Articles | Volume 10, issue 2
The Cryosphere, 10, 477–496, 2016
https://doi.org/10.5194/tc-10-477-2016
The Cryosphere, 10, 477–496, 2016
https://doi.org/10.5194/tc-10-477-2016
Research article
03 Mar 2016
Research article | 03 Mar 2016

The darkening of the Greenland ice sheet: trends, drivers, and projections (1981–2100)

Marco Tedesco et al.

Related authors

Assessing bare-ice albedo simulated by MAR over the Greenland ice sheet (2000–2021) and implications for meltwater production estimates
Raf M. Antwerpen, Marco Tedesco, Xavier Fettweis, Patrick Alexander, and Willem Jan van de Berg
The Cryosphere, 16, 4185–4199, https://doi.org/10.5194/tc-16-4185-2022,https://doi.org/10.5194/tc-16-4185-2022, 2022
Short summary
Evaluating Greenland Surface-Mass-Balance and Firn-Densification Data Using ICESat-2 Altimetry
Benjamin E. Smith, Brooke Medley, Xavier Fettweis, Tyler Sutterley, Patrick Alexander, David Porter, and Marco Tedesco
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-44,https://doi.org/10.5194/tc-2022-44, 2022
Preprint under review for TC
Short summary
Surface melting over the Greenland ice sheet derived from enhanced resolution passive microwave brightness temperatures (1979–2019)
Paolo Colosio, Marco Tedesco, Roberto Ranzi, and Xavier Fettweis
The Cryosphere, 15, 2623–2646, https://doi.org/10.5194/tc-15-2623-2021,https://doi.org/10.5194/tc-15-2623-2021, 2021
Short summary
Spectral attenuation coefficients from measurements of light transmission in bare ice on the Greenland Ice Sheet
Matthew G. Cooper, Laurence C. Smith, Asa K. Rennermalm, Marco Tedesco, Rohi Muthyala, Sasha Z. Leidman, Samiah E. Moustafa, and Jessica V. Fayne
The Cryosphere, 15, 1931–1953, https://doi.org/10.5194/tc-15-1931-2021,https://doi.org/10.5194/tc-15-1931-2021, 2021
Short summary
GrSMBMIP: intercomparison of the modelled 1980–2012 surface mass balance over the Greenland Ice Sheet
Xavier Fettweis, Stefan Hofer, Uta Krebs-Kanzow, Charles Amory, Teruo Aoki, Constantijn J. Berends, Andreas Born, Jason E. Box, Alison Delhasse, Koji Fujita, Paul Gierz, Heiko Goelzer, Edward Hanna, Akihiro Hashimoto, Philippe Huybrechts, Marie-Luise Kapsch, Michalea D. King, Christoph Kittel, Charlotte Lang, Peter L. Langen, Jan T. M. Lenaerts, Glen E. Liston, Gerrit Lohmann, Sebastian H. Mernild, Uwe Mikolajewicz, Kameswarrao Modali, Ruth H. Mottram, Masashi Niwano, Brice Noël, Jonathan C. Ryan, Amy Smith, Jan Streffing, Marco Tedesco, Willem Jan van de Berg, Michiel van den Broeke, Roderik S. W. van de Wal, Leo van Kampenhout, David Wilton, Bert Wouters, Florian Ziemen, and Tobias Zolles
The Cryosphere, 14, 3935–3958, https://doi.org/10.5194/tc-14-3935-2020,https://doi.org/10.5194/tc-14-3935-2020, 2020
Short summary

Related subject area

Greenland
The contribution of Humboldt Glacier, northern Greenland, to sea-level rise through 2100 constrained by recent observations of speedup and retreat
Trevor R. Hillebrand, Matthew J. Hoffman, Mauro Perego, Stephen F. Price, and Ian M. Howat
The Cryosphere, 16, 4679–4700, https://doi.org/10.5194/tc-16-4679-2022,https://doi.org/10.5194/tc-16-4679-2022, 2022
Short summary
Observed mechanism for sustained glacier retreat and acceleration in response to ocean warming around Greenland
Evan Carnahan, Ginny Catania, and Timothy C. Bartholomaus
The Cryosphere, 16, 4305–4317, https://doi.org/10.5194/tc-16-4305-2022,https://doi.org/10.5194/tc-16-4305-2022, 2022
Short summary
Assessing bare-ice albedo simulated by MAR over the Greenland ice sheet (2000–2021) and implications for meltwater production estimates
Raf M. Antwerpen, Marco Tedesco, Xavier Fettweis, Patrick Alexander, and Willem Jan van de Berg
The Cryosphere, 16, 4185–4199, https://doi.org/10.5194/tc-16-4185-2022,https://doi.org/10.5194/tc-16-4185-2022, 2022
Short summary
Drill-site selection for cosmogenic-nuclide exposure dating of the bed of the Greenland Ice Sheet
Jason P. Briner, Caleb K. Walcott, Joerg M. Schaefer, Nicolás E. Young, Joseph A. MacGregor, Kristin Poinar, Benjamin A. Keisling, Sridhar Anandakrishnan, Mary R. Albert, Tanner Kuhl, and Grant Boeckmann
The Cryosphere, 16, 3933–3948, https://doi.org/10.5194/tc-16-3933-2022,https://doi.org/10.5194/tc-16-3933-2022, 2022
Short summary
A new Level 4 multi-sensor ice surface temperature product for the Greenland Ice Sheet
Ioanna Karagali, Magnus Barfod Suhr, Ruth Mottram, Pia Nielsen-Englyst, Gorm Dybkjær, Darren Ghent, and Jacob L. Høyer
The Cryosphere, 16, 3703–3721, https://doi.org/10.5194/tc-16-3703-2022,https://doi.org/10.5194/tc-16-3703-2022, 2022
Short summary

Cited articles

Alexander, P. M., Tedesco, M., Fettweis, X., van de Wal, R. S. W., Smeets, C. J. P. P., and van den Broeke, M. R.: Assessing spatio-temporal variability and trends in modelled and measured Greenland Ice Sheet albedo (2000–2013), The Cryosphere, 8, 2293–2312, https://doi.org/10.5194/tc-8-2293-2014, 2014.
Arnaud, L., Barnola, J. M., and Duval, P.: Physical modeling of the densification of snow/firn and ice in the upper part of polar ice sheets, in: Physics of Ice Core Records, edited by: Hondoh, T., Hokkaido University Press, Sapporo, Japan, 285–305, 2000.
Arora, V. K. and Boer, G. J.: Uncertainties in the 20th century carbon budget associated with land use change, Global Change Biol., 16, 3327–3348, https://doi.org/10.1111/j.1365-2486.2010.02202.x, 2010.
Benning, L. G., Anesio, A. M., Lutz, S., and Tranter, M.: Biological impact on Greenland's albedo, Nat. Geosci., 7, 691–691, https://doi.org/10.1038/ngeo2260, 2014.
Benson, C. S.: Stratigraphic Studies in the Snow and Firn of the Greenland Ice Sheet, Research Report 70, US Army Snow, Ice, and Permafrost Research Establishment (SIPRE), US Army Cold Regions Research and Engineering Laboratory (CRREL), published version of C. S. Benson's PhD Dissertation of 1960, 93 pp., 1962.
Download
Short summary
Summer surface albedo over Greenland decreased at a rate of 0.02 per decade between 1996 and 2012. The decrease is due to snow grain growth, the expansion of bare ice areas, and trends in light-absorbing impurities on snow and ice surfaces. Neither aerosol models nor in situ observations indicate increasing trends in impurities in the atmosphere over Greenland. Albedo projections through to the end of the century under different warming scenarios consistently point to continued darkening.