Articles | Volume 5, issue 3
The Cryosphere, 5, 617–629, 2011
https://doi.org/10.5194/tc-5-617-2011
The Cryosphere, 5, 617–629, 2011
https://doi.org/10.5194/tc-5-617-2011

Research article 17 Aug 2011

Research article | 17 Aug 2011

Variability of snow depth at the plot scale: implications for mean depth estimation and sampling strategies

J. I. López-Moreno et al.

Related subject area

Seasonal Snow
Quantification of the radiative impact of light-absorbing particles during two contrasted snow seasons at Col du Lautaret (2058 m a.s.l., French Alps)
François Tuzet, Marie Dumont, Ghislain Picard, Maxim Lamare, Didier Voisin, Pierre Nabat, Mathieu Lafaysse, Fanny Larue, Jesus Revuelto, and Laurent Arnaud
The Cryosphere, 14, 4553–4579, https://doi.org/10.5194/tc-14-4553-2020,https://doi.org/10.5194/tc-14-4553-2020, 2020
Short summary
Local-scale variability of snow density on Arctic sea ice
Joshua King, Stephen Howell, Mike Brady, Peter Toose, Chris Derksen, Christian Haas, and Justin Beckers
The Cryosphere, 14, 4323–4339, https://doi.org/10.5194/tc-14-4323-2020,https://doi.org/10.5194/tc-14-4323-2020, 2020
Short summary
Snow Ensemble Uncertainty Project (SEUP): Quantification of snow water equivalent uncertainty across North America via ensemble land surface modeling
Rhae Sung Kim, Sujay Kumar, Carrie Vuyovich, Paul Houser, Jessica Lundquist, Lawrence Mudryk, Michael Durand, Ana Barros, Edward J. Kim, Barton A. Forman, Ethan D. Gutmann, Melissa L. Wrzesien, Camille Garnaud, Melody Sandells, Hans-Peter Marshall, Nicoleta Cristea, Justin M. Pflug, Jeremy Johnston, Yueqian Cao, David Mocko, and Shugong Wang
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-248,https://doi.org/10.5194/tc-2020-248, 2020
Revised manuscript accepted for TC
Snow depth estimation and historical data reconstruction over China based on a random forest machine learning approach
Jianwei Yang, Lingmei Jiang, Kari Luojus, Jinmei Pan, Juha Lemmetyinen, Matias Takala, and Shengli Wu
The Cryosphere, 14, 1763–1778, https://doi.org/10.5194/tc-14-1763-2020,https://doi.org/10.5194/tc-14-1763-2020, 2020
Short summary
Evaluation of long-term Northern Hemisphere snow water equivalent products
Colleen Mortimer, Lawrence Mudryk, Chris Derksen, Kari Luojus, Ross Brown, Richard Kelly, and Marco Tedesco
The Cryosphere, 14, 1579–1594, https://doi.org/10.5194/tc-14-1579-2020,https://doi.org/10.5194/tc-14-1579-2020, 2020
Short summary

Cited articles

Anderton, S. P., White S. M., and Alvera, B.: Micro-scale spatial variability and the timing of snow melt runoff in a high mountain catchment, J. Hydrol., 268, 158–176, 2002.
Cleveland, W. S.: Robust Locally Weighted Regression and Smoothing Scatterplots, J. Am. Stat. Assoc., 74(368), 829–836, 1979.
Cline, D., Elder, K., and Bales, R.: Scale Effects in a Distributed Snow Water Equivalence and Snowmelt Model for Mountain Basins, Hydrol. Process., 12, 1527–1536, 1998.
Cressie, N. A. C.: Statistics for Spatial Data, Wiley, New York, 900 pp., 1993.
Deems, J. S., Fassnacht, S. R., and Elder, K. J.: Fractal distribution of snow depth from LiDAR data, J. Hydrometeorol., 7(2), 285–297, 2006.
Download