2016. The mass balance is based on elevation change measured by the radar satellite mission TanDEM-X and on the mass budget method. The glaciers show continuing losses in ice mass, which is a response to ice shelf break-up. After 2013 the downwasting of glaciers slowed down, coinciding with years of persistent sea ice cover.
Brice Noël, Willem Jan van de Berg, J. Melchior van Wessem, Erik van Meijgaard, Dirk van As, Jan T. M. Lenaerts, Stef Lhermitte, Peter Kuipers Munneke, C. J. P. Paul Smeets, Lambertus H. van Ulft, Roderik S. W. van de Wal, and Michiel R. van den Broeke
The Cryosphere, 12, 811–831, https://doi.org/10.5194/tc-12-811-2018, https://doi.org/10.5194/tc-12-811-2018, 2018
Short summary
Short summary
We present a detailed evaluation of the latest version of the regional climate model RACMO2.3p2 at 11 km resolution (1958–2016) over the Greenland ice sheet (GrIS). The model successfully reproduces the present-day climate and surface mass balance, i.e. snowfall minus meltwater run-off, of the GrIS compared to in situ observations. Since run-off from marginal narrow glaciers is poorly resolved at 11 km, further statistical downscaling to 1 km resolution is required for mass balance studies.
Alex S. Gardner, Geir Moholdt, Ted Scambos, Mark Fahnstock, Stefan Ligtenberg, Michiel van den Broeke, and Johan Nilsson
The Cryosphere, 12, 521–547, https://doi.org/10.5194/tc-12-521-2018, https://doi.org/10.5194/tc-12-521-2018, 2018
Short summary
Short summary
We map present-day Antarctic surface velocities from Landsat imagery and compare to earlier estimates from radar. Flow accelerations across the grounding lines of West Antarctica's Amundsen Sea Embayment, Getz Ice Shelf and the western Antarctic Peninsula, account for 89 % of the observed increase in ice discharge. In contrast, glaciers draining the East Antarctic have been remarkably stable. Our work suggests that patterns of mass loss are part of a longer-term phase of enhanced flow.
Elizabeth R. Thomas, J. Melchior van Wessem, Jason Roberts, Elisabeth Isaksson, Elisabeth Schlosser, Tyler J. Fudge, Paul Vallelonga, Brooke Medley, Jan Lenaerts, Nancy Bertler, Michiel R. van den Broeke, Daniel A. Dixon, Massimo Frezzotti, Barbara Stenni, Mark Curran, and Alexey A. Ekaykin
Clim. Past, 13, 1491–1513, https://doi.org/10.5194/cp-13-1491-2017, https://doi.org/10.5194/cp-13-1491-2017, 2017
Short summary
Short summary
Regional Antarctic snow accumulation derived from 79 ice core records is evaluated as part of the PAGES Antarctica 2k working group. Our results show that surface mass balance for the total Antarctic ice sheet has increased at a rate of 7 ± 0.13 Gt dec-1 since 1800 AD, representing a net reduction in sea level of ~ 0.02 mm dec-1 since 1800 and ~ 0.04 mm dec-1 since 1900 AD. The largest contribution is from the Antarctic Peninsula.
Christian R. Steger, Carleen H. Reijmer, and Michiel R. van den Broeke
The Cryosphere, 11, 2507–2526, https://doi.org/10.5194/tc-11-2507-2017, https://doi.org/10.5194/tc-11-2507-2017, 2017
Short summary
Short summary
Mass loss from the Greenland Ice Sheet, which contributes to sea level rise, is currently dominated by surface melt and run-off. The relation between these two variables is rather uncertain due to the firn layer’s potential to buffer melt in solid (refreezing) or liquid (firn aquifer) form. To address this uncertainty, we analyse output of a numerical firn model run over 1960–2014. Results show a spatially variable response of the ice sheet to increasing melt and an upward migration of aquifers.
Peter Kuipers Munneke, Daniel McGrath, Brooke Medley, Adrian Luckman, Suzanne Bevan, Bernd Kulessa, Daniela Jansen, Adam Booth, Paul Smeets, Bryn Hubbard, David Ashmore, Michiel Van den Broeke, Heidi Sevestre, Konrad Steffen, Andrew Shepherd, and Noel Gourmelen
The Cryosphere, 11, 2411–2426, https://doi.org/10.5194/tc-11-2411-2017, https://doi.org/10.5194/tc-11-2411-2017, 2017
Short summary
Short summary
How much snow falls on the Larsen C ice shelf? This is a relevant question, because this ice shelf might collapse sometime this century. To know if and when this could happen, we found out how much snow falls on its surface. This was difficult, because there are only very few measurements. Here, we used data from automatic weather stations, sled-pulled radars, and a climate model to find that melting the annual snowfall produces about 20 cm of water in the NE and over 70 cm in the SW.
Dirk van As, Andreas Bech Mikkelsen, Morten Holtegaard Nielsen, Jason E. Box, Lillemor Claesson Liljedahl, Katrin Lindbäck, Lincoln Pitcher, and Bent Hasholt
The Cryosphere, 11, 1371–1386, https://doi.org/10.5194/tc-11-1371-2017, https://doi.org/10.5194/tc-11-1371-2017, 2017
Short summary
Short summary
The Greenland ice sheet melts faster in a warmer climate. The ice sheet is flatter at high elevation, therefore atmospheric warming increases the melt area exponentially. For current climate conditions, we find that the ice sheet shape amplifies the total meltwater generation by roughly 60 %. Meltwater is not stored underneath the ice sheet, as previously found, but it does take multiple days for it to pass through the seasonally developing subglacial drainage channels, moderating discharge.
Riccardo E. M. Riva, Thomas Frederikse, Matt A. King, Ben Marzeion, and Michiel R. van den Broeke
The Cryosphere, 11, 1327–1332, https://doi.org/10.5194/tc-11-1327-2017, https://doi.org/10.5194/tc-11-1327-2017, 2017
Short summary
Short summary
The reduction of ice masses stored on land has made an important contribution to sea-level rise over the last century, as well as changed the Earth's shape. We model the solid-earth response to ice mass changes and find significant vertical deformation signals over large continental areas. We show how deformation rates have varied strongly throughout the last century, which affects the interpretation and extrapolation of recent observations of vertical land motion and sea-level change.
Xavier Fettweis, Jason E. Box, Cécile Agosta, Charles Amory, Christoph Kittel, Charlotte Lang, Dirk van As, Horst Machguth, and Hubert Gallée
The Cryosphere, 11, 1015–1033, https://doi.org/10.5194/tc-11-1015-2017, https://doi.org/10.5194/tc-11-1015-2017, 2017
Short summary
Short summary
This paper shows that the surface melt increase over the Greenland ice sheet since the end of the 1990s has been unprecedented, with respect to the last 120 years, using a regional climate model. These simulations also suggest an increase of the snowfall accumulation through the last century before a surface mass decrease in the 2000s. Such a mass gain could have impacted the ice sheet's dynamic stability and could explain the recent observed increase of the glaciers' velocity.
Harry Zekollari, Philippe Huybrechts, Brice Noël, Willem Jan van de Berg, and Michiel R. van den Broeke
The Cryosphere, 11, 805–825, https://doi.org/10.5194/tc-11-805-2017, https://doi.org/10.5194/tc-11-805-2017, 2017
Short summary
Short summary
In this study the dynamics of the world’s northernmost ice cap are investigated with a 3-D ice flow model. Under 1961–1990 climatic conditions
an ice cap similar to the observed one is obtained, with comparable geometry and surface velocities. The southern part of the ice cap is very unstable,
and under early-21st-century climatic conditions this part of the ice cap fully disappears. In a projected warmer and wetter climate the ice cap will at
first steepen, before eventually disappearing.
Jeremy D. Silver and Charles S. Zender
Geosci. Model Dev., 10, 413–423, https://doi.org/10.5194/gmd-10-413-2017, https://doi.org/10.5194/gmd-10-413-2017, 2017
Short summary
Short summary
Many modern scientific research projects generate large amounts of data. Storage space is valuable and may be limited; hence compression is vital. We tested different compression methods for large gridded data sets, assessing the space savings and the amount of precision lost. We found a general trade-off between precision and compression, with compression well-predicted by the entropy of the data set. A method introduced here proved to be a competitive archive format for gridded numerical data.
Stephen F. Price, Matthew J. Hoffman, Jennifer A. Bonin, Ian M. Howat, Thomas Neumann, Jack Saba, Irina Tezaur, Jeffrey Guerber, Don P. Chambers, Katherine J. Evans, Joseph H. Kennedy, Jan Lenaerts, William H. Lipscomb, Mauro Perego, Andrew G. Salinger, Raymond S. Tuminaro, Michiel R. van den Broeke, and Sophie M. J. Nowicki
Geosci. Model Dev., 10, 255–270, https://doi.org/10.5194/gmd-10-255-2017, https://doi.org/10.5194/gmd-10-255-2017, 2017
Short summary
Short summary
We introduce the Cryospheric Model Comparison Tool (CmCt) and propose qualitative and quantitative metrics for evaluating ice sheet model simulations against observations. Greenland simulations using the Community Ice Sheet Model are compared to gravimetry and altimetry observations from 2003 to 2013. We show that the CmCt can be used to score simulations of increasing complexity relative to observations of dynamic change in Greenland over the past decade.
Brice Noël, Willem Jan van de Berg, Horst Machguth, Stef Lhermitte, Ian Howat, Xavier Fettweis, and Michiel R. van den Broeke
The Cryosphere, 10, 2361–2377, https://doi.org/10.5194/tc-10-2361-2016, https://doi.org/10.5194/tc-10-2361-2016, 2016
Short summary
Short summary
We present a 1 km resolution data set (1958–2015) of daily Greenland ice sheet surface mass balance (SMB), statistically downscaled from the data of RACMO2.3 at 11 km using elevation dependence, precipitation and bare ice albedo corrections. The data set resolves Greenland narrow ablation zones and local outlet glaciers, and shows more realistic SMB patterns, owing to enhanced runoff at the ice sheet margins. An evaluation of the product against SMB measurements shows improved agreement.
Charles S. Zender
Geosci. Model Dev., 9, 3199–3211, https://doi.org/10.5194/gmd-9-3199-2016, https://doi.org/10.5194/gmd-9-3199-2016, 2016
Short summary
Short summary
We introduce Bit Grooming, a lossy compression algorithm that removes the bloat due to false precision, those bits and bytes beyond the meaningful precision of the data. Bit Grooming is statistically unbiased, applies to all floating-point numbers, and is easy to use. Bit Grooming reduces data storage requirements by 25–80 %. Unlike its best-known competitor Linear Packing, Bit Grooming imposes no software overhead on users, and guarantees its precision throughout the whole floating-point range.
Nicole-Jeanne Schlegel, David N. Wiese, Eric Y. Larour, Michael M. Watkins, Jason E. Box, Xavier Fettweis, and Michiel R. van den Broeke
The Cryosphere, 10, 1965–1989, https://doi.org/10.5194/tc-10-1965-2016, https://doi.org/10.5194/tc-10-1965-2016, 2016
Short summary
Short summary
We investigate Greenland Ice Sheet mass change from 2003–2012 by comparing observations from GRACE with state-of-the-art atmospheric and ice sheet model simulations. We find that the largest discrepancies (in the northwest and southeast) are likely controlled by errors in modeled surface climate as well as ice–ocean interaction and hydrological processes (not included in the models). Models should consider such processes at monthly to seasonal resolutions in order to improve future projections.
Michiel R. van den Broeke, Ellyn M. Enderlin, Ian M. Howat, Peter Kuipers Munneke, Brice P. Y. Noël, Willem Jan van de Berg, Erik van Meijgaard, and Bert Wouters
The Cryosphere, 10, 1933–1946, https://doi.org/10.5194/tc-10-1933-2016, https://doi.org/10.5194/tc-10-1933-2016, 2016
Short summary
Short summary
We present recent (1958–2015) mass balance time series for the Greenland ice sheet. We show that recent mass loss is caused by a combination of increased surface meltwater runoff and solid ice discharge. Most meltwater above 2000 m a.s.l. refreezes in the cold firn and does not leave the ice sheet, but this goes at the expense of firn heating and densifying. In spite of a temporary rebound in 2013, it appears that the ice sheet remains in a state of persistent mass loss.
Zheng Xu, Ernst J. O. Schrama, Wouter van der Wal, Michiel van den Broeke, and Ellyn M. Enderlin
The Cryosphere, 10, 895–912, https://doi.org/10.5194/tc-10-895-2016, https://doi.org/10.5194/tc-10-895-2016, 2016
Short summary
Short summary
In this paper, we compare the regional mass changes of the Greenland ice sheet between the solutions based on GRACE data and input/output method. Differences are found in some regions and indicate errors in those solutions. Therefore we improve our GRACE and IOM solutions by applying a simulation. We show the improved regional mass changes approximations are more consistent in regions. The remaining difference in the northwester Greenland is due to the underestimated uncertainty in IOM solution.
Ioana S. Muresan, Shfaqat A. Khan, Andy Aschwanden, Constantine Khroulev, Tonie Van Dam, Jonathan Bamber, Michiel R. van den Broeke, Bert Wouters, Peter Kuipers Munneke, and Kurt H. Kjær
The Cryosphere, 10, 597–611, https://doi.org/10.5194/tc-10-597-2016, https://doi.org/10.5194/tc-10-597-2016, 2016
Short summary
Short summary
We use a regional 3-D outlet glacier model to simulate the behaviour of Jakobshavn Isbræ (JI) during 1990–2014. The model simulates two major accelerations in 1998 and 2003 that are consistent with observations. We find that most of the JI retreat during the simulated period is driven by the ocean parametrization used, and the glacier's subsequent response, which is largely governed by bed geometry. The study shows progress in modelling the temporal variability of the flow at JI.
J. M. van Wessem, S. R. M. Ligtenberg, C. H. Reijmer, W. J. van de Berg, M. R. van den Broeke, N. E. Barrand, E. R. Thomas, J. Turner, J. Wuite, T. A. Scambos, and E. van Meijgaard
The Cryosphere, 10, 271–285, https://doi.org/10.5194/tc-10-271-2016, https://doi.org/10.5194/tc-10-271-2016, 2016
Short summary
Short summary
This study presents the first high-resolution (5.5 km) modelled estimate of surface mass balance (SMB) over the period 1979–2014 for the Antarctic Peninsula (AP). Precipitation (snowfall and rain) largely determines the SMB, and is exceptionally high over the western mountain slopes, with annual values > 4 m water equivalent. Snowmelt is widespread over the AP, but only runs off into the ocean at some locations: the Larsen B,C, and Wilkins ice shelves, and along the north-western mountains.
C. Charalampidis, D. van As, J. E. Box, M. R. van den Broeke, W. T. Colgan, S. H. Doyle, A. L. Hubbard, M. MacFerrin, H. Machguth, and C. J. P. P. Smeets
The Cryosphere, 9, 2163–2181, https://doi.org/10.5194/tc-9-2163-2015, https://doi.org/10.5194/tc-9-2163-2015, 2015
P. Kuipers Munneke, S. R. M. Ligtenberg, B. P. Y. Noël, I. M. Howat, J. E. Box, E. Mosley-Thompson, J. R. McConnell, K. Steffen, J. T. Harper, S. B. Das, and M. R. van den Broeke
The Cryosphere, 9, 2009–2025, https://doi.org/10.5194/tc-9-2009-2015, https://doi.org/10.5194/tc-9-2009-2015, 2015
Short summary
Short summary
The snow layer on top of the Greenland Ice Sheet is changing: it is thickening in the high and cold interior due to increased snowfall, while it is thinning around the margins. The marginal thinning is caused by compaction, and by more melt.
This knowledge is important: there are satellites that measure volume change of the ice sheet. It can be caused by increased ice discharge, or by compaction of the snow layer. Here, we quantify the latter, so that we can translate volume to mass change.
B. Noël, W. J. van de Berg, E. van Meijgaard, P. Kuipers Munneke, R. S. W. van de Wal, and M. R. van den Broeke
The Cryosphere, 9, 1831–1844, https://doi.org/10.5194/tc-9-1831-2015, https://doi.org/10.5194/tc-9-1831-2015, 2015
Short summary
Short summary
We compare Greenland Ice Sheet surface mass balance (SMB) from the updated polar version of the regional climate model RACMO2.3 and the previous version 2.1. RACMO2.3 has an adjusted rainfall-to-snowfall conversion favouring summer snowfall over rainfall. Enhanced summer snowfall reduce melt rates in the ablation zone by covering dark ice with highly reflective fresh snow. This improves the modelled SMB-elevation gradient and surface energy balance compared to observations in west Greenland.
S. L. Cornford, D. F. Martin, A. J. Payne, E. G. Ng, A. M. Le Brocq, R. M. Gladstone, T. L. Edwards, S. R. Shannon, C. Agosta, M. R. van den Broeke, H. H. Hellmer, G. Krinner, S. R. M. Ligtenberg, R. Timmermann, and D. G. Vaughan
The Cryosphere, 9, 1579–1600, https://doi.org/10.5194/tc-9-1579-2015, https://doi.org/10.5194/tc-9-1579-2015, 2015
Short summary
Short summary
We used a high-resolution ice sheet model capable of resolving grounding line dynamics (BISICLES) to compute responses of the major West Antarctic ice streams to projections of ocean and atmospheric warming. This is computationally demanding, and although other groups have considered parts of West Antarctica, we think this is the first calculation for the whole region at the sub-kilometer resolution that we show is required.
S. de la Peña, I. M. Howat, P. W. Nienow, M. R. van den Broeke, E. Mosley-Thompson, S. F. Price, D. Mair, B. Noël, and A. J. Sole
The Cryosphere, 9, 1203–1211, https://doi.org/10.5194/tc-9-1203-2015, https://doi.org/10.5194/tc-9-1203-2015, 2015
Short summary
Short summary
This paper presents an assessment of changes in the near-surface structure of the accumulation zone of the Greenland Ice Sheet caused by an increase of melt at higher elevations in the last decade, especially during the unusually warm years of 2010 and 2012. The increase in melt and firn densification complicate the interpretation of changes in the ice volume, and the observed increase in firn ice content may reduce the important meltwater buffering capacity of the Greenland Ice Sheet.
E. Johansson, S. Berglund, T. Lindborg, J. Petrone, D. van As, L.-G. Gustafsson, J.-O. Näslund, and H. Laudon
Earth Syst. Sci. Data, 7, 93–108, https://doi.org/10.5194/essd-7-93-2015, https://doi.org/10.5194/essd-7-93-2015, 2015
Short summary
Short summary
This paper presents a hydrological and meteorological data set from the Kangerlussuaq region, western Greenland. The data set is used to conceptualize and model the hydrological system and constitutes an important platform in order to describe the exchange of water between the surface, active layer, the lake, and the underlying talik. The resulting hydrological model will be used as a basis for biogeochemical mass-balance and transport calculations of the terrestrial and limnic ecosystems.
L. G. van der Wel, H. A. Been, R. S. W. van de Wal, C. J. P. P. Smeets, and H. A. J. Meijer
The Cryosphere, 9, 1089–1103, https://doi.org/10.5194/tc-9-1089-2015, https://doi.org/10.5194/tc-9-1089-2015, 2015
Short summary
Short summary
We performed 2H isotope diffusion measurements in the upper 3 metres of firn at Summit, Greenland, by following over a 4-year period isotope-enriched snow that we deposited.
We found that the diffusion process was much less rapid than in the most commonly used model. We discuss several aspects of the diffusion process that are still poorly constrained and might lead to this discrepancy. Quantitative knowledge of diffusion is necessary for use of the diffusion process itself as a climate proxy.
R. S. W. van de Wal, C. J. P. P. Smeets, W. Boot, M. Stoffelen, R. van Kampen, S. H. Doyle, F. Wilhelms, M. R. van den Broeke, C. H. Reijmer, J. Oerlemans, and A. Hubbard
The Cryosphere, 9, 603–611, https://doi.org/10.5194/tc-9-603-2015, https://doi.org/10.5194/tc-9-603-2015, 2015
Short summary
Short summary
This paper addresses the feedback between ice flow and melt rates. Using 20 years of data covering the whole ablation area, we show that there is not a strong positive correlation between annual ice velocities and melt rates. Rapid variations around the equilibrium line indicate the possibility of rapid variations high on the ice sheet.
R. A. Scanza, N. Mahowald, S. Ghan, C. S. Zender, J. F. Kok, X. Liu, Y. Zhang, and S. Albani
Atmos. Chem. Phys., 15, 537–561, https://doi.org/10.5194/acp-15-537-2015, https://doi.org/10.5194/acp-15-537-2015, 2015
Short summary
Short summary
The main purpose of this study was to build a framework in the Community Atmosphere Models version 4 and 5 within the Community Earth System Model to simulate dust aerosols as their component minerals. With this framework, we investigate the direct radiative forcing that results from the mineral speciation. We find that adding mineralogy results in a small positive forcing at the top of the atmosphere, while simulations without mineralogy have a small negative forcing.
P. M. Alexander, M. Tedesco, X. Fettweis, R. S. W. van de Wal, C. J. P. P. Smeets, and M. R. van den Broeke
The Cryosphere, 8, 2293–2312, https://doi.org/10.5194/tc-8-2293-2014, https://doi.org/10.5194/tc-8-2293-2014, 2014
J. M. Lea, D. W. F. Mair, F. M. Nick, B. R. Rea, D. van As, M. Morlighem, P. W. Nienow, and A. Weidick
The Cryosphere, 8, 2031–2045, https://doi.org/10.5194/tc-8-2031-2014, https://doi.org/10.5194/tc-8-2031-2014, 2014
B. Noël, X. Fettweis, W. J. van de Berg, M. R. van den Broeke, and M. Erpicum
The Cryosphere, 8, 1871–1883, https://doi.org/10.5194/tc-8-1871-2014, https://doi.org/10.5194/tc-8-1871-2014, 2014
S. R. M. Ligtenberg, P. Kuipers Munneke, and M. R. van den Broeke
The Cryosphere, 8, 1711–1723, https://doi.org/10.5194/tc-8-1711-2014, https://doi.org/10.5194/tc-8-1711-2014, 2014
S. A. Khan, K. K. Kjeldsen, K. H. Kjær, S. Bevan, A. Luckman, A. Aschwanden, A. A. Bjørk, N. J. Korsgaard, J. E. Box, M. van den Broeke, T. M. van Dam, and A. Fitzner
The Cryosphere, 8, 1497–1507, https://doi.org/10.5194/tc-8-1497-2014, https://doi.org/10.5194/tc-8-1497-2014, 2014
H. Fréville, E. Brun, G. Picard, N. Tatarinova, L. Arnaud, C. Lanconelli, C. Reijmer, and M. van den Broeke
The Cryosphere, 8, 1361–1373, https://doi.org/10.5194/tc-8-1361-2014, https://doi.org/10.5194/tc-8-1361-2014, 2014
B. Medley, I. Joughin, B. E. Smith, S. B. Das, E. J. Steig, H. Conway, S. Gogineni, C. Lewis, A. S. Criscitiello, J. R. McConnell, M. R. van den Broeke, J. T. M. Lenaerts, D. H. Bromwich, J. P. Nicolas, and C. Leuschen
The Cryosphere, 8, 1375–1392, https://doi.org/10.5194/tc-8-1375-2014, https://doi.org/10.5194/tc-8-1375-2014, 2014
J. T. M. Lenaerts, C. J. P. P. Smeets, K. Nishimura, M. Eijkelboom, W. Boot, M. R. van den Broeke, and W. J. van de Berg
The Cryosphere, 8, 801–814, https://doi.org/10.5194/tc-8-801-2014, https://doi.org/10.5194/tc-8-801-2014, 2014
B. C. Gunter, O. Didova, R. E. M. Riva, S. R. M. Ligtenberg, J. T. M. Lenaerts, M. A. King, M. R. van den Broeke, and T. Urban
The Cryosphere, 8, 743–760, https://doi.org/10.5194/tc-8-743-2014, https://doi.org/10.5194/tc-8-743-2014, 2014
J. M. van Wessem, C. H. Reijmer, J. T. M. Lenaerts, W. J. van de Berg, M. R. van den Broeke, and E. van Meijgaard
The Cryosphere, 8, 125–135, https://doi.org/10.5194/tc-8-125-2014, https://doi.org/10.5194/tc-8-125-2014, 2014
A. A. W. Fitzpatrick, A. L. Hubbard, J. E. Box, D. J. Quincey, D. van As, A. P. B. Mikkelsen, S. H. Doyle, C. F. Dow, B. Hasholt, and G. A. Jones
The Cryosphere, 8, 107–121, https://doi.org/10.5194/tc-8-107-2014, https://doi.org/10.5194/tc-8-107-2014, 2014
I. Sasgen, H. Konrad, E. R. Ivins, M. R. Van den Broeke, J. L. Bamber, Z. Martinec, and V. Klemann
The Cryosphere, 7, 1499–1512, https://doi.org/10.5194/tc-7-1499-2013, https://doi.org/10.5194/tc-7-1499-2013, 2013
A. K. Rennermalm, L. C. Smith, V. W. Chu, J. E. Box, R. R. Forster, M. R. Van den Broeke, D. Van As, and S. E. Moustafa
The Cryosphere, 7, 1433–1445, https://doi.org/10.5194/tc-7-1433-2013, https://doi.org/10.5194/tc-7-1433-2013, 2013
M. M. Helsen, W. J. van de Berg, R. S. W. van de Wal, M. R. van den Broeke, and J. Oerlemans
Clim. Past, 9, 1773–1788, https://doi.org/10.5194/cp-9-1773-2013, https://doi.org/10.5194/cp-9-1773-2013, 2013
I. Joughin, S. B. Das, G. E. Flowers, M. D. Behn, R. B. Alley, M. A. King, B. E. Smith, J. L. Bamber, M. R. van den Broeke, and J. H. van Angelen
The Cryosphere, 7, 1185–1192, https://doi.org/10.5194/tc-7-1185-2013, https://doi.org/10.5194/tc-7-1185-2013, 2013
W. J. van de Berg, M. R. van den Broeke, E. van Meijgaard, and F. Kaspar
Clim. Past, 9, 1589–1600, https://doi.org/10.5194/cp-9-1589-2013, https://doi.org/10.5194/cp-9-1589-2013, 2013
M. G. Tosca, J. T. Randerson, and C. S. Zender
Atmos. Chem. Phys., 13, 5227–5241, https://doi.org/10.5194/acp-13-5227-2013, https://doi.org/10.5194/acp-13-5227-2013, 2013
C. L. Vernon, J. L. Bamber, J. E. Box, M. R. van den Broeke, X. Fettweis, E. Hanna, and P. Huybrechts
The Cryosphere, 7, 599–614, https://doi.org/10.5194/tc-7-599-2013, https://doi.org/10.5194/tc-7-599-2013, 2013
X. Fettweis, B. Franco, M. Tedesco, J. H. van Angelen, J. T. M. Lenaerts, M. R. van den Broeke, and H. Gallée
The Cryosphere, 7, 469–489, https://doi.org/10.5194/tc-7-469-2013, https://doi.org/10.5194/tc-7-469-2013, 2013
I. M. Howat, S. de la Peña, J. H. van Angelen, J. T. M. Lenaerts, and M. R. van den Broeke
The Cryosphere, 7, 201–204, https://doi.org/10.5194/tc-7-201-2013, https://doi.org/10.5194/tc-7-201-2013, 2013
M. M. Helsen, R. S. W. van de Wal, M. R. van den Broeke, W. J. van de Berg, and J. Oerlemans
The Cryosphere, 6, 255–272, https://doi.org/10.5194/tc-6-255-2012, https://doi.org/10.5194/tc-6-255-2012, 2012
M. R. van den Broeke, C. J. P. P. Smeets, and R. S. W. van de Wal
The Cryosphere, 5, 377–390, https://doi.org/10.5194/tc-5-377-2011, https://doi.org/10.5194/tc-5-377-2011, 2011
M. van den Broeke, P. Smeets, J. Ettema, C. van der Veen, R. van de Wal, and J. Oerlemans
The Cryosphere, 2, 179–189, https://doi.org/10.5194/tc-2-179-2008, https://doi.org/10.5194/tc-2-179-2008, 2008
Related subject area
Energy Balance Obs/Modelling
Brief Communication: Accurate and autonomous snow water equivalent measurements using a cosmic ray sensor on a Himalayan glacier
Surface heat fluxes at coarse blocky Murtèl rock glacier (Engadine, eastern Swiss Alps)
Modeling snowpack dynamics and surface energy budget in boreal and subarctic peatlands and forests
Evaluation of reanalysis data and dynamical downscaling for surface energy balance modeling at mountain glaciers in western Canada
Brief communication: Surface energy balance differences over Greenland between ERA5 and ERA-Interim
A computationally efficient statistically downscaled 100 m resolution Greenland product from the regional climate model MAR
Modeling of surface energy balance for Icelandic glaciers using remote-sensing albedo
Strategies for regional modeling of surface mass balance at the Monte Sarmiento Massif, Tierra del Fuego
A sensor-agnostic albedo retrieval method for realistic sea ice surfaces: model and validation
Estimating degree-day factors of snow based on energy flux components
Long-term firn and mass balance modelling for Abramov Glacier in the data-scarce Pamir Alay
The surface energy balance during foehn events at Joyce Glacier, McMurdo Dry Valleys, Antarctica
Sub-seasonal variability of supraglacial ice cliff melt rates and associated processes from time-lapse photogrammetry
Understanding wind-driven melt of patchy snow cover
Understanding model spread in sea ice volume by attribution of model differences in seasonal ice growth and melt
An 11-year record of wintertime snow-surface energy balance and sublimation at 4863 m a.s.l. on the Chhota Shigri Glacier moraine (western Himalaya, India)
Sensitivity of modeled snow grain size retrievals to solar geometry, snow particle asphericity, and snowpack impurities
Metamorphism of snow on Arctic sea ice during the melt season: impact on spectral albedo and radiative fluxes through snow
Cloud forcing of surface energy balance from in situ measurements in diverse mountain glacier environments
Modelling glacier mass balance and climate sensitivity in the context of sparse observations: application to Saskatchewan Glacier, western Canada
GABLS4 intercomparison of snow models at Dome C in Antarctica
Divergence of apparent and intrinsic snow albedo over a season at a sub-alpine site with implications for remote sensing
Understanding monsoon controls on the energy and mass balance of glaciers in the Central and Eastern Himalaya
A new Stefan equation to characterize the evolution of thermokarst lake and talik geometry
SNICAR-ADv4: a physically based radiative transfer model to represent the spectral albedo of glacier ice
Convective heat transfer of spring meltwater accelerates active layer phase change in Tibet permafrost areas
Modelling surface temperature and radiation budget of snow-covered complex terrain
Impact of the melt–albedo feedback on the future evolution of the Greenland Ice Sheet with PISM-dEBM-simple
Snow model comparison to simulate snow depth evolution and sublimation at point scale in the semi-arid Andes of Chile
Brief communication: Evaluation of multiple density-dependent empirical snow conductivity relationships in East Antarctica
Sensitivity of the surface energy budget to drifting snow as simulated by MAR in coastal Adelie Land, Antarctica
Firn changes at Colle Gnifetti revealed with a high-resolution process-based physical model approach
The surface energy balance in a cold and arid permafrost environment, Ladakh, Himalayas, India
The diurnal Energy Balance Model (dEBM): a convenient surface mass balance solution for ice sheets in Earth system modeling
Spectral attenuation coefficients from measurements of light transmission in bare ice on the Greenland Ice Sheet
On the statistical properties of sea-ice lead fraction and heat fluxes in the Arctic
Effect of small-scale snow surface roughness on snow albedo and reflectance
New insights into radiative transfer within sea ice derived from autonomous optical propagation measurements
Long-term surface energy balance of the western Greenland Ice Sheet and the role of large-scale circulation variability
Seasonal and interannual variability of melt-season albedo at Haig Glacier, Canadian Rocky Mountains
Surface energy fluxes on Chilean glaciers: measurements and models
Using 3D turbulence-resolving simulations to understand the impact of surface properties on the energy balance of a debris-covered glacier
Incorporating moisture content in surface energy balance modeling of a debris-covered glacier
Surface melt and the importance of water flow – an analysis based on high-resolution unmanned aerial vehicle (UAV) data for an Arctic glacier
Impact of forcing on sublimation simulations for a high mountain catchment in the semiarid Andes
Intercomparison and improvement of two-stream shortwave radiative transfer schemes in Earth system models for a unified treatment of cryospheric surfaces
Water tracks intensify surface energy and mass exchange in the Antarctic McMurdo Dry Valleys
Quantifying the snowmelt–albedo feedback at Neumayer Station, East Antarctica
A key factor initiating surface ablation of Arctic sea ice: earlier and increasing liquid precipitation
Brief communication: An ice surface melt scheme including the diurnal cycle of solar radiation
Navaraj Pokhrel, Patrick Wagnon, Fanny Brun, Arbindra Khadka, Tom Matthews, Audrey Goutard, Dibas Shrestha, Baker Perry, and Marion Réveillet
EGUsphere, https://doi.org/10.5194/egusphere-2024-1760, https://doi.org/10.5194/egusphere-2024-1760, 2024
Short summary
Short summary
We studied snow processes in the accumulation area of Mera Glacier (Central Himalaya, Nepal) by deploying a cosmic ray counting sensor that allows to track the evolution of the snow water equivalent. We suspect significant surface melting, water percolation and refreezing within the snowpack, that might be missed by traditional mass balance surveys.
Dominik Amschwand, Martin Scherler, Martin Hoelzle, Bernhard Krummenacher, Anna Haberkorn, Christian Kienholz, and Hansueli Gubler
The Cryosphere, 18, 2103–2139, https://doi.org/10.5194/tc-18-2103-2024, https://doi.org/10.5194/tc-18-2103-2024, 2024
Short summary
Short summary
Rock glaciers are coarse-debris permafrost landforms that are comparatively climate resilient. We estimate the surface energy balance of rock glacier Murtèl (Swiss Alps) based on a large surface and sub-surface sensor array. During the thaw seasons 2021 and 2022, 90 % of the net radiation was exported via turbulent heat fluxes and only 10 % was transmitted towards the ground ice table. However, early snowmelt and droughts make these permafrost landforms vulnerable to climate warming.
Jari-Pekka Nousu, Matthieu Lafaysse, Giulia Mazzotti, Pertti Ala-aho, Hannu Marttila, Bertrand Cluzet, Mika Aurela, Annalea Lohila, Pasi Kolari, Aaron Boone, Mathieu Fructus, and Samuli Launiainen
The Cryosphere, 18, 231–263, https://doi.org/10.5194/tc-18-231-2024, https://doi.org/10.5194/tc-18-231-2024, 2024
Short summary
Short summary
The snowpack has a major impact on the land surface energy budget. Accurate simulation of the snowpack energy budget is difficult, and studies that evaluate models against energy budget observations are rare. We compared predictions from well-known models with observations of energy budgets, snow depths and soil temperatures in Finland. Our study identified contrasting strengths and limitations for the models. These results can be used for choosing the right models depending on the use cases.
Christina Draeger, Valentina Radić, Rachel H. White, and Mekdes Ayalew Tessema
The Cryosphere, 18, 17–42, https://doi.org/10.5194/tc-18-17-2024, https://doi.org/10.5194/tc-18-17-2024, 2024
Short summary
Short summary
Our study increases our confidence in using reanalysis data for reconstructions of past glacier melt and in using dynamical downscaling for long-term simulations from global climate models to project glacier melt. We find that the surface energy balance model, forced with reanalysis and dynamically downscaled reanalysis data, yields <10 % difference in the modeled total melt energy when compared to the same model being forced with observations at our glacier sites in western Canada.
Uta Krebs-Kanzow, Christian B. Rodehacke, and Gerrit Lohmann
The Cryosphere, 17, 5131–5136, https://doi.org/10.5194/tc-17-5131-2023, https://doi.org/10.5194/tc-17-5131-2023, 2023
Short summary
Short summary
We compare components of the surface energy balance from two datasets, ERA5 and ERA-Interim, which can be used to estimate the surface mass balance (SMB) on the Greenland Ice Sheet (GrIS). ERA5 differs significantly from ERA-Interim, especially in the melt regions with lower temperatures and stronger shortwave radiation. Consequently, methods that previously estimated the GrIS SMB from ERA-Interim need to be carefully recalibrated before conversion to ERA5 forcing.
Marco Tedesco, Paolo Colosio, Xavier Fettweis, and Guido Cervone
The Cryosphere, 17, 5061–5074, https://doi.org/10.5194/tc-17-5061-2023, https://doi.org/10.5194/tc-17-5061-2023, 2023
Short summary
Short summary
We developed a technique to improve the outputs of a model that calculates the gain and loss of Greenland and consequently its contribution to sea level rise. Our technique generates “sharper” images of the maps generated by the model to better understand and quantify where losses occur. This has implications for improving models, understanding what drives the contributions of Greenland to sea level rise, and more.
Andri Gunnarsson, Sigurdur M. Gardarsson, and Finnur Pálsson
The Cryosphere, 17, 3955–3986, https://doi.org/10.5194/tc-17-3955-2023, https://doi.org/10.5194/tc-17-3955-2023, 2023
Short summary
Short summary
A model was developed with the possibility of utilizing satellite-derived daily surface albedo driven by high-resolution climate data to estimate the surface energy balance (SEB) for all Icelandic glaciers for the period 2000–2021.
Franziska Temme, David Farías-Barahona, Thorsten Seehaus, Ricardo Jaña, Jorge Arigony-Neto, Inti Gonzalez, Anselm Arndt, Tobias Sauter, Christoph Schneider, and Johannes J. Fürst
The Cryosphere, 17, 2343–2365, https://doi.org/10.5194/tc-17-2343-2023, https://doi.org/10.5194/tc-17-2343-2023, 2023
Short summary
Short summary
Calibration of surface mass balance (SMB) models on regional scales is challenging. We investigate different calibration strategies with the goal of achieving realistic simulations of the SMB in the Monte Sarmiento Massif, Tierra del Fuego. Our results show that the use of regional observations from satellite data can improve the model performance. Furthermore, we compare four melt models of different complexity to understand the benefit of increasing the processes considered in the model.
Yingzhen Zhou, Wei Li, Nan Chen, Yongzhen Fan, and Knut Stamnes
The Cryosphere, 17, 1053–1087, https://doi.org/10.5194/tc-17-1053-2023, https://doi.org/10.5194/tc-17-1053-2023, 2023
Short summary
Short summary
We present a method to compute albedo (percentage of the light reflected) of the cryosphere surface using observations from optical satellite sensors. This method can be applied to sea ice, snow-covered ice, melt pond, open ocean, and mixtures thereof. Evaluation of the albedo values calculated using this approach demonstrated excellent agreement with observations. In addition, we have included a statistical comparison of the proposed method's results with those derived from other approaches.
Muhammad Fraz Ismail, Wolfgang Bogacki, Markus Disse, Michael Schäfer, and Lothar Kirschbauer
The Cryosphere, 17, 211–231, https://doi.org/10.5194/tc-17-211-2023, https://doi.org/10.5194/tc-17-211-2023, 2023
Short summary
Short summary
Fresh water from mountainous catchments in the form of snowmelt and ice melt is of critical importance especially in the summer season for people living in these regions. In general, limited data availability is the core concern while modelling the snow and ice melt components from these mountainous catchments. This research will be helpful in selecting realistic parameter values (i.e. degree-day factor) while calibrating the temperature-index models for data-scarce regions.
Marlene Kronenberg, Ward van Pelt, Horst Machguth, Joel Fiddes, Martin Hoelzle, and Felix Pertziger
The Cryosphere, 16, 5001–5022, https://doi.org/10.5194/tc-16-5001-2022, https://doi.org/10.5194/tc-16-5001-2022, 2022
Short summary
Short summary
The Pamir Alay is located at the edge of regions with anomalous glacier mass changes. Unique long-term in situ data are available for Abramov Glacier, located in the Pamir Alay. In this study, we use this extraordinary data set in combination with reanalysis data and a coupled surface energy balance–multilayer subsurface model to compute and analyse the distributed climatic mass balance and firn evolution from 1968 to 2020.
Marte G. Hofsteenge, Nicolas J. Cullen, Carleen H. Reijmer, Michiel van den Broeke, Marwan Katurji, and John F. Orwin
The Cryosphere, 16, 5041–5059, https://doi.org/10.5194/tc-16-5041-2022, https://doi.org/10.5194/tc-16-5041-2022, 2022
Short summary
Short summary
In the McMurdo Dry Valleys (MDV), foehn winds can impact glacial meltwater production and the fragile ecosystem that depends on it. We study these dry and warm winds at Joyce Glacier and show they are caused by a different mechanism than that found for nearby valleys, demonstrating the complex interaction of large-scale winds with the mountains in the MDV. We find that foehn winds increase sublimation of ice, increase heating from the atmosphere, and increase the occurrence and rates of melt.
Marin Kneib, Evan S. Miles, Pascal Buri, Stefan Fugger, Michael McCarthy, Thomas E. Shaw, Zhao Chuanxi, Martin Truffer, Matthew J. Westoby, Wei Yang, and Francesca Pellicciotti
The Cryosphere, 16, 4701–4725, https://doi.org/10.5194/tc-16-4701-2022, https://doi.org/10.5194/tc-16-4701-2022, 2022
Short summary
Short summary
Ice cliffs are believed to be important contributors to the melt of debris-covered glaciers, but this has rarely been quantified as the cliffs can disappear or rapidly expand within a few weeks. We used photogrammetry techniques to quantify the weekly evolution and melt of four cliffs. We found that their behaviour and melt during the monsoon is strongly controlled by supraglacial debris, streams and ponds, thus providing valuable insights on the melt and evolution of debris-covered glaciers.
Luuk D. van der Valk, Adriaan J. Teuling, Luc Girod, Norbert Pirk, Robin Stoffer, and Chiel C. van Heerwaarden
The Cryosphere, 16, 4319–4341, https://doi.org/10.5194/tc-16-4319-2022, https://doi.org/10.5194/tc-16-4319-2022, 2022
Short summary
Short summary
Most large-scale hydrological and climate models struggle to capture the spatially highly variable wind-driven melt of patchy snow cover. In the field, we find that 60 %–80 % of the total melt is wind driven at the upwind edge of a snow patch, while it does not contribute at the downwind edge. Our idealized simulations show that the variation is due to a patch-size-independent air-temperature reduction over snow patches and also allow us to study the role of wind-driven snowmelt on larger scales.
Alex West, Edward Blockley, and Matthew Collins
The Cryosphere, 16, 4013–4032, https://doi.org/10.5194/tc-16-4013-2022, https://doi.org/10.5194/tc-16-4013-2022, 2022
Short summary
Short summary
In this study we explore a method of examining model differences in ice volume by looking at the seasonal ice growth and melt. We use simple physical relationships to judge how model differences in key variables affect ice growth and melt and apply these to three case study models with ice volume ranging from very thin to very thick. Results suggest that differences in snow and melt pond cover in early summer are most important in causing the sea ice differences for these models.
Arindan Mandal, Thupstan Angchuk, Mohd Farooq Azam, Alagappan Ramanathan, Patrick Wagnon, Mohd Soheb, and Chetan Singh
The Cryosphere, 16, 3775–3799, https://doi.org/10.5194/tc-16-3775-2022, https://doi.org/10.5194/tc-16-3775-2022, 2022
Short summary
Short summary
Snow sublimation is an important component of glacier surface mass balance; however, it is seldom studied in detail in the Himalayan region owing to data scarcity. We present an 11-year record of wintertime snow-surface energy balance and sublimation characteristics at the Chhota Shigri Glacier moraine site at 4863 m a.s.l. The estimated winter sublimation is 16 %–42 % of the winter snowfall at the study site, which signifies how sublimation is important in the Himalayan region.
Zachary Fair, Mark Flanner, Adam Schneider, and S. McKenzie Skiles
The Cryosphere, 16, 3801–3814, https://doi.org/10.5194/tc-16-3801-2022, https://doi.org/10.5194/tc-16-3801-2022, 2022
Short summary
Short summary
Snow grain size is important to determine the age and structure of snow, but it is difficult to measure. Snow grain size can be found from airborne and spaceborne observations by measuring near-infrared energy reflected from snow. In this study, we use the SNICAR radiative transfer model and a Monte Carlo model to examine how snow grain size measurements change with snow structure and solar zenith angle. We show that improved understanding of these variables improves snow grain size precision.
Gauthier Vérin, Florent Domine, Marcel Babin, Ghislain Picard, and Laurent Arnaud
The Cryosphere, 16, 3431–3449, https://doi.org/10.5194/tc-16-3431-2022, https://doi.org/10.5194/tc-16-3431-2022, 2022
Short summary
Short summary
Snow physical properties on Arctic sea ice are monitored during the melt season. As snow grains grow, and the snowpack thickness is reduced, the surface albedo decreases. The extra absorbed energy accelerates melting. Radiative transfer modeling shows that more radiation is then transmitted to the snow–sea-ice interface. A sharp increase in transmitted radiation takes place when the snowpack thins significantly, and this coincides with the initiation of the phytoplankton bloom in the seawater.
Jonathan P. Conway, Jakob Abermann, Liss M. Andreassen, Mohd Farooq Azam, Nicolas J. Cullen, Noel Fitzpatrick, Rianne H. Giesen, Kirsty Langley, Shelley MacDonell, Thomas Mölg, Valentina Radić, Carleen H. Reijmer, and Jean-Emmanuel Sicart
The Cryosphere, 16, 3331–3356, https://doi.org/10.5194/tc-16-3331-2022, https://doi.org/10.5194/tc-16-3331-2022, 2022
Short summary
Short summary
We used data from automatic weather stations on 16 glaciers to show how clouds influence glacier melt in different climates around the world. We found surface melt was always more frequent when it was cloudy but was not universally faster or slower than under clear-sky conditions. Also, air temperature was related to clouds in opposite ways in different climates – warmer with clouds in cold climates and vice versa. These results will help us improve how we model past and future glacier melt.
Christophe Kinnard, Olivier Larouche, Michael N. Demuth, and Brian Menounos
The Cryosphere, 16, 3071–3099, https://doi.org/10.5194/tc-16-3071-2022, https://doi.org/10.5194/tc-16-3071-2022, 2022
Short summary
Short summary
This study implements a physically based, distributed glacier mass balance model in a context of sparse direct observations. Carefully constraining model parameters with ancillary data allowed for accurately reconstructing the mass balance of Saskatchewan Glacier over a 37-year period. We show that the mass balance sensitivity to warming is dominated by increased melting and that changes in glacier albedo and air humidity are the leading causes of increased glacier melt under warming scenarios.
Patrick Le Moigne, Eric Bazile, Anning Cheng, Emanuel Dutra, John M. Edwards, William Maurel, Irina Sandu, Olivier Traullé, Etienne Vignon, Ayrton Zadra, and Weizhong Zheng
The Cryosphere, 16, 2183–2202, https://doi.org/10.5194/tc-16-2183-2022, https://doi.org/10.5194/tc-16-2183-2022, 2022
Short summary
Short summary
This paper describes an intercomparison of snow models, of varying complexity, used for numerical weather prediction or academic research. The results show that the simplest models are, under certain conditions, able to reproduce the surface temperature just as well as the most complex models. Moreover, the diversity of surface parameters of the models has a strong impact on the temporal variability of the components of the simulated surface energy balance.
Edward H. Bair, Jeff Dozier, Charles Stern, Adam LeWinter, Karl Rittger, Alexandria Savagian, Timbo Stillinger, and Robert E. Davis
The Cryosphere, 16, 1765–1778, https://doi.org/10.5194/tc-16-1765-2022, https://doi.org/10.5194/tc-16-1765-2022, 2022
Short summary
Short summary
Understanding how snow and ice reflect solar radiation (albedo) is important for global climate. Using high-resolution topography, darkening from surface roughness (apparent albedo) is separated from darkening by the composition of the snow (intrinsic albedo). Intrinsic albedo is usually greater than apparent albedo, especially during melt. Such high-resolution topography is often not available; thus the use of a shade component when modeling mixtures is advised.
Stefan Fugger, Catriona L. Fyffe, Simone Fatichi, Evan Miles, Michael McCarthy, Thomas E. Shaw, Baohong Ding, Wei Yang, Patrick Wagnon, Walter Immerzeel, Qiao Liu, and Francesca Pellicciotti
The Cryosphere, 16, 1631–1652, https://doi.org/10.5194/tc-16-1631-2022, https://doi.org/10.5194/tc-16-1631-2022, 2022
Short summary
Short summary
The monsoon is important for the shrinking and growing of glaciers in the Himalaya during summer. We calculate the melt of seven glaciers in the region using a complex glacier melt model and weather data. We find that monsoonal weather affects glaciers that are covered with a layer of rocky debris and glaciers without such a layer in different ways. It is important to take so-called turbulent fluxes into account. This knowledge is vital for predicting the future of the Himalayan glaciers.
Noriaki Ohara, Benjamin M. Jones, Andrew D. Parsekian, Kenneth M. Hinkel, Katsu Yamatani, Mikhail Kanevskiy, Rodrigo C. Rangel, Amy L. Breen, and Helena Bergstedt
The Cryosphere, 16, 1247–1264, https://doi.org/10.5194/tc-16-1247-2022, https://doi.org/10.5194/tc-16-1247-2022, 2022
Short summary
Short summary
New variational principle suggests that a semi-ellipsoid talik shape (3D Stefan equation) is optimum for incoming energy. However, the lake bathymetry tends to be less ellipsoidal due to the ice-rich layers near the surface. Wind wave erosion is likely responsible for the elongation of lakes, while thaw subsidence slows the wave effect and stabilizes the thermokarst lakes. The derived 3D Stefan equation was compared to the field-observed talik thickness data using geophysical methods.
Chloe A. Whicker, Mark G. Flanner, Cheng Dang, Charles S. Zender, Joseph M. Cook, and Alex S. Gardner
The Cryosphere, 16, 1197–1220, https://doi.org/10.5194/tc-16-1197-2022, https://doi.org/10.5194/tc-16-1197-2022, 2022
Short summary
Short summary
Snow and ice surfaces are important to the global climate. Current climate models use measurements to determine the reflectivity of ice. This model uses physical properties to determine the reflectivity of snow, ice, and darkly pigmented impurities that reside within the snow and ice. Therefore, the modeled reflectivity is more accurate for snow/ice columns under varying climate conditions. This model paves the way for improvements in the portrayal of snow and ice within global climate models.
Yi Zhao, Zhuotong Nan, Hailong Ji, and Lin Zhao
The Cryosphere, 16, 825–849, https://doi.org/10.5194/tc-16-825-2022, https://doi.org/10.5194/tc-16-825-2022, 2022
Short summary
Short summary
Convective heat transfer (CHT) is important in affecting thermal regimes in permafrost regions. We quantified its thermal impacts by contrasting the simulation results from three scenarios in which the Simultaneous Heat and Water model includes full, partial, and no consideration of CHT. The results show the CHT commonly happens in shallow and middle soil depths during thawing periods and has greater impacts in spring than summer. The CHT has both heating and cooling effects on the active layer.
Alvaro Robledano, Ghislain Picard, Laurent Arnaud, Fanny Larue, and Inès Ollivier
The Cryosphere, 16, 559–579, https://doi.org/10.5194/tc-16-559-2022, https://doi.org/10.5194/tc-16-559-2022, 2022
Short summary
Short summary
Topography controls the surface temperature of snow-covered, mountainous areas. We developed a modelling chain that uses ray-tracing methods to quantify the impact of a few topographic effects on snow surface temperature at high spatial resolution. Its large spatial and temporal variations are correctly simulated over a 50 km2 area in the French Alps, and our results show that excluding a single topographic effect results in cooling (or warming) effects on the order of 1 °C.
Maria Zeitz, Ronja Reese, Johanna Beckmann, Uta Krebs-Kanzow, and Ricarda Winkelmann
The Cryosphere, 15, 5739–5764, https://doi.org/10.5194/tc-15-5739-2021, https://doi.org/10.5194/tc-15-5739-2021, 2021
Short summary
Short summary
With the increasing melt of the Greenland Ice Sheet, which contributes to sea level rise, the surface of the ice darkens. The dark surfaces absorb more radiation and thus experience increased melt, resulting in the melt–albedo feedback. Using a simple surface melt model, we estimate that this positive feedback contributes to an additional 60 % ice loss in a high-warming scenario and additional 90 % ice loss for moderate warming. Albedo changes are important for Greenland’s future ice loss.
Annelies Voordendag, Marion Réveillet, Shelley MacDonell, and Stef Lhermitte
The Cryosphere, 15, 4241–4259, https://doi.org/10.5194/tc-15-4241-2021, https://doi.org/10.5194/tc-15-4241-2021, 2021
Short summary
Short summary
The sensitivity of two snow models (SNOWPACK and SnowModel) to various parameterizations and atmospheric forcing biases is assessed in the semi-arid Andes of Chile in winter 2017. Models show that sublimation is a main driver of ablation and that its relative contribution to total ablation is highly sensitive to the selected albedo parameterization and snow roughness length. The forcing and parameterizations are more important than the model choice, despite differences in physical complexity.
Minghu Ding, Tong Zhang, Diyi Yang, Ian Allison, Tingfeng Dou, and Cunde Xiao
The Cryosphere, 15, 4201–4206, https://doi.org/10.5194/tc-15-4201-2021, https://doi.org/10.5194/tc-15-4201-2021, 2021
Short summary
Short summary
Measurement of snow heat conductivity is essential to establish the energy balance between the atmosphere and firn, but it is still not clear in Antarctica. Here, we used data from three automatic weather stations located in different types of climate and evaluated nine schemes that were used to calculate the effective heat diffusivity of snow. The best solution was proposed. However, no conductivity–density relationship was optimal at all sites, and the performance of each varied with depth.
Louis Le Toumelin, Charles Amory, Vincent Favier, Christoph Kittel, Stefan Hofer, Xavier Fettweis, Hubert Gallée, and Vinay Kayetha
The Cryosphere, 15, 3595–3614, https://doi.org/10.5194/tc-15-3595-2021, https://doi.org/10.5194/tc-15-3595-2021, 2021
Short summary
Short summary
Snow is frequently eroded from the surface by the wind in Adelie Land (Antarctica) and suspended in the lower atmosphere. By performing model simulations, we show firstly that suspended snow layers interact with incoming radiation similarly to a near-surface cloud. Secondly, suspended snow modifies the atmosphere's thermodynamic structure and energy exchanges with the surface. Our results suggest snow transport by the wind should be taken into account in future model studies over the region.
Enrico Mattea, Horst Machguth, Marlene Kronenberg, Ward van Pelt, Manuela Bassi, and Martin Hoelzle
The Cryosphere, 15, 3181–3205, https://doi.org/10.5194/tc-15-3181-2021, https://doi.org/10.5194/tc-15-3181-2021, 2021
Short summary
Short summary
In our study we find that climate change is affecting the high-alpine Colle Gnifetti glacier (Swiss–Italian Alps) with an increase in melt amounts and ice temperatures.
In the near future this trend could threaten the viability of the oldest ice core record in the Alps.
To reach our conclusions, for the first time we used the meteorological data of the highest permanent weather station in Europe (Capanna Margherita, 4560 m), together with an advanced numeric simulation of the glacier.
John Mohd Wani, Renoj J. Thayyen, Chandra Shekhar Prasad Ojha, and Stephan Gruber
The Cryosphere, 15, 2273–2293, https://doi.org/10.5194/tc-15-2273-2021, https://doi.org/10.5194/tc-15-2273-2021, 2021
Short summary
Short summary
We study the surface energy balance from a cold-arid permafrost environment in the Indian Himalayan region. The GEOtop model was used for the modelling of surface energy balance. Our results show that the variability in the turbulent heat fluxes is similar to that reported from the seasonally frozen ground and permafrost regions of the Tibetan Plateau. Further, the low relative humidity could be playing a critical role in the surface energy balance and the permafrost processes.
Uta Krebs-Kanzow, Paul Gierz, Christian B. Rodehacke, Shan Xu, Hu Yang, and Gerrit Lohmann
The Cryosphere, 15, 2295–2313, https://doi.org/10.5194/tc-15-2295-2021, https://doi.org/10.5194/tc-15-2295-2021, 2021
Short summary
Short summary
The surface mass balance scheme dEBM (diurnal Energy Balance Model) provides a novel, computationally inexpensive interface between the atmosphere and land ice for Earth system modeling. The dEBM is particularly suitable for Earth system modeling on multi-millennial timescales as it accounts for changes in the Earth's orbit and atmospheric greenhouse gas concentration.
Matthew G. Cooper, Laurence C. Smith, Asa K. Rennermalm, Marco Tedesco, Rohi Muthyala, Sasha Z. Leidman, Samiah E. Moustafa, and Jessica V. Fayne
The Cryosphere, 15, 1931–1953, https://doi.org/10.5194/tc-15-1931-2021, https://doi.org/10.5194/tc-15-1931-2021, 2021
Short summary
Short summary
We measured sunlight transmitted into glacier ice to improve models of glacier ice melt and satellite measurements of glacier ice surfaces. We found that very small concentrations of impurities inside the ice increase absorption of sunlight, but the amount was small enough to enable an estimate of ice absorptivity. We confirmed earlier results that the absorption minimum is near 390 nm. We also found that a layer of highly reflective granular "white ice" near the surface reduces transmittance.
Einar Ólason, Pierre Rampal, and Véronique Dansereau
The Cryosphere, 15, 1053–1064, https://doi.org/10.5194/tc-15-1053-2021, https://doi.org/10.5194/tc-15-1053-2021, 2021
Short summary
Short summary
We analyse the fractal properties observed in the pattern of the long, narrow openings that form in Arctic sea ice known as leads. We use statistical tools to explore the fractal properties of the lead fraction observed in satellite data and show that our sea-ice model neXtSIM displays the same behaviour. Building on this result we then show that the pattern of heat loss from ocean to atmosphere in the model displays similar fractal properties, stemming from the fractal properties of the leads.
Terhikki Manninen, Kati Anttila, Emmihenna Jääskeläinen, Aku Riihelä, Jouni Peltoniemi, Petri Räisänen, Panu Lahtinen, Niilo Siljamo, Laura Thölix, Outi Meinander, Anna Kontu, Hanne Suokanerva, Roberta Pirazzini, Juha Suomalainen, Teemu Hakala, Sanna Kaasalainen, Harri Kaartinen, Antero Kukko, Olivier Hautecoeur, and Jean-Louis Roujean
The Cryosphere, 15, 793–820, https://doi.org/10.5194/tc-15-793-2021, https://doi.org/10.5194/tc-15-793-2021, 2021
Short summary
Short summary
The primary goal of this paper is to present a model of snow surface albedo (brightness) accounting for small-scale surface roughness effects. It can be combined with any volume scattering model. The results indicate that surface roughness may decrease the albedo by about 1–3 % in midwinter and even more than 10 % during the late melting season. The effect is largest for low solar zenith angle values and lower bulk snow albedo values.
Christian Katlein, Lovro Valcic, Simon Lambert-Girard, and Mario Hoppmann
The Cryosphere, 15, 183–198, https://doi.org/10.5194/tc-15-183-2021, https://doi.org/10.5194/tc-15-183-2021, 2021
Short summary
Short summary
To improve autonomous investigations of sea ice optical properties, we designed a chain of multispectral light sensors, providing autonomous in-ice light measurements. Here we describe the system and the data acquired from a first prototype deployment. We show that sideward-looking planar irradiance sensors basically measure scalar irradiance and demonstrate the use of this sensor chain to derive light transmittance and inherent optical properties of sea ice.
Baojuan Huai, Michiel R. van den Broeke, and Carleen H. Reijmer
The Cryosphere, 14, 4181–4199, https://doi.org/10.5194/tc-14-4181-2020, https://doi.org/10.5194/tc-14-4181-2020, 2020
Short summary
Short summary
This study presents the surface energy balance (SEB) of the Greenland Ice Sheet (GrIS) using a SEB model forced with observations from automatic weather stations (AWSs). We correlate ERA5 with AWSs to show a significant positive correlation of GrIS summer surface temperature and melt with the Greenland Blocking Index and weaker and opposite correlations with the North Atlantic Oscillation. This analysis may help explain melting patterns in the GrIS with respect to circulation anomalies.
Shawn J. Marshall and Kristina Miller
The Cryosphere, 14, 3249–3267, https://doi.org/10.5194/tc-14-3249-2020, https://doi.org/10.5194/tc-14-3249-2020, 2020
Short summary
Short summary
Surface-albedo measurements from 2002 to 2017 from Haig Glacier in the Canadian Rockies provide no evidence of long-term trends (i.e., the glacier does not appear to be darkening), but there are large variations in albedo over the melt season and from year to year. The glacier ice is exceptionally dark in association with forest fire fallout but is effectively cleansed by meltwater or rainfall. Summer snowfall plays an important role in refreshing the glacier surface and reducing summer melt.
Marius Schaefer, Duilio Fonseca-Gallardo, David Farías-Barahona, and Gino Casassa
The Cryosphere, 14, 2545–2565, https://doi.org/10.5194/tc-14-2545-2020, https://doi.org/10.5194/tc-14-2545-2020, 2020
Short summary
Short summary
Chile hosts glaciers in a large range of latitudes and climates. To project future ice extent, a sound quantification of the energy exchange between atmosphere and glaciers is needed. We present new data for six Chilean glaciers belonging to three glaciological zones. In the Central Andes, the main energy source for glacier melt is the incoming solar radiation, while in southern Patagonia heat provided by the mild and humid air is also important. Total melt rates are higher in Patagonia.
Pleun N. J. Bonekamp, Chiel C. van Heerwaarden, Jakob F. Steiner, and Walter W. Immerzeel
The Cryosphere, 14, 1611–1632, https://doi.org/10.5194/tc-14-1611-2020, https://doi.org/10.5194/tc-14-1611-2020, 2020
Short summary
Short summary
Drivers controlling melt of debris-covered glaciers are largely unknown. With a 3D turbulence-resolving model the impact of surface properties of debris on micrometeorological variables and the conductive heat flux is shown. Also, we show ice cliffs are local melt hot spots and that turbulent fluxes and local heat advection amplify spatial heterogeneity on the surface.This work is important for glacier mass balance modelling and for the understanding of the evolution of debris-covered glaciers.
Alexandra Giese, Aaron Boone, Patrick Wagnon, and Robert Hawley
The Cryosphere, 14, 1555–1577, https://doi.org/10.5194/tc-14-1555-2020, https://doi.org/10.5194/tc-14-1555-2020, 2020
Short summary
Short summary
Rocky debris on glacier surfaces is known to affect the melt of mountain glaciers. Debris can be dry or filled to varying extents with liquid water and ice; whether debris is dry, wet, and/or icy affects how efficiently heat is conducted through debris from its surface to the ice interface. Our paper presents a new energy balance model that simulates moisture phase, evolution, and location in debris. ISBA-DEB is applied to West Changri Nup glacier in Nepal to reveal important physical processes.
Eleanor A. Bash and Brian J. Moorman
The Cryosphere, 14, 549–563, https://doi.org/10.5194/tc-14-549-2020, https://doi.org/10.5194/tc-14-549-2020, 2020
Short summary
Short summary
High-resolution measurements from unmanned aerial vehicle (UAV) imagery allowed for examination of glacier melt model performance in detail at Fountain Glacier. This work capitalized on distributed measurements at 10 cm resolution to look at the spatial distribution of model errors in the ablation zone. Although the model agreed with measurements on average, strong correlation was found with surface water. The results highlight the contribution of surface water flow to melt at this location.
Marion Réveillet, Shelley MacDonell, Simon Gascoin, Christophe Kinnard, Stef Lhermitte, and Nicole Schaffer
The Cryosphere, 14, 147–163, https://doi.org/10.5194/tc-14-147-2020, https://doi.org/10.5194/tc-14-147-2020, 2020
Cheng Dang, Charles S. Zender, and Mark G. Flanner
The Cryosphere, 13, 2325–2343, https://doi.org/10.5194/tc-13-2325-2019, https://doi.org/10.5194/tc-13-2325-2019, 2019
Tobias Linhardt, Joseph S. Levy, and Christoph K. Thomas
The Cryosphere, 13, 2203–2219, https://doi.org/10.5194/tc-13-2203-2019, https://doi.org/10.5194/tc-13-2203-2019, 2019
Short summary
Short summary
This study presents surface energy fluxes in an Antarctic polar desert in the summer season, comparing wetted soil at a water track with dominating dry soils. Elevated energy uptake, evaporation, and soil heat fluxes at the water track highlight the importance of wetted soils for water and energy cycling in polar deserts. This connection will grow more relevant, as wetted soils are expected to expand due to climate warming, with implications for landscape-scale hydrology and soil ecosystems.
Constantijn L. Jakobs, Carleen H. Reijmer, Peter Kuipers Munneke, Gert König-Langlo, and Michiel R. van den Broeke
The Cryosphere, 13, 1473–1485, https://doi.org/10.5194/tc-13-1473-2019, https://doi.org/10.5194/tc-13-1473-2019, 2019
Short summary
Short summary
We use 24 years of observations at Neumayer Station, East Antarctica, to calculate the surface energy balance and the associated surface melt, which we find to be mainly driven by the absorption of solar radiation. Meltwater can refreeze in the subsurface snow layers, thereby decreasing the surface albedo and hence allowing for more absorption of solar radiation. By implementing an albedo parameterisation, we show that this feedback accounts for a threefold increase in surface melt at Neumayer.
Tingfeng Dou, Cunde Xiao, Jiping Liu, Wei Han, Zhiheng Du, Andrew R. Mahoney, Joshua Jones, and Hajo Eicken
The Cryosphere, 13, 1233–1246, https://doi.org/10.5194/tc-13-1233-2019, https://doi.org/10.5194/tc-13-1233-2019, 2019
Short summary
Short summary
The variability and potential trends of rain-on-snow events over Arctic sea ice and their role in sea-ice losses are poorly understood. This study demonstrates that rain-on-snow events are a critical factor in initiating the onset of surface melt over Arctic sea ice, and onset of spring rainfall over sea ice has shifted to earlier dates since the 1970s, which may have profound impacts on ice melt through feedbacks involving earlier onset of surface melt.
Uta Krebs-Kanzow, Paul Gierz, and Gerrit Lohmann
The Cryosphere, 12, 3923–3930, https://doi.org/10.5194/tc-12-3923-2018, https://doi.org/10.5194/tc-12-3923-2018, 2018
Short summary
Short summary
We present a new surface melt scheme for land ice. Derived from the energy balance of melting surfaces, the scheme may be particularly suitable for long ice-sheet simulations of past and future climates. It is computationally inexpensive and can be adapted to changes in the Earth's orbit and atmospheric composition. The scheme yields a better spatial representation of surface melt than common empirical schemes when applied to the Greenland Ice Sheet under present-day climate conditions.
Cited articles
AIRS Science Team/Joao Texeira: Aqua AIRS Level 2 Support Retrieval
(AIRS+AMSU), version 006, NASA Goddard Earth Science Data and Information
Services Center (GES DISC), Greenbelt, MD, USA,
https://doi.org/10.5067/AQUA/AIRS/DATA207, 2013.
Andersen, M., Stenseng, L., Skourup, H., Colgan, W., Khan, S., Kristensen,
S., Andersen, S., Box, J., Ahlstrøm, A., Fettweis, X., and Forsberg, R.:
Basin-scale partitioning of Greenland ice sheet mass balance components
(2007–2011), Earth Planet. Sc. Lett., 409, 89–95,
https://doi.org/10.1016/j.epsl.2014.10.015, 2015.
ARM (Atmospheric Radiation Measurement) Climate Research Facility: Data
Quality Assessment for ARM Radiation Data (QCRAD1LONG). 2008-05-01 to
2013-05-31, 71.323 N 156.609 W: North Slope Alaska (NSA) Central Facility,
Barrow AK (C1), Oak Ridge, Tennessee, USA, compiled by: Shi, Y. and
Riihimaki, L., https://doi.org/10.5439/1027372, 1994.
Bais, A. F., Kazadzis, S., Balis, D., Zerefos, C. S., and Blumthaler, M.:
Correcting global solar ultraviolet spectra recorded by a brewer
spectroradiometer for its angular response error, Appl. Optics, 37,
6339–6344, https://doi.org/10.1364/AO.37.006339, 1998.
Biggs, W. W.: Principles of Radiation Measurement, in: Excerpted from:
Advanced Agricultural Instrumentation, Proceedings from the NATO Advanced
Study Institute on “Advanced Agricultural Instrumentation”, edited by:
Gensler, W., Martinus Nijhof, Dordrecht, The Netherlands, 2 Edn., 1–17,
https://doi.org/10.1016/B978-0-12-374271-1.00071-X, 2015.
Bogren, W. S., Burkhart, J. F., and Kylling, A.: Tilt error in cryospheric
surface radiation measurements at high latitudes: a model study, The
Cryosphere Discuss., 9, 4355–4376, https://doi.org/10.5194/tcd-9-4355-2015, 2015.
Box, J. E.: Greenland melt season kicks off slowly in 2015; the new abnormal,
http://www.meltfactor.org/blog/greenland-melt-season-kicks-off-slowly-in-2015/
(last access: 1 July 2015), 2015.
Box, J. E., Fettweis, X., Stroeve, J. C., Tedesco, M., Hall, D. K., and
Steffen, K.: Greenland ice sheet albedo feedback: thermodynamics and
atmospheric drivers, The Cryosphere, 6, 821–839,
https://doi.org/10.5194/tc-6-821-2012, 2012.
CERES Science Team: CERES SYN1deg-3Hour, Ed3A, NASA Atmospheric Science Data
Center (ASDC), Hampton, VA, USA,
https://doi.org/10.5067/Terra+Aqua/CERES/SYN1deg3HOUR_L3.003A, 2015.
Enderlin, E. M., Howat, I. M., Jeong, S., Noh, M.-J., van Angelen, J. H., and
van den Broeke, M. R.: An improved mass budget for the Greenland ice sheet,
Geophys. Res. Lett., 41, 866–872, https://doi.org/10.1002/2013GL059010, 2014.
Fettweis, X.: Reconstruction of the 1979–2006 Greenland ice sheet surface
mass balance using the regional climate model MAR, The Cryosphere, 1, 21–40,
https://doi.org/10.5194/tc-1-21-2007, 2007.
Flanner, M. G. and Zender, C. S.: Linking snowpack microphysics and albedo
evolution, J. Geophys. Res., 111, D12208, https://doi.org/10.1029/2005JD006834, 2006.
Goswami, D., Kreith, F., and Kreider, J.: Radiation on tilted surface, in:
Principles of Solar Engineering, 2nd Edn., Taylor & Francis,
Philadelphia, PA, USA, 2000.
Grenfell, T. C., Warren, S. G., and Mullen, P. C.: Reflection of solar
radiation by the Antarctic snow surface at ultraviolet, visible, and
near-infrared wavelengths, J. Geophys. Res., 99, 18669,
https://doi.org/10.1029/94JD01484, 1994.
Harrison, R. G., Chalmers, N., and Hogan, R. J.: Retrospective cloud
determinations from surface solar radiation measurements, Atmos. Res., 90,
54–62, https://doi.org/10.1016/j.atmosres.2008.04.001, 2008.
Hudson, S. R., Warren, S. G., Brandt, R. E., Grenfell, T. C., and Six, D.:
Spectral bidirectional reflectance of Antarctic snow: Measurements and
parameterization, J. Geophys. Res., 111, D18106, https://doi.org/10.1029/2006JD007290,
2006.
Kipp & Zonen: Instruction manual for Kipp & Zonen CM3, Tech. rep.,
Kipp & Zonen B.V., Delft, Holland, 36 pp., 2004.
Kuipers Munneke, P., Reijmer, C. H., and van den Broeke, M. R.: Assessing the
retrieval of cloud properties from radiation measurements over snow and ice,
Int. J. Climatol., 31, 756–769, https://doi.org/10.1002/joc.2114, 2011.
Minnis, P., Trepte, Q. Z., Sun-Mack, S., Chen, Y., Doelling, D. R., Young,
D. F., Spangenberg, D. A., Miller, W. F., Wielicki, B. A., Brown, R. R.,
Gibson, S. C., and Geier, E. B.: Cloud detection in nonpolar regions for
CERES using TRMM VIRS and Terra and Aqua MODIS data, IEEE T. Geosci. Remote,
46, 3857–3884, https://doi.org/10.1109/TGRS.2008.2001351, 2008.
Minnis, P., Sun-Mack, S., Chen, Y., Khaiyer, M. M., Yi, Y., Ayers, J. K.,
Brown, R. R., Dong, X., Gibson, S. C., Heck, P. W., Lin, B., Nordeen, M. L.,
Nguyen, L., Palikonda, R., Smith, W. L., Spangenberg, D. A., Trepte, Q. Z.,
and Xi, B.: CERES edition-2 cloud property retrievals using TRMM VIRS and
Terra and Aqua MODIS data – Part II: Examples of average results and
comparisons with other data, IEEE T. Geosci. Remote, 49, 4401–4430,
https://doi.org/10.1109/TGRS.2011.2144602, 2011.
Nghiem, S. V., Hall, D. K., Mote, T. L., Tedesco, M., Albert, M. R., Keegan,
K., Shuman, C. A., DiGirolamo, N. E., and Neumann, G.: The extreme melt
across the Greenland ice sheet in 2012, Geophys. Res. Lett., 39, L20502,
https://doi.org/10.1029/2012GL053611, 2012.
Paulescu, E. and Blaga, R.: Regression models for hourly diffuse solar
radiation, Sol. Energy, 125, 111–124, https://doi.org/10.1016/j.solener.2015.11.044,
2016.
Pithan, F. and Mauritsen, T.: Arctic amplification dominated by temperature
feedbacks in contemporary climate models, Nat. Geosci., 7, 181–184,
https://doi.org/10.1038/ngeo2071, 2014.
Reda, I. and Andreas, A.: Solar position algorithm for solar radiation
applications, Sol. Energy, 76, 577–589, https://doi.org/10.1016/j.solener.2003.12.003,
2004.
Reindl, D., Beckman, W., and Duffie, J.: Evaluation of hourly tilted surface
radiation models, Sol. Energy, 45, 9–17, https://doi.org/10.1016/0038-092X(90)90061-G,
1990.
Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J.,
Liu, E., Bosilovich, M. G., Schubert, S. D., Takacs, L., Kim, G.-K., Bloom,
S., Chen, J., Collins, D., Conaty, A., da Silva, A., Gu, W., Joiner, J.,
Koster, R. D., Lucchesi, R., Molod, A., Owens, T., Pawson, S., Pegion, P.,
Redder, C. R., Reichle, R., Robertson, F. R., Ruddick, A. G., Sienkiewicz,
M., and Woollen, J.: MERRA: NASA's Modern-Era Retrospective Analysis for
Research and Applications, J. Climate, 24, 3624–3648,
https://doi.org/10.1175/JCLI-D-11-00015.1, 2011.
Schaaf, C. B., Wang, Z., and Strahler, A. H.: Commentary on Wang and
Zender-MODIS snow albedo bias at high solar zenith angles relative to theory
and to in situ observations in Greenland, Remote Sens. Environ., 115,
1296–1300, https://doi.org/10.1016/j.rse.2011.01.002, 2011.
Steffen, C., Box, J., and Abdalati, W.: Greenland Climate Network: GC-Net, US
Army Cold Regions Reattach and Engineering (CRREL), CRREL Special Report,
98–103, 1996.
Stroeve, J., Box, J. E., Gao, F., Liang, S., Nolin, A., and Schaaf, C.:
Accuracy assessment of the MODIS 16-day albedo product for snow: comparisons
with Greenland in situ measurements, Remote Sens. Environ., 94, 46–60,
https://doi.org/10.1016/j.rse.2004.09.001, 2005.
Stroeve, J., Box, J. E., Wang, Z., Schaaf, C., and Barrett, A.: Re-evaluation
of MODIS MCD43 Greenland albedo accuracy and trends, Remote Sens. Environ.,
138, 199–214, https://doi.org/10.1016/j.rse.2013.07.023, 2013.
Stroeve, J. C., Box, J. E., Fowler, C., Haran, T., and Key, J.:
Intercomparison between in situ and AVHRR polar pathfinder-derived surface
albedo over Greenland, Remote Sens. Environ., 75, 360–374,
https://doi.org/10.1016/S0034-4257(00)00179-6, 2001.
Susskind, J., Barnet, C., and Blaisdell, J.: Retrieval of atmospheric and
surface parameters from AIRS/AMSU/HSB data in the presence of clouds, IEEE
T. Geosci. Remote, 41, 390–409, https://doi.org/10.1109/TGRS.2002.808236, 2003.
Tedesco, M., Fettweis, X., Mote, T., Wahr, J., Alexander, P., Box, J. E., and
Wouters, B.: Evidence and analysis of 2012 Greenland records from spaceborne
observations, a regional climate model and reanalysis data, The Cryosphere,
7, 615–630, https://doi.org/10.5194/tc-7-615-2013, 2013.
van As, D.: Warming, glacier melt and surface energy budget from weather
station observations in the Melville Bay region of northwest Greenland,
J. Glaciology, 57, 208–220, https://doi.org/10.3189/002214311796405898, 2011.
van As, D. and Fausto, R. S.: Programme for Monitoring of the Greenland Ice
Sheet (PROMICE): first temperature and ablation records, Geol. Surv. Den.
Greenl., 23, 73–76, 2011.
van As, D., Andersen, M. L., Petersen, D., Fettweis, X., Van Angelen, J. H.,
Lenaerts, J. T., Van Den Broeke, M. R., Lea, J. M., Bøggild, C. E.,
Ahlstrøm, A. P., and Steffen, K.: Increasing meltwater discharge from the
Nuuk region of the Greenland ice sheet and implications for mass balance
(1960–2012), J. Glaciology, 60, 314–322, https://doi.org/10.3189/2014JoG13J065, 2014.
van den Broeke, M., van As, D., Reijmer, C., and van de Wal, R.: Assessing
and Improving the Quality of Unattended Radiation Observations in Antarctica,
J. Atmos. Ocean. Techn., 21, 1417–1431,
https://doi.org/10.1175/1520-0426(2004)021<1417:AAITQO>2.0.CO;2,
2004.
van den Broeke, M., Bamber, J., Ettema, J., Rignot, E., Schrama, E., van de
Berg, W. J., van Meijgaard, E., Velicogna, I., and Wouters, B.: Partitioning
recent Greenland mass loss, Science (New York, N.Y.), 326, 984–6,
https://doi.org/10.1126/science.1178176, 2009.
van den Broeke, M. R., Smeets, C. J. P. P., and van de Wal, R. S. W.: The
seasonal cycle and interannual variability of surface energy balance and melt
in the ablation zone of the west Greenland ice sheet, The Cryosphere, 5,
377–390, https://doi.org/10.5194/tc-5-377-2011, 2011.
Vavrus, S., Waliser, D., Schweiger, A., and Francis, J.: Simulations of 20th
and 21st century Arctic cloud amount in the global climate models assessed in
the IPCC AR4, Clim. Dynam., 33, 1099–1115, https://doi.org/10.1007/s00382-008-0475-6,
2008.
Velicogna, I. and Wahr, J.: Time-variable gravity observations of ice sheet
mass balance: Precision and limitations of the GRACE satellite data, Geophys.
Res. Lett., 40, 3055–3063, https://doi.org/10.1002/grl.50527, 2013.
Wang, X. and Zender, C. S.: Constraining MODIS snow albedo at large solar
zenith angles: Implications for the surface energy budget in Greenland,
J. Geophys. Res., 115, F04015, https://doi.org/10.1029/2009JF001436, 2010a.
Wang, X. and Zender, C. S.: MODIS snow albedo bias at high solar zenith
angles relative to theory and to in situ observations in Greenland, Remote
Sens. Environ., 114, 563–575, https://doi.org/10.1016/j.rse.2009.10.014, 2010b.
Wang, X. and Zender, C. S.: Arctic and Antarctic diurnal and seasonal
variations of snow albedo from multiyear Baseline Surface Radiation Network
measurements, J. Geophys. Res., 116, F03008, https://doi.org/10.1029/2010JF001864,
2011.
Zender, C. S.: Global climatology of abundance and solar absorption of oxygen
collision complexes, J. Geophys. Res., 104, 24471,
https://doi.org/10.1029/1999JD900797, 1999.
Short summary
We identify and correct station-tilt-induced biases in insolation observed by automatic weather stations on the Greenland Ice Sheet. Without tilt correction, only 40 % of clear days have the correct solar noon time (±0.5 h). The largest hourly bias exceeds 20 %. We estimate the tilt angles based on solar geometric relationship between insolation observed on horizontal surfaces and that on tilted surfaces, and produce shortwave radiation and albedo that agree better with independent data sets.
We identify and correct station-tilt-induced biases in insolation observed by automatic weather...