Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 4.713
IF4.713
IF 5-year value: 4.927
IF 5-year
4.927
CiteScore value: 8.0
CiteScore
8.0
SNIP value: 1.425
SNIP1.425
IPP value: 4.65
IPP4.65
SJR value: 2.353
SJR2.353
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 53
h5-index53
Volume 10, issue 2
The Cryosphere, 10, 727–741, 2016
https://doi.org/10.5194/tc-10-727-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
The Cryosphere, 10, 727–741, 2016
https://doi.org/10.5194/tc-10-727-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 24 Mar 2016

Research article | 24 Mar 2016

A Retrospective, Iterative, Geometry-Based (RIGB) tilt-correction method for radiation observed by automatic weather stations on snow-covered surfaces: application to Greenland

Wenshan Wang et al.

Related authors

The future sea-level contribution of the Greenland ice sheet: a multi-model ensemble study of ISMIP6
Heiko Goelzer, Sophie Nowicki, Anthony Payne, Eric Larour, Helene Seroussi, William H. Lipscomb, Jonathan Gregory, Ayako Abe-Ouchi, Andrew Shepherd, Erika Simon, Cécile Agosta, Patrick Alexander, Andy Aschwanden, Alice Barthel, Reinhard Calov, Christopher Chambers, Youngmin Choi, Joshua Cuzzone, Christophe Dumas, Tamsin Edwards, Denis Felikson, Xavier Fettweis, Nicholas R. Golledge, Ralf Greve, Angelika Humbert, Philippe Huybrechts, Sebastien Le clec'h, Victoria Lee, Gunter Leguy, Chris Little, Daniel P. Lowry, Mathieu Morlighem, Isabel Nias, Aurelien Quiquet, Martin Rückamp, Nicole-Jeanne Schlegel, Donald A. Slater, Robin S. Smith, Fiamma Straneo, Lev Tarasov, Roderik van de Wal, and Michiel van den Broeke
The Cryosphere, 14, 3071–3096, https://doi.org/10.5194/tc-14-3071-2020,https://doi.org/10.5194/tc-14-3071-2020, 2020
Short summary
Snowpack and firn densification in the Energy Exascale Earth System Model (E3SM) (version 1.2)
Adam M. Schneider, Charles S. Zender, and Stephen F. Price
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-247,https://doi.org/10.5194/gmd-2020-247, 2020
Preprint under review for GMD
Short summary
Experimental protocol for sea level projections from ISMIP6 stand-alone ice sheet models
Sophie Nowicki, Heiko Goelzer, Hélène Seroussi, Anthony J. Payne, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Patrick Alexander, Xylar S. Asay-Davis, Alice Barthel, Thomas J. Bracegirdle, Richard Cullather, Denis Felikson, Xavier Fettweis, Jonathan M. Gregory, Tore Hattermann, Nicolas C. Jourdain, Peter Kuipers Munneke, Eric Larour, Christopher M. Little, Mathieu Morlighem, Isabel Nias, Andrew Shepherd, Erika Simon, Donald Slater, Robin S. Smith, Fiammetta Straneo, Luke D. Trusel, Michiel R. van den Broeke, and Roderik van de Wal
The Cryosphere, 14, 2331–2368, https://doi.org/10.5194/tc-14-2331-2020,https://doi.org/10.5194/tc-14-2331-2020, 2020
Short summary
The Copernicus Polar Ice and Snow Topography Altimeter (CRISTAL) high-priority candidate mission
Michael Kern, Robert Cullen, Bruno Berruti, Jerome Bouffard, Tania Casal, Mark R. Drinkwater, Antonio Gabriele, Arnaud Lecuyot, Michael Ludwig, Rolv Midthassel, Ignacio Navas Traver, Tommaso Parrinello, Gerhard Ressler, Erik Andersson, Cristina Martin-Puig, Ole Andersen, Annett Bartsch, Sinead Farrell, Sara Fleury, Simon Gascoin, Amandine Guillot, Angelika Humbert, Eero Rinne, Andrew Shepherd, Michiel R. van den Broeke, and John Yackel
The Cryosphere, 14, 2235–2251, https://doi.org/10.5194/tc-14-2235-2020,https://doi.org/10.5194/tc-14-2235-2020, 2020
Short summary
Modelling perennial firn aquifers in the Antarctic Peninsula (1979–2016)
J. Melchior van Wessem, Christian R. Steger, Nander Wever, and Michiel R. van den Broeke
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-148,https://doi.org/10.5194/tc-2020-148, 2020
Preprint under review for TC
Short summary

Related subject area

Energy Balance Obs/Modelling
Surface energy fluxes on Chilean glaciers: measurements and models
Marius Schaefer, Duilio Fonseca-Gallardo, David Farías-Barahona, and Gino Casassa
The Cryosphere, 14, 2545–2565, https://doi.org/10.5194/tc-14-2545-2020,https://doi.org/10.5194/tc-14-2545-2020, 2020
Short summary
Using 3D turbulence-resolving simulations to understand the impact of surface properties on the energy balance of a debris-covered glacier
Pleun N. J. Bonekamp, Chiel C. van Heerwaarden, Jakob F. Steiner, and Walter W. Immerzeel
The Cryosphere, 14, 1611–1632, https://doi.org/10.5194/tc-14-1611-2020,https://doi.org/10.5194/tc-14-1611-2020, 2020
Short summary
Incorporating moisture content in surface energy balance modeling of a debris-covered glacier
Alexandra Giese, Aaron Boone, Patrick Wagnon, and Robert Hawley
The Cryosphere, 14, 1555–1577, https://doi.org/10.5194/tc-14-1555-2020,https://doi.org/10.5194/tc-14-1555-2020, 2020
Short summary
Seasonal and Interannual Variability of Melt-Season Albedo at Haig Glacier, Canadian Rocky Mountains
Shawn J. Marshall and Kristina Miller
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-87,https://doi.org/10.5194/tc-2020-87, 2020
Revised manuscript accepted for TC
Short summary
Surface melt and the importance of water flow – an analysis based on high-resolution unmanned aerial vehicle (UAV) data for an Arctic glacier
Eleanor A. Bash and Brian J. Moorman
The Cryosphere, 14, 549–563, https://doi.org/10.5194/tc-14-549-2020,https://doi.org/10.5194/tc-14-549-2020, 2020
Short summary

Cited articles

AIRS Science Team/Joao Texeira: Aqua AIRS Level 2 Support Retrieval (AIRS+AMSU), version 006, NASA Goddard Earth Science Data and Information Services Center (GES DISC), Greenbelt, MD, USA, https://doi.org/10.5067/AQUA/AIRS/DATA207, 2013.
Andersen, M., Stenseng, L., Skourup, H., Colgan, W., Khan, S., Kristensen, S., Andersen, S., Box, J., Ahlstrøm, A., Fettweis, X., and Forsberg, R.: Basin-scale partitioning of Greenland ice sheet mass balance components (2007–2011), Earth Planet. Sc. Lett., 409, 89–95, https://doi.org/10.1016/j.epsl.2014.10.015, 2015.
ARM (Atmospheric Radiation Measurement) Climate Research Facility: Data Quality Assessment for ARM Radiation Data (QCRAD1LONG). 2008-05-01 to 2013-05-31, 71.323 N 156.609 W: North Slope Alaska (NSA) Central Facility, Barrow AK (C1), Oak Ridge, Tennessee, USA, compiled by: Shi, Y. and Riihimaki, L., https://doi.org/10.5439/1027372, 1994.
Bais, A. F., Kazadzis, S., Balis, D., Zerefos, C. S., and Blumthaler, M.: Correcting global solar ultraviolet spectra recorded by a brewer spectroradiometer for its angular response error, Appl. Optics, 37, 6339–6344, https://doi.org/10.1364/AO.37.006339, 1998.
Biggs, W. W.: Principles of Radiation Measurement, in: Excerpted from: Advanced Agricultural Instrumentation, Proceedings from the NATO Advanced Study Institute on “Advanced Agricultural Instrumentation”, edited by: Gensler, W., Martinus Nijhof, Dordrecht, The Netherlands, 2 Edn., 1–17, https://doi.org/10.1016/B978-0-12-374271-1.00071-X, 2015.
Publications Copernicus
Download
Short summary
We identify and correct station-tilt-induced biases in insolation observed by automatic weather stations on the Greenland Ice Sheet. Without tilt correction, only 40 % of clear days have the correct solar noon time (±0.5 h). The largest hourly bias exceeds 20 %. We estimate the tilt angles based on solar geometric relationship between insolation observed on horizontal surfaces and that on tilted surfaces, and produce shortwave radiation and albedo that agree better with independent data sets.
We identify and correct station-tilt-induced biases in insolation observed by automatic weather...
Citation