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Abstract. Snow depth variability over small distances can
affect the representativeness of depth samples taken at the
local scale, which are often used to assess the spatial distri-
bution of snow at regional and basin scales. To assess spatial
variability at the plot scale, intensive snow depth sampling
was conducted during January and April 2009 in 15 plots in
the Rio Ésera Valley, central Spanish Pyrenees Mountains.
Each plot (10× 10 m; 100 m2) was subdivided into a grid of
1 m2 squares; sampling at the corners of each square yielded
a set of 121 data points that provided an accurate measure of
snow depth in the plot (considered as ground truth). The spa-
tial variability of snow depth was then assessed using sam-
pling locations randomly selected within each plot. The plots
were highly variable, with coefficients of variation up to 0.25.
This indicates that to improve the representativeness of snow
depth sampling in a given plot the snow depth measurements
should be increased in number and averaged when spatial
heterogeneity is substantial.

Snow depth distributions were simulated at the same plot
scale under varying levels of standard deviation and spa-
tial autocorrelation, to enable the effect of each factor on
snowpack representativeness to be established. The re-
sults showed that the snow depth estimation error increased
markedly as the standard deviation increased. The results
indicated that in general at least five snow depth measure-
ments should be taken in each plot to ensure that the esti-
mation error is<10 %; this applied even under highly het-
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erogeneous conditions. In terms of the spatial configuration
of the measurements, the sampling strategy did not impact
on the snow depth estimate under lack of spatial autocorrela-
tion. However, with a high spatial autocorrelation a smaller
error was obtained when the distance between measurements
was greater.

1 Introduction

Accurate assessment of snow depth and its distribution can
aid in the forecasting of water resources, the monitoring of
natural hazards, and assessment of plant and fauna phenol-
ogy (Haefner et al., 1997; Ĺopez-Moreno et al., 2007 and ref-
erences therein). Despite recent advances in remote sensing
and the development of automated nivo-meteorological sta-
tions, which provide operational tools for snow analysis, the
manual collection of point snow depth and density data is still
widely used. Networks of automated nivo-meteorological
stations (e.g. SNOTEL in the US; BERMS in Canada; MIS,
ENET and ANETZ in Switzerland) provide real-time mon-
itoring of snowpack characteristics at high temporal resolu-
tion (Fassnacht et al., 2003), but these are sparsely distributed
and may not adequately represent surrounding areas (Erick-
son et al., 2005; Neumann et al., 2006). To overcome these
spatial inadequacies additional ground observations are of-
ten required (Molotch and Bales, 2005; Dressler et al., 2006;
Neumann et al., 2006).

Estimation of the distribution of snowpack depth is typ-
ically based on statistical (e.g. binary regression trees) re-
lationships between geo-referenced snow data and terrain
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characteristics derived from a digital elevation model
(DEM). This enables the extrapolation of snowpack esti-
mates to unsampled areas (Elder et al., 1998; Erxleben et
al., 2002; Ĺopez-Moreno and Nogués-Bravo, 2006). Manual
measurements are also commonly used to calibrate and/or
verify snowpack energy balance models, implemented to es-
timate snowpack properties at temporal and spatial resolu-
tions greater than those that can be feasibly sampled (Cline
et al., 1998; Molotch and Bales, 2005).

The manual collection of snow measurements is often dif-
ficult, as it can involve sampling in cold, rugged and isolated
environments, sometimes in dangerous terrain. In addition,
selection of the optimum sample size is not trivial (Rovansek
et al., 1993). It is necessary to consider the appropriate num-
ber and distribution of samples necessary to adequately as-
sess the spatial variability of snow depth in a given area
(Watson et al., 2006). To capture the influence of terrain a
representative field data set should also span the plot, slope
and valley scales (Jost et al., 2007). Terrain variability and
vegetation also influence the scale over which snow data are
correlated (Deems et al., 2006).

Discrepancies between snow depth estimates and the
ground truth may lead to spurious interpretation of the re-
lationship between the snowpack and terrain characteristics.
At the plot scale (i.e. areas on the order of 100 m2 where
the snow surface seems homogeneous from the perspective
of a surveyor) it is important to ensure that each sample is
representative of its immediate surroundings, as there may
be hidden variability resulting from the presence of boul-
ders, branches and vegetation on the ground, and the effects
of wind redistribution. These and other factors may lead to
large and unknown variability in snow depth over very short
distances, so a single sample is often inadequate to provide
an estimation of snow depth for a given plot with a specified
accuracy. This problem is usually overcome by increasing
sample replication and averaging measurements made at dif-
ferent locations within a plot.

If a variable does not exhibit spatial autocorrelation, the
estimation error decreases as the sample size increases, and
thus the average of a number of samples will better represent
the ground truth than a single measurement. The standard
error (SE) of a sample mean (i.e. the standard deviation of
the error in the sample mean relative to the population mean)
can be estimated (Eq. 1, Nielsen and Wendroth, 2003) as a
power function of the sample standard deviation estimate (s)

and the sample size (n):

SE=
s

n0.5
. (1)

An approximate sample size can be inferred for achieving
a desired level of accuracy in estimating the mean, depend-
ing only on the standard deviation of the population; how-
ever, this relies on estimation of the standard deviation. As
with most environmental variables, snow properties (includ-
ing snow depth) show a degree of spatial autocorrelation;

hence, consecutive or adjacent measurements are not com-
pletely independent. Autocorrelation can severely affect the
estimation of sample variances and standard deviations, re-
sulting in uncorrected sample estimates significantly under-
estimating the true (population) values. The degree of auto-
correlation is not known a priori, so it is impossible to de-
termine in advance the optimum sample size for achieving a
certain degree of accuracy in estimating the mean.

As autocorrelation decreases with the distance between
sampling points, the sampling size, the distance between
points and the sampling strategy (e.g. the spatial pattern of
sampling) must be considered. In snow sampling these pa-
rameters are often decided subjectively rather than being
derived statistically and very little literature can be found
as guidance to increase the efficiency when sampling snow
depth.

The aim of this paper is to quantify the spatial variability
of snow depth at a 10×10 m plot scale, and to isolate the ef-
fect of the sampling size and strategy on the estimation of the
mean snow depth under controlled conditions of snow vari-
ability and spatial autocorrelation. To address these issues
two intensive snow depth sampling surveys were conducted
in a Pyrenean mountain valley and a synthetic data set was
constructed to assess the influence of the sampling size and
strategy on the estimation of the mean under controlled con-
ditions.

The first and second sections of the results describe the
observed variability of snowpack and its influence on esti-
mation of the snowpack depth at the plot scale. The third
section presents the results from an analysis of the synthetic
plots, aimed at isolating the effects of snow depth variability
and the degree of spatial correlation on the standard error of
the average.

2 Data sets

The snow surveys were conducted in the headwaters of the
Ésera River in the central Spanish Pyrenees Mountains in
January (12–16) and April (21–24) 2009. These dates were
selected to obtain snow depth data under contrasting snow
conditions. In January the intensity of incident solar radia-
tion is low and relatively homogeneously distributed across
the study area, and the cold early winter temperature main-
tains a strong thermal gradient within the snowpack. In April
the intensity of the incoming solar radiation is much greater,
and the aspect and forest canopy have a major influence on
the spatial distribution of snow. The warmer temperatures
at this time induce snowmelt at many locations, and reduce
thermal gradients within the snowpack. In the latter period
the snowpack is isothermal in most plots (Fassnacht et al.,
2010).

Fifteen 10×10 m plots were randomly selected across the
study area. The plot size was selected to match that of the
most detailed digital elevation model (DEM) available for the
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J. I. López-Moreno et al.: Variability of snow depth at the plot scale 619

Table 1. Summary data for the study plots. Location and main statistics: mean (cm), standard deviation (cm), coefficient of variation (CV)
and semivariogram range (m).

UTM coordinates January April

Plot Cover X Y Elev. Mean Std. Dev. CV Range Mean Std. Dev. CV Range
(m a.s.l.) (cm) (cm) (cm) (cm) (cm) (cm)

1 Open 795640 4732341 1731 91 9.8 0.11 6.8 65 16.5 0.25 10
2 Forest 796103 4732552 1737 73 10.8 0.15 6.5 72 11.6 0.16 5.5
3 Forest 796284 4732200 1782 78 11.9 0.15 2.7 125 13.1 0.1 4.8
4 Open 796327 4732421 1742 92 12 0.13 1.3 140 20.9 0.15 10
5 Forest 796886 4732093 1857 134 15.9 0.12 10 235 20.9 0.09 4.7
6 Open 797519 4731981 1873 132 9.2 0.07 1.5 204 16.2 0.08 10
7 Forest 797888 4732159 1855 110 21.8 0.2 9.5 253 41.6 0.16 9.5
8 Open 798317 4731997 1831 110 13.9 0.13 2.7 144 35.2 0.24 10
9 Forest 798582 4731948 1838 114 16.2 0.14 2.1 185 43.1 0.23 10

10 Open 798967 4732043 1864 72 10.1 0.14 1.5 131 9.1 0.07 9.6
11 Forest 799116 4731778 1884 103 9.2 0.09 4.9 132 18.1 0.14 10
12 Open 799274 4731735 1894 125 4.9 0.04 1.5 194 6.4 0.03 6
13 Forest 799557 4731319 1944 113 17.6 0.16 1.6 227 21.2 0.09 8.3
14 Open 800476 4730879 2025 126 11.4 0.09 1.1 211 10.3 0.05 4.7
15 Open 800672 4730441 2075 118 10.7 0.09 2.9 221 16.3 0.07 7.1

Open average 108 10.2 0.10 2.4 164 16.4 0.12 8.4
Forest average 104 14.8 0.14 5.3 176 24.2 0.14 7.5
Total average 106 12.4 0.12 3.8 169 20 0.13 8

Pyrenees, and also to represent a suitable grid size for snow
depth estimations in mountain ranges worldwide. Plots were
established along a transect of seven kilometers between the
Hospital de Benasque and the Aigualluts sites, covering an
altitudinal gradient of 340 m from 1735 to 2075 m a.s.l. (Ta-
ble 1). Eight of the plots were located in forest openings
where the size of the open area was less than twice the height
of the surrounding trees (Pinus uncinataand silvestris of
5–15 m in height), and seven were in open areas where the
size of the open area was more than five times the height of
the surrounding trees. Each plot was divided into a grid of
1×1 m squares, which were sampled at each corner to yield
a set of 121 data points. The average of these 121 replicates
was taken to accurately represent the snow depth in the plot
(ground truth).

In addition to the measurement data a synthetic data set
was constructed to assess the influence of the sampling size
and strategy on the estimation of the mean under controlled
conditions. For the synthetic data set 5000 simulations of a
random spatial field of 10×10 m were drawn for each com-
bination of 10 standard deviation classes (steps of 0.025 cm
from 0.025 to 0.25 cm) and four levels of spatial autocorre-
lation, giving a total of 200 000 simulations. Standard devi-
ation classes and levels of autocorrelation were defined ac-
cording to the maximum snow depth variability and spatial
autocorrelation observed in the sampled plots in the study
area. Autocorrelation in the spatial fields was represented
by a Gaussian semivariogram (Cressie, 1993), with the par-

tial sill parameter equal to the square of the standard devi-
ation (the variance of the set) and four levels of the range
parameter (from 1 m for low autocorrelation to 10 m for very
high autocorrelation). The simulated spatial fields were ob-
tained using the sequential Gaussian simulation algorithm, as
implemented in the function predisct.gstat of the gstat pack-
age (Pebesma, 2004); the R language was used for statistical
analysis (R Development Core Team, 2010).

3 Statistical analysis

Snowpack variability was assessed by comparison of the dis-
tribution of depths and histograms of the data. Comparison
of the characteristics of the histograms derived from the data
from the forest openings with those derived from the open
areas could provide insights into the role of the forest canopy
in snowpack variability at the plot scale.

The presence of spatial correlations at the plot scale was
determined for each sampling plot using a semivariogram.
The semivariogram plots the average semivariance between
pairs of points as a function of the distance between them.
Relevant parameters of the semivariogram are the sill (the
maximum value of semivariance), the nugget (the value of
semivariance at the discontinuity at the origin), and the range
or correlation length (the distance at which the difference in
the semivariance from the sill becomes negligible). In mod-
els with a fixed sill the range is the distance at which this is
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Fig. 1. Illustrates semivariograms of two different empirical semivariogram (dots) and fitted circular semivariogram model (blue line) of two
sampling plots in January (left) and April (right).

first reached; for models with an asymptotic sill the range
is conventionally taken to be the distance when the semi-
variance first reaches 95 % of the sill (Edward et al., 1989).
Here a circular semivariogram model was used. Figure 1 il-
lustrates semivariograms of two different empirical semivar-
iogram (dots) and fitted circular semivariogram model (blue
line) of two sampling plots in January (left) and April (right).
While the range of the autocorrelation was similar on both
dates, the high nugget value of January revealed a stronger
autocorrelation at short distances.

Subsets of different sample sizes (fromn = 1 to n = 121)
were randomly extracted from each plot to assess the rela-
tionship between the error of the estimate mean snow depth
and the sample size. To obtain a robust estimation of SE
this process was repeated 50 times for each plot using dif-
ferent random subsets. The same analysis was applied to the
synthetic datasets to isolate the effects of the field variance
and the spatial autocorrelation on the error of the mean snow
depth. Because of the large number of simulations the effect
of various sampling strategies could be assessed. A sam-
ple size of five replicates was used with 10 different spatial
configurations and varying distances between the measure-
ments, as follows: (i) random; (ii) one row at 1 m and 2 m
distance; (iii) a +-shape (a central point and measurements
toward the four cardinal directions) at 1, 2 and 5 m; (iv) an
L-shape (northward and eastward points from a central point)
at 1, 2 and 5 m; and (v) the four corners plus the central point.

4 Results

4.1 Plot scale variability

The mean, standard deviation, coefficient of variation (CV)
and semivariogram range for the 15 plots are listed in Ta-
ble 1; Fig. 2 shows the associated snow depth histograms.
In January 2009 there was moderate variability in the snow
depth among the plots, with a mean plot depth of 73–134 cm.
Moreover, there was marked variability at the plot scale, with
coefficients of variation ranging from 0.04 to 0.20 (mean
0.12). Despite this variability, the shape of all histograms
was leptokurtic, indicating that most of the snow depths were
included in only a few depth classes.

The mean snow depth among plots was more variable in
April than in January, ranging from 65 to 253 cm. Snow ac-
cumulation increased in most of the plots, and the increase
was substantial in eight plots. Only in the two plots at the
lowest altitudes (plots 1 and 2) did snow depth decrease
slightly. The average within-plot variability (CV) was sim-
ilar in April to that in January (mean CV = 0.12), but the
range was greater, from 0.03 cm in plot 12 to 0.25 cm in
plot 1. The marked leptokurtic shape of the histograms ob-
served for the January data was not as evident in April. The
semivariogram range varied from 1.3 to 10 m in January, and
from 4.7 to 10 m in April. A range of 10 m indicates that
the range over which autocorrelation is significant is greater
than the maximum possible distance between points in the
plots. Overall, the spatial autocorrelation was less in January
(mean range = 3.8 m) than in April (mean range = 8 m). In
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Figure 2. 4 

Fig. 2. Histograms of the 121 measured snow depths (standard de-
viation units) for each of the 15 plots distributed in various classes
for January and April.

January the spatial autocorrelation was greater in the forest
openings (mean range = 5.3 m) than in the open areas (mean
range = 2.4 m). In April the spatial autocorrelation was very
similar in the forest openings (mean range = 7.5 m) and the
open areas (mean range = 8.4 m).

Despite the altitudinal range covered by the survey be-
ing relatively low (1735 to 2075 m a.s.l.), the effect of ele-
vation on the mean snow depth in both January and April
(Fig. 3a) was statistically significant (p < 0.05). The overall
micro-scale variability of snow depth, measured by means of
the CV, tended to decrease as the snowpack depth increased
(Fig. 3b). The CV was statistically correlated (α < 0.05) with
mean snow depth, withr values of−0.47 and−0.46 for Jan-
uary and April, respectively. The location of the plot in a
forest opening or an open area appeared to be the most influ-
ential factor explaining the degree of variability in January.
At that time the average accumulation of snow in the forest
opening plots (104 cm) was very similar to that in the open
areas (108 cm), but the CV in the open areas (0.10) was lower
than in forest openings (0.14). A one-way ANOVA test con-
firmed that the differences in the coefficient of variation of
snow depth between the two environments were statistically
significant. In April, despite the CV being greater for forest
openings (0.12) than open areas (0.10), the ANOVA test did
not indicate a significant difference between the two environ-

ments. The semivariogram range in each plot was not related
to the snow depth (Fig. 2c), but was significantly (p < 0.05)
positively correlated with the CV (Fig. 2d), such that the plot
variability decreased the spatial autocorrelation.

4.2 Implications of sample size for snow depth
estimation

A random extraction of subsets ofn = 1 to n = 121 samples
was replicated 50 times and the means were compared with
the ground truth mean (n = 121). Replicates allowed for ro-
bust estimation of the mean standard error and its range of
variability for different sample sizes. Figure 3 shows the de-
crease of the mean error, plus the 25th and 75th percentiles,
as a function of the sample size from the 15 plots assessed
in January and April 2009. The decrease of the mean stan-
dard error expected from a purely random sample (accord-
ing to the power function shown in Eq. 1) is also shown for
comparison. The error decreased rapidly from small sample
sizes, and the 5 % mean standard error was achieved with
only four samples in each of January and April, or seven
and eight samples, respectively, for a significance level of
α = 0.25 (75th percentile). The observed mean error was
systematically higher than obtained from the purely random
sampling in January, while in April they were more similar.

Figure 4 shows the mean, 25th and 75th percentiles of er-
ror for the 15 plots. Variability amongst analyzed plots in-
forms that sample size may affect in a different manner to
snow depth estimation at the plot scale. Figure 4a shows the
average error as a function of both the sample size and the
CV. Figure 4b displays the average error as a function of the
sample size and the spatial autocorrelation (the range of the
correlation length) per plot. To more clearly depict patterns
of change the data were smoothed using a locally weighted
scatter plot smoothing-LOESS smoother (Cleveland, 1979)
with one polynomial degree for a sampling proportion of 0.1.
For both sampling occasions (January and April 2009) the
standard error tended to be higher in plots with larger coef-
ficients of variation and spatial correlation (Fig. 5a and b).
In plots under the later conditions the estimate of snow depth
from a single measurement could differ from the ground truth
value by more than 10 % in January and 18 % in April. In
these cases estimates of snow depth could contain signifi-
cant errors (>10 %), even with multiple measurements. Con-
versely, in those plots where snow measurements showed a
low CV and low spatial autocorrelation, the standard error
was notably lower than shown for the plot average in Fig. 4.
Under such conditions the error could drop below 5 % with
only a single measurement.
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Fig. 3. Relationships between(A) snow depth and altitude,(B) snow depth and coefficient of variation,(C) snow depth and semivariogram
range, and(D) coefficient of variation and semivariogram range.
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Figure 4 5 Fig. 4. Decrease in snow depth estimation error at the plot scale for various sample sizes. The thick line is the average error, and the thin
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Fig. 5. Average error for various sample sizes according to(A) the coefficient of variation and(B) the spatial autocorrelation. The white
areas correspond to ranges of the y-axis without data in one of the surveys.
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Figure 6.  5 Fig. 6. Average error for various sample sizes derived from simulated plots according to various standard deviation levels and 4 classes of
spatial autocorrelation.

4.3 Effect of coefficient of variation, spatial
autocorrelation and sampling strategy on
snow depth estimation

In natural situations completely random sampling of snow is
rarely achievable because of a variety of difficulties includ-
ing terrain complexity. Thus, in most real-world studies a
specific sampling strategy is used, such as taking a number
of samples in a line, plus or an L. It is plausible that a par-
ticular sampling strategy is better able to capture the spatial
variability in an autocorrelated field. To assess this possibil-
ity we simulated 200 000 plots composed of 121 points with
an equal average snow depth (100 cm), but with differing lev-
els of standard deviation and spatial autocorrelation.

The mean standard error for various levels of standard de-
viation and spatial autocorrelation for the random sampling
is shown in Fig. 6. Figure 7 shows the example of four levels
of standard deviation for various levels of spatial autocorrela-
tion. Both figures (Figs. 6 and 7) demonstrate that variability
in snow depth at the plot scale (measured by the standard de-
viation) explained the different degrees of accuracy relative
to the ground truth data. Thus, the 4 degrees of spatial auto-

correlation provided almost identical patterns of a decrease
in error as sample size increased and standard deviation de-
creased. Variability in the decrease in mean standard error
with sample size depended largely on the standard deviation
of the spatial field, while the extent of spatial correlation was
far less important. However, differences were also found
for varying levels of spatial autocorrelation, and the mean
standard error was slightly lower in cases with higher auto-
correlation because of their implicit lower spatial variability.
When the standard deviation exceeded 0.1 cm a single mea-
surement provided a mean error>10 %, and the error ap-
proached 20 % when the standard deviation was 0.2 cm. The
decrease in error according to sample size approximated the
theoretical exponential decay for a purely random variable.
From Fig. 7 it can be seen that 4 measurements per plot re-
sulted in errors<5 % if the standard deviation was<0.1 cm.
Five measurements were needed to achieve a similar accu-
racy with a standard deviation of 0.15 cm, while seven or
eight measurements were needed for a standard deviation of
0.2 cm. Five measurements provided error estimates<10 %
for all degrees of spatial autocorrelation tested.
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Figure 7 2 Fig. 7. Examples showing the decrease in average error according to sample size for 4 standard deviation levels with various classes of
spatial autocorrelation.

Figure 8 shows the variability of the mean standard error
amongst the 5000 simulations for different sample sizes at
four levels of standard deviation (0.05, 0.1, 0.15 and 0.2 cm)
and the same level of spatial autocorrelation (semivariogram
range = 4 m). The average values shown in Figs. 6 and 7 can
mask substantial variability (Fig. 8), and even with a low
standard deviation (i.e. 0.05 or 0.1 cm) inaccurate snow depth
estimates are possible if the sample size is<4 measurements.
In the case of plots with large snow depth variability, a small
number of measurements may lead to marked deviation from
the ground truth mean. Thus, there was a 25 % probability
of an error approaching 10 % if less than five measurements
were used when the standard deviation exceeded 0.1 cm. In
general, Fig. 8 suggests that a single measurement is highly
unreliable as an estimate of snow pack depth at the plot scale.
There was 10 % probability of an error of 9, 16, 23 and 32 %
for standard of 0.05, 0.1, 0.15 and 0.2 cm, respectively.

Snow depth estimates from 5 measurements using 10 dif-
ferent configurations of shape (row, L-shape, +-shape and
random) and distance between measurements (1, 2 and 5 m)
were compared with the ground truth mean. In Fig. 9 each
panel represents a given combination of three standard de-
viations (0.05, 0.125 and 0.2 cm) and 2 levels of spatial au-
tocorrelation (semivariogram range = 1 and 10 m). With no
spatial autocorrelation the sampling strategy did not impact
on the snow depth estimate. However, with a high spatial au-

tocorrelation a smaller error was obtained when the distance
between measurements was greater, as shown with sampling
at the center and the four corners of the plot 5 m away, in a
“+” shape (configurations 10 and 6 in Fig. 9). For all three
spatial configurations (line, “+” or “L” shapes) the largest er-
rors were obtained when the distance between measurements
was only 1 m. Random sampling and a 2 m spacing provided
intermediate levels of accuracy, with the measurements along
a line being slightly more accurate than the “+” or “L” con-
figurations. Under high snow variability condition (sd = 0.2),
the results indicate that a 5 m spacing of measurements could
result in an improvement in mean snow depth estimates of
approximately 5 % relative to a spacing of 1 m, while chang-
ing the spacing from 1 to 2 m could increase accuracy up to
3 %.

5 Discussion

The data from two snow surveys (January and April 2009)
carried out in the Pyrenees (Spain) showed that there was
marked variability in the snowpack depth within each of the
10×10 m study plots. Such heterogeneity can prevent accu-
rate estimates of snow depth being obtained. To improve the
accuracy of snowpack estimates, it is necessary to average
several measurements taken within each plot.
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Fig. 8. Variability in error estimates among the 5000 simulations involving various sample sizes and 4 levels of standard deviation. The solid
lines indicate the average, the dashed lines indicate the mean, the boxes indicate the 25th and 75th percentiles, and the bars indicate the 10th
and 90th percentiles.

The two surveys undertaken in the present study were not
sufficient to provide evidence of seasonal patterns, but dif-
ferences between the two sampling periods were observed.
It has been found that within a few months snow density and
temperature can change markedly (Fassnacht et al., 2010),
and similar variability was found in this study with respect to
snow depth variability at the plot scale, the spatial autocorre-
lation of snow depth, and the role of the forest canopy. All
these factors can affect the minimum sample size and/or the
sampling strategy necessary to satisfactorily represent snow
depth at the plot scale.

Previous studies have identified large spatial variability at
the plot scale (Tarboton et al., 2000; Pomeroy et al., 2001;
Anderton et al., 2002), which is a consequence of the par-
ticular characteristics of the terrain, the amount of accumu-
lated snow, and the influence of surrounding forest. The
presence and quantity of boulders, branches and irregular-
ities in the terrain clearly influenced the variability among
the plots in the study area. For each of the surveys a statis-
tically significant correlation was found between the mean
snow depth and the variability in each plot. An explana-
tion for this relationship is that irregularities in the terrain
are constant in size, and thus their relative influence on the
snow depth decreases as the snowpack depth increases (Fass-
nacht and Deems, 2006; López-Moreno and Latron, 2008).

In both surveys higher snow depth variability was found in
the plots located in forest openings relative to those in open
areas. This can be explained in part by the horizontal and
vertical structure of trees within forest stands, local shadow
effects (Musselman et al., 2008) and the emission of long-
wave radiation from surrounding trees, differential ablation
rates as consequence of litter on the snow, and the increased
probability of the presence of tree branches and/or stumps
on the ground (Pomeroy et al., 2001; Stähli et al., 2009).
However, certain plots in open areas exhibited the greatest
variability among all plots in April 2009; these plots were lo-
cated at the lowest altitudes, where the snowpack was thinner
and local topography had a greater influence.

Semivariograms have been used to detect significant spa-
tial autocorrelation (Essery et al., 1999; Deems et al., 2006;
Jost et al., 2007; Kronholm and Birkeland, 2007), but in most
cases have been used at the slope scale. Watson et al. (2006)
and Jost et al. (2007) assumed variability at the plot scale to
be random, and analyzed variability at the watershed-scale
from stratified data, using multiple replicates at the plot scale
to conduct geostatistical analyses to assess local variability.
In this study we found that spatial autocorrelation occurred at
the plot scale, but varied markedly among plots and tended to
be greater in the forest openings. This is probably because of
a spatial trend in forest canopy processes affecting the energy
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Figure 9 3 Fig. 9. Impact of sampling strategy on error estimation at the plot scale.

balance and wind redistribution, including shadow and wind
shield effects, and the emission of long-wave radiation. As in
this study, Holmgren et al. (1998) recognized the existence of
well-defined sills for the residual spatial variances at a range
of about 10 m. For an area with a sparse canopy, Deems et
al. (2006) showed that the correlation length was a function
of canopy structure and terrain, and was in the order of 15 to
20 m. However, using spectral analysis Trujillo et al. (2007)
did not find a clear relationship between topographic relief
and the correlation length. For the same study sites the spa-
tial memory of snow depth in the forested areas was similar
to the vegetation height field, and increased in open areas as
a consequence of wind redistribution (Trujillo et al., 2009).
Moreover, it is logical to assume that the range actually be
much greater if a slightly larger plot overlapped both vege-
tated and open areas. This is a particularly relevant question
as the considered plot is of larger size than considered in this
study.

To obtain reliable snow depth estimates at a 10×10 m plot
scale it is necessary to make multiple measurements. With a
single measurement the estimation of snow depth in the plot
is likely to be highly biased. The deviation from the ground

truth mean with different sample sizes was mostly associ-
ated with snow depth variability at the plot scale. From the
data obtained it was possible to infer a relationship between
the degree of spatial autocorrelation and the mean standard
error. However, this may have been a consequence of the
relationship in this data set between the CV and the semivar-
iogram range. A sensitivity analysis conducted with multiple
simulations of snow depth for various autocorrelation ranges
showed that the effect of autocorrelation on estimates of the
mean was much lower than the standard deviation of the
field. However, in the presence of spatial autocorrelation the
sampling strategy became a relevant factor; snow depth esti-
mates improved by maximizing the distance between sam-
pling points within the plot and increasing the number of
measurements. Specific configurations of the snow measure-
ments did not make a significant difference to the quality of
the estimates. Overall our results suggest that snow sampling
should prioritize the collection at least five snow depth mea-
surements at a minimum 2 m spacing to represent a 10×10 m
plot sized area. The specific numbers presented here relating
sample size and snow depth estimates are closely related to
the topographic and climatic characteristics of the study area,
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and the specific plot size considered in this study. The aim
of this research was not to provide guidance for sampling in
other geographical areas or surface terrain characteristics, but
highlights the usefulness of considering this type of analysis
during the planning of snow surveys. Initial measurements
of numerous snow depths at the plot scale can be used to de-
termine the measurement variability of a location, and can
help to decide how many samples should be taken to repre-
sent each survey point. This approach should improve the
representativeness of the dataset. A better understanding of
the factors that influence the spatial and temporal patterns of
snowpack variability and spatial autocorrelation at the plot
scale will aid efforts to obtain high quality snow datasets.
We have presented information of 15 plots in two different
periods of the year. However, we could find a larger range
of variability and spatial correlation if a more detailed tem-
poral resolution of the surveys, and a higher variety of envi-
ronments (i.e. sub-canopy plots, high mountain areas, etc.)
would have been sampled. Further research could be ad-
dressed to analyze the dynamic nature of the variability (in
space and time), which could reveal additional information
for improving the accuracy of snow depth estimation.

6 Conclusions

Based on a 1 m sampling resolution, snow depth exhibited
marked variability at a 10× 10 m plot scale, especially in
forest openings. This variability explains the need to aver-
age several measurements in each plot to obtain a reliable
estimate of the snow depth. The number of measurements
needed depends on the degree of variability of the snowpack
at the plot scale, and the desired accuracy. In this study
five measurements produced an error of<10 % even under
high variability conditions. With high micro-scale variabil-
ity the collection of 8 measurements reduced the error to 5 %
in more than 75 % of cases. Snow depth variability is often
spatially autocorrelated. With no spatial autocorrelation the
sampling strategy did not impact on the snow depth estimate.
However, with a high spatial autocorrelation a smaller error
was obtained when the distance between measurements was
greater. In such cases spacing the measurements within the
plot independently of the spatial configuration enhanced the
accuracy of the snow depth estimates. Thus, under high spa-
tial autocorrelation (semivariogram range = 10 m) and high
snow variability condition (sd = 0.2 cm), the results indicate
that a 5 m spacing of measurements could result in an im-
provement in mean snow depth estimates of approximately
5 % relative to a spacing of 1 m, while changing the spacing
from 1 to 2 m could increase accuracy up to 3 %.
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