Articles | Volume 9, issue 3
https://doi.org/10.5194/tc-9-1265-2015
https://doi.org/10.5194/tc-9-1265-2015
Research article
 | 
22 Jun 2015
Research article |  | 22 Jun 2015

Automatic monitoring of the effective thermal conductivity of snow in a low-Arctic shrub tundra

F. Domine, M. Barrere, D. Sarrazin, S. Morin, and L. Arnaud

Related authors

Meteorological, snow and soil data, CO2, water and energy fluxes from a low-Arctic valley of Northern Quebec
Florent Domine, Denis Sarrazin, Daniel F. Nadeau, Georg Lackner, and Maria Belke-Brea
Earth Syst. Sci. Data, 16, 1523–1541, https://doi.org/10.5194/essd-16-1523-2024,https://doi.org/10.5194/essd-16-1523-2024, 2024
Short summary
Impact of rain-on-snow events on snowpack structure and runoff under a boreal canopy
Benjamin Bouchard, Daniel F. Nadeau, Florent Domine, Nander Wever, Adrien Michel, Michael Lehning, and Pierre-Erik Isabelle
EGUsphere, https://doi.org/10.5194/egusphere-2023-3012,https://doi.org/10.5194/egusphere-2023-3012, 2024
Short summary
Exploring the decision-making process in model development: focus on the Arctic snowpack
Cecile B. Menard, Sirpa Rasmus, Ioanna Merkouriadi, Gianpaolo Balsamo, Annett Bartsch, Chris Derksen, Florent Domine, Marie Dumont, Dorothee Ehrich, Richard Essery, Bruce C. Forbes, Gerhard Krinner, David Lawrence, Glen Liston, Heidrun Matthes, Nick Rutter, Melody Sandells, Martin Schneebeli, and Sari Stark
EGUsphere, https://doi.org/10.5194/egusphere-2023-2926,https://doi.org/10.5194/egusphere-2023-2926, 2024
Short summary
How does a warm and low-snow winter impact the snow cover dynamics in a humid and discontinuous boreal forest? An observational study in eastern Canada
Benjamin Bouchard, Daniel F. Nadeau, Florent Domine, François Anctil, Tobias Jonas, and Étienne Tremblay
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-191,https://doi.org/10.5194/hess-2023-191, 2023
Revised manuscript under review for HESS
Short summary
Metamorphism of snow on Arctic sea ice during the melt season: impact on spectral albedo and radiative fluxes through snow
Gauthier Vérin, Florent Domine, Marcel Babin, Ghislain Picard, and Laurent Arnaud
The Cryosphere, 16, 3431–3449, https://doi.org/10.5194/tc-16-3431-2022,https://doi.org/10.5194/tc-16-3431-2022, 2022
Short summary

Related subject area

Seasonal Snow
Snow water equivalent retrieval over Idaho – Part 2: Using L-band UAVSAR repeat-pass interferometry
Zachary Hoppinen, Shadi Oveisgharan, Hans-Peter Marshall, Ross Mower, Kelly Elder, and Carrie Vuyovich
The Cryosphere, 18, 575–592, https://doi.org/10.5194/tc-18-575-2024,https://doi.org/10.5194/tc-18-575-2024, 2024
Short summary
Variability and drivers of winter near-surface temperatures over boreal and tundra landscapes
Vilna Tyystjärvi, Pekka Niittynen, Julia Kemppinen, Miska Luoto, Tuuli Rissanen, and Juha Aalto
The Cryosphere, 18, 403–423, https://doi.org/10.5194/tc-18-403-2024,https://doi.org/10.5194/tc-18-403-2024, 2024
Short summary
Spatiotemporal snow water storage uncertainty in the midlatitude American Cordillera
Yiwen Fang, Yufei Liu, Dongyue Li, Haorui Sun, and Steven A. Margulis
The Cryosphere, 17, 5175–5195, https://doi.org/10.5194/tc-17-5175-2023,https://doi.org/10.5194/tc-17-5175-2023, 2023
Short summary
Evaluation of snow cover properties in ERA5 and ERA5-Land with several satellite-based datasets in the Northern Hemisphere in spring 1982–2018
Kerttu Kouki, Kari Luojus, and Aku Riihelä
The Cryosphere, 17, 5007–5026, https://doi.org/10.5194/tc-17-5007-2023,https://doi.org/10.5194/tc-17-5007-2023, 2023
Short summary
From snow accumulation to snow depth distributions by quantifying meteoric ice fractions in the Weddell Sea
Stefanie Arndt, Nina Maaß, Leonard Rossmann, and Marcel Nicolaus
EGUsphere, https://doi.org/10.5194/egusphere-2023-2398,https://doi.org/10.5194/egusphere-2023-2398, 2023
Short summary

Cited articles

Blackwell, J. H.: A transient-flow method for determination of thermal constants of insulating materials in bulk .1. Theory, J. Appl. Phys., 25, 137–144, 1954.
Calonne, N., Flin, F., Geindreau, C., Lesaffre, B., and Rolland du Roscoat, S.: Study of a temperature gradient metamorphism of snow from 3-D images: time evolution of microstructures, physical properties and their associated anisotropy, The Cryosphere, 8, 2255–2274, https://doi.org/10.5194/tc-8-2255-2014, 2014.
Calonne, N., Flin, F., Morin, S., Lesaffre, B., du Roscoat, S. R., and Geindreau, C.: Numerical and experimental investigations of the effective thermal conductivity of snow, Geophys. Res. Lett., 38, L23501, https://doi.org/10.1029/2011gl049234, 2011.
Conger, S. M. and McClung, D. M.: Comparison of density cutters for snow profile observations, J. Glaciol., 55, 163–169, 2009.
Domine, F., Taillandier, A.-S., Cabanes, A., Douglas, T. A., and Sturm, M.: Three examples where the specific surface area of snow increased over time, The Cryosphere, 3, 31–39, https://doi.org/10.5194/tc-3-31-2009, 2009.
Download
Short summary
The thermal conductivity of Arctic snow strongly impacts ground temperature, nutrient recycling and vegetation growth. We have monitored the thermal conductivity of snow in low-Arctic shrub tundra for two consecutive winters using heated needle probes. We observe very different thermal conductivity evolutions in both winters studied, with more extensive melting in the second winter. Results illustrate the effect of vegetation on snow properties and the need to include it in snow physics models.