Articles | Volume 18, issue 4
https://doi.org/10.5194/tc-18-1709-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-18-1709-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Triggers of the 2022 Larsen B multi-year landfast sea ice breakout and initial glacier response
Naomi E. Ochwat
CORRESPONDING AUTHOR
Earth Science Observation Center (ESOC), Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder, Boulder, CO, USA
Department of Geology, University of Colorado Boulder, Boulder, CO, USA
Ted A. Scambos
Earth Science Observation Center (ESOC), Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder, Boulder, CO, USA
Alison F. Banwell
Earth Science Observation Center (ESOC), Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder, Boulder, CO, USA
Robert S. Anderson
Department of Geology, University of Colorado Boulder, Boulder, CO, USA
Michelle L. Maclennan
Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, CO, USA
Ghislain Picard
Institut des Géosciences de l'Environnement (IGE), Univ. Grenoble Alpes, CNRS, UMR 5001, Grenoble, France
Julia A. Shates
Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, WI, USA
Sebastian Marinsek
Instituto Antártico Argentino, Buenos Aires, Argentina
Liliana Margonari
Instituto Antártico Argentino, Buenos Aires, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
Departamento de Geología, Universidad de Buenos Aires, Buenos Aires, Argentina
Martin Truffer
Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK, USA
Department of Physics, University of Alaska Fairbanks, Fairbanks, AK, USA
Erin C. Pettit
College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
Related authors
Naomi E. Ochwat, Shawn J. Marshall, Brian J. Moorman, Alison S. Criscitiello, and Luke Copland
The Cryosphere, 15, 2021–2040, https://doi.org/10.5194/tc-15-2021-2021, https://doi.org/10.5194/tc-15-2021-2021, 2021
Short summary
Short summary
In May 2018 we drilled into Kaskawulsh Glacier to study how it is being affected by climate warming and used models to investigate the evolution of the firn since the 1960s. We found that the accumulation zone has experienced increased melting that has refrozen as ice layers and has formed a perennial firn aquifer. These results better inform climate-induced changes on northern glaciers and variables to take into account when estimating glacier mass change using remote-sensing methods.
Natalie Lützow, Bretwood Higman, Martin Truffer, Bodo Bookhagen, Friedrich Knuth, Oliver Korup, Katie E. Hughes, Marten Geertsema, John J. Clague, and Georg Veh
EGUsphere, https://doi.org/10.5194/egusphere-2024-2812, https://doi.org/10.5194/egusphere-2024-2812, 2024
Short summary
Short summary
As the atmosphere warms, thinning glacier dams impound smaller lakes at their margins. Yet, some lakes deviate from this trend and have instead grown over time, increasing the risk of glacier floods to downstream populations and infrastructure. In this article, we examine the mechanisms behind the growth of an ice-dammed lake in Alaska. We find that the growth in size and outburst volumes is more controlled by glacier front downwaste, than by overall mass loss over the entire glacier surface.
Melody Sandells, Nick Rutter, Kirsty Wivell, Richard Essery, Stuart Fox, Chawn Harlow, Ghislain Picard, Alexandre Roy, Alain Royer, and Peter Toose
The Cryosphere, 18, 3971–3990, https://doi.org/10.5194/tc-18-3971-2024, https://doi.org/10.5194/tc-18-3971-2024, 2024
Short summary
Short summary
Satellite microwave observations are used for weather forecasting. In Arctic regions this is complicated by natural emission from snow. By simulating airborne observations from in situ measurements of snow, this study shows how snow properties affect the signal within the atmosphere. Fresh snowfall between flights changed airborne measurements. Good knowledge of snow layering and structure can be used to account for the effects of snow and could unlock these data to improve forecasts.
Sara Arioli, Ghislain Picard, Laurent Arnaud, Simon Gascoin, Esteban Alonso-González, Marine Poizat, and Mark Irvine
Earth Syst. Sci. Data, 16, 3913–3934, https://doi.org/10.5194/essd-16-3913-2024, https://doi.org/10.5194/essd-16-3913-2024, 2024
Short summary
Short summary
High-accuracy precision maps of the surface temperature of snow were acquired with an uncooled thermal-infrared camera during winter 2021–2022 and spring 2023. The accuracy – i.e., mean absolute error – improved from 1.28 K to 0.67 K between the seasons thanks to an improved camera setup and temperature stabilization. The dataset represents a major advance in the validation of satellite measurements and physical snow models over a complex topography.
Romilly Harris Stuart, Amaëlle Landais, Laurent Arnaud, Christo Buizert, Emilie Capron, Marie Dumont, Quentin Libois, Robert Mulvaney, Anaïs Orsi, Ghislain Picard, Frédéric Prié, Jeffrey Severinghaus, Barbara Stenni, and Patricia Martinerie
The Cryosphere, 18, 3741–3763, https://doi.org/10.5194/tc-18-3741-2024, https://doi.org/10.5194/tc-18-3741-2024, 2024
Short summary
Short summary
Ice core δO2/N2 records are useful dating tools due to their local insolation pacing. A precise understanding of the physical mechanism driving this relationship, however, remain ambiguous. By compiling data from 15 polar sites, we find a strong dependence of mean δO2/N2 on accumulation rate and temperature in addition to the well-documented insolation dependence. Snowpack modelling is used to investigate which physical properties drive the mechanistic dependence on these local parameters.
Douglas Brinkerhoff, Brandon Tober, Michael Daniel, Victor Devaux-Chupin, Michael Christoffersen, John W. Holt, Christopher F. Larsen, Mark Fahnestock, Michael G. Loso, Kristin M. F. Timm, Russell Mitchell, and Martin Truffer
EGUsphere, https://doi.org/10.5194/egusphere-2024-2354, https://doi.org/10.5194/egusphere-2024-2354, 2024
Short summary
Short summary
Sít' Tlein is one of the largest glaciers in the world outside of the polar regions, and we know that it has been rapidly thinning. To forecast how this glacier will change in the future, we combine a computer model of ice flow with measurements from many different sources. Our model tells us that with high probability, Sít' Tlein's lower reaches are going to disappear in the next century and a half, creating a new bay or lake along Alaska's coastline.
Ella Gilbert, Denis Pishniak, José Abraham Torres, Andrew Orr, Michelle Maclennan, Nander Wever, and Kristiina Verro
EGUsphere, https://doi.org/10.5194/egusphere-2024-2111, https://doi.org/10.5194/egusphere-2024-2111, 2024
Short summary
Short summary
We use 3 sophisticated climate models to examine extreme precipitation in a critical region of West Antarctica. We found that rainfall probably occurred during the two cases we examined, and that it was generated by the interaction of air with steep topography. Our results show that kilometre scale models are useful tools for exploring extreme precipitation in this region, and that more observations of rainfall are needed.
Gabriela Collao-Barrios, Ted A. Scambos, Christian T. Wild, Martin Truffer, Karen E. Alley, and Erin C. Pettit
EGUsphere, https://doi.org/10.5194/egusphere-2024-1895, https://doi.org/10.5194/egusphere-2024-1895, 2024
Short summary
Short summary
Destabilization of ice shelves frequently leads to significant acceleration and greater mass loss, affecting rates of sea level rise. Our results show a relation between tides, flow direction, and grounding-zone acceleration that result from changing stresses in the ice margins and around a nunatak in Dotson Ice Shelf. The study describes a new way tides can influence ice shelf dynamics, an effect that could become more common as ice shelves thin and weaken around Antarctica.
Ghislain Picard and Quentin Libois
EGUsphere, https://doi.org/10.5194/egusphere-2024-1176, https://doi.org/10.5194/egusphere-2024-1176, 2024
Short summary
Short summary
TARTES is a radiative transfer model to compute the reflectivity in the solar domain (albedo), and the profiles of solar light and energy absorption in a multi-layered snowpack whose physical properties are prescribed by the user. It uniquely considers snow grain shape in a flexible way, allowing us to apply the most recent advances showing that snow does not behave as a collection of ice spheres, but instead as a random medium. TARTES is also simple but compares well with other complex models.
Florent Domine, Mireille Quémener, Ludovick Bégin, Benjamin Bouchard, Valérie Dionne, Sébastien Jerczynski, Raphaël Larouche, Félix Lévesque-Desrosiers, Simon-Olivier Philibert, Marc-André Vigneault, Ghislain Picard, and Daniel C. Côté
EGUsphere, https://doi.org/10.5194/egusphere-2024-1582, https://doi.org/10.5194/egusphere-2024-1582, 2024
Short summary
Short summary
Shrubs buried in snow absorb solar radiation and reduce irradiance in the snowpack. This decreases photochemical reactions rates and emissions to the atmosphere. By monitoring irradiance in snowpacks with and without shrubs, we conclude that shrubs absorb solar radiation as much as 140 ppb of soot and reduce irradiance by a factor of two. Shrub expansion in the Arctic may therefore affect tropospheric composition during the snow season, with climatic effects.
Julien Meloche, Melody Sandells, Henning Löwe, Nick Rutter, Richard Essery, Ghislain Picard, Randall K. Scharien, Alexandre Langlois, Matthias Jaggi, Josh King, Peter Toose, Jérôme Bouffard, Alessandro Di Bella, and Michele Scagliola
EGUsphere, https://doi.org/10.5194/egusphere-2024-1583, https://doi.org/10.5194/egusphere-2024-1583, 2024
Preprint archived
Short summary
Short summary
Sea ice thickness is essential for climate studies. Radar altimetry has provided sea ice thickness measurement, but uncertainty arises from interaction of the signal with the snow cover. Therefore, modelling the signal interaction with the snow is necessary to improve retrieval. A radar model was used to simulate the radar signal from the snow-covered sea ice. This work paved the way to improved physical algorithm to retrieve snow depth and sea ice thickness for radar altimeter missions.
Inès Ollivier, Hans Christian Steen-Larsen, Barbara Stenni, Laurent Arnaud, Mathieu Casado, Alexandre Cauquoin, Giuliano Dreossi, Christophe Genthon, Bénédicte Minster, Ghislain Picard, Martin Werner, and Amaëlle Landais
EGUsphere, https://doi.org/10.5194/egusphere-2024-685, https://doi.org/10.5194/egusphere-2024-685, 2024
Short summary
Short summary
The role of post-depositional processes taking place at the ice sheet's surface on the water stable isotope signal measured in polar ice cores is not fully understood. Using field observations and modelling results, we show that the original precipitation isotopic signal at Dome C, East Antarctica, is modified by post-depositional processes and provide the first quantitative estimation of their mean impact on the isotopic signal observed in the snow.
Justin Murfitt, Claude Duguay, Ghislain Picard, and Juha Lemmetyinen
The Cryosphere, 18, 869–888, https://doi.org/10.5194/tc-18-869-2024, https://doi.org/10.5194/tc-18-869-2024, 2024
Short summary
Short summary
This research focuses on the interaction between microwave signals and lake ice under wet conditions. Field data collected for Lake Oulujärvi in Finland were used to model backscatter under different conditions. The results of the modelling likely indicate that a combination of increased water content and roughness of different interfaces caused backscatter to increase. These results could help to identify areas where lake ice is unsafe for winter transportation.
Emily Glen, Amber A. Leeson, Alison F. Banwell, Jennifer Maddalena, Diarmuid Corr, Brice Noël, and Malcolm McMillan
EGUsphere, https://doi.org/10.5194/egusphere-2024-23, https://doi.org/10.5194/egusphere-2024-23, 2024
Short summary
Short summary
We compare surface meltwater features precisely mapped from optical satellite imagery in the Russell/Leverett glacier catchment in a high (2019) and low (2018) melt year. In the high melt year, we find that features form and drain at higher elevations, that small lakes are more common, and that slush is more widespread. Our study suggests that such under-studied features may have an impact in ice flow and supraglacial runoff, and thus on global sea level rise, in future, warmer, years.
Claudio Stefanini, Giovanni Macelloni, Marion Leduc-Leballeur, Vincent Favier, Benjamin Pohl, and Ghislain Picard
The Cryosphere, 18, 593–608, https://doi.org/10.5194/tc-18-593-2024, https://doi.org/10.5194/tc-18-593-2024, 2024
Short summary
Short summary
Local and large-scale meteorological conditions have been considered in order to explain some peculiar changes of snow grains on the East Antarctic Plateau from 2000 to 2022, by using remote sensing observations and reanalysis. We identified some extreme grain size events on the highest ice divide, resulting from a combination of conditions of low wind speed and low temperature. Moreover, the beginning of seasonal grain growth has been linked to the occurrence of atmospheric rivers.
Jean Emmanuel Sicart, Victor Ramseyer, Ghislain Picard, Laurent Arnaud, Catherine Coulaud, Guilhem Freche, Damien Soubeyrand, Yves Lejeune, Marie Dumont, Isabelle Gouttevin, Erwan Le Gac, Frédéric Berger, Jean-Matthieu Monnet, Laurent Borgniet, Éric Mermin, Nick Rutter, Clare Webster, and Richard Essery
Earth Syst. Sci. Data, 15, 5121–5133, https://doi.org/10.5194/essd-15-5121-2023, https://doi.org/10.5194/essd-15-5121-2023, 2023
Short summary
Short summary
Forests strongly modify the accumulation, metamorphism and melting of snow in midlatitude and high-latitude regions. Two field campaigns during the winters 2016–17 and 2017–18 were conducted in a coniferous forest in the French Alps to study interactions between snow and vegetation. This paper presents the field site, instrumentation and collection methods. The observations include forest characteristics, meteorology, snow cover and snow interception by the canopy during precipitation events.
Jenna A. Epifanio, Edward J. Brook, Christo Buizert, Erin C. Pettit, Jon S. Edwards, John M. Fegyveresi, Todd A. Sowers, Jeffrey P. Severinghaus, and Emma C. Kahle
The Cryosphere, 17, 4837–4851, https://doi.org/10.5194/tc-17-4837-2023, https://doi.org/10.5194/tc-17-4837-2023, 2023
Short summary
Short summary
The total air content (TAC) of polar ice cores has long been considered a potential proxy for past ice sheet elevation. This study presents a high-resolution record of TAC from the South Pole ice core. The record reveals orbital- and millennial-scale variability that cannot be explained by elevation changes. The orbital- and millennial-scale changes are likely a product of firn grain metamorphism near the surface of the ice sheet, due to summer insolation changes or local accumulation changes.
Prateek Gantayat, Alison F. Banwell, Amber A. Leeson, James M. Lea, Dorthe Petersen, Noel Gourmelen, and Xavier Fettweis
Geosci. Model Dev., 16, 5803–5823, https://doi.org/10.5194/gmd-16-5803-2023, https://doi.org/10.5194/gmd-16-5803-2023, 2023
Short summary
Short summary
We developed a new supraglacial hydrology model for the Greenland Ice Sheet. This model simulates surface meltwater routing, meltwater drainage, supraglacial lake (SGL) overflow, and formation of lake ice. The model was able to reproduce 80 % of observed lake locations and provides a good match between the observed and modelled temporal evolution of SGLs.
Thomas Dethinne, Quentin Glaude, Ghislain Picard, Christoph Kittel, Patrick Alexander, Anne Orban, and Xavier Fettweis
The Cryosphere, 17, 4267–4288, https://doi.org/10.5194/tc-17-4267-2023, https://doi.org/10.5194/tc-17-4267-2023, 2023
Short summary
Short summary
We investigate the sensitivity of the regional climate model
Modèle Atmosphérique Régional(MAR) to the assimilation of wet-snow occurrence estimated by remote sensing datasets. The assimilation is performed by nudging the MAR snowpack temperature. The data assimilation is performed over the Antarctic Peninsula for the 2019–2021 period. The results show an increase in the melt production (+66.7 %) and a decrease in surface mass balance (−4.5 %) of the model for the 2019–2020 melt season.
Yaowen Zheng, Nicholas R. Golledge, Alexandra Gossart, Ghislain Picard, and Marion Leduc-Leballeur
The Cryosphere, 17, 3667–3694, https://doi.org/10.5194/tc-17-3667-2023, https://doi.org/10.5194/tc-17-3667-2023, 2023
Short summary
Short summary
Positive degree-day (PDD) schemes are widely used in many Antarctic numerical ice sheet models. However, the PDD approach has not been systematically explored for its application in Antarctica. We have constructed a novel grid-cell-level spatially distributed PDD (dist-PDD) model and assessed its accuracy. We suggest that an appropriately parameterized dist-PDD model can be a valuable tool for exploring Antarctic surface melt beyond the satellite era.
Esteban Alonso-González, Simon Gascoin, Sara Arioli, and Ghislain Picard
The Cryosphere, 17, 3329–3342, https://doi.org/10.5194/tc-17-3329-2023, https://doi.org/10.5194/tc-17-3329-2023, 2023
Short summary
Short summary
Data assimilation techniques are a promising approach to improve snowpack simulations in remote areas that are difficult to monitor. This paper studies the ability of satellite-observed land surface temperature to improve snowpack simulations through data assimilation. We show that it is possible to improve snowpack simulations, but the temporal resolution of the observations and the algorithm used are critical to obtain satisfactory results.
Andrew O. Hoffman, Michelle Maclennan, Jan Lenaerts, Kristine M. Larson, and Knut Chrsitianson
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-114, https://doi.org/10.5194/tc-2023-114, 2023
Preprint under review for TC
Short summary
Short summary
Traditionally, glaciologists have used GNSS to measure the surface elevation, and velocity of glaciers to understand processes associated with ice flow. Using the interference of GNSS signals that bounce off of the ice sheet surface, we measure the surface height change of several receivers in the Amundsen Sea Embayment. From surface height change, we infer accumulation records and use these records to understand the drivers of extreme precipitation on Thwaites Glacier.
Sara Arioli, Ghislain Picard, Laurent Arnaud, and Vincent Favier
The Cryosphere, 17, 2323–2342, https://doi.org/10.5194/tc-17-2323-2023, https://doi.org/10.5194/tc-17-2323-2023, 2023
Short summary
Short summary
To assess the drivers of the snow grain size evolution during snow drift, we exploit a 5-year time series of the snow grain size retrieved from spectral-albedo observations made with a new, autonomous, multi-band radiometer and compare it to observations of snow drift, snowfall and snowmelt at a windy location of coastal Antarctica. Our results highlight the complexity of the grain size evolution in the presence of snow drift and show an overall tendency of snow drift to limit its variations.
Amy Jenson, Mark Skidmore, Lucas Beem, Martin Truffer, and Scott McCalla
EGUsphere, https://doi.org/10.5194/egusphere-2023-792, https://doi.org/10.5194/egusphere-2023-792, 2023
Short summary
Short summary
Water in some glacier environments contains salt which increases the density of the fluid and decreases the freezing point of the fluid. As a result, hypersaline lakes can exist in places where freshwater cannot and can contain unique microbiological communities. We model the flow of saline fluid from a subglacial lake through a channel at the glacier bed. The results suggest that fluid with higher salinity reach higher discharge rates compared to fresh water due to increased fluid density.
Inès N. Otosaka, Andrew Shepherd, Erik R. Ivins, Nicole-Jeanne Schlegel, Charles Amory, Michiel R. van den Broeke, Martin Horwath, Ian Joughin, Michalea D. King, Gerhard Krinner, Sophie Nowicki, Anthony J. Payne, Eric Rignot, Ted Scambos, Karen M. Simon, Benjamin E. Smith, Louise S. Sørensen, Isabella Velicogna, Pippa L. Whitehouse, Geruo A, Cécile Agosta, Andreas P. Ahlstrøm, Alejandro Blazquez, William Colgan, Marcus E. Engdahl, Xavier Fettweis, Rene Forsberg, Hubert Gallée, Alex Gardner, Lin Gilbert, Noel Gourmelen, Andreas Groh, Brian C. Gunter, Christopher Harig, Veit Helm, Shfaqat Abbas Khan, Christoph Kittel, Hannes Konrad, Peter L. Langen, Benoit S. Lecavalier, Chia-Chun Liang, Bryant D. Loomis, Malcolm McMillan, Daniele Melini, Sebastian H. Mernild, Ruth Mottram, Jeremie Mouginot, Johan Nilsson, Brice Noël, Mark E. Pattle, William R. Peltier, Nadege Pie, Mònica Roca, Ingo Sasgen, Himanshu V. Save, Ki-Weon Seo, Bernd Scheuchl, Ernst J. O. Schrama, Ludwig Schröder, Sebastian B. Simonsen, Thomas Slater, Giorgio Spada, Tyler C. Sutterley, Bramha Dutt Vishwakarma, Jan Melchior van Wessem, David Wiese, Wouter van der Wal, and Bert Wouters
Earth Syst. Sci. Data, 15, 1597–1616, https://doi.org/10.5194/essd-15-1597-2023, https://doi.org/10.5194/essd-15-1597-2023, 2023
Short summary
Short summary
By measuring changes in the volume, gravitational attraction, and ice flow of Greenland and Antarctica from space, we can monitor their mass gain and loss over time. Here, we present a new record of the Earth’s polar ice sheet mass balance produced by aggregating 50 satellite-based estimates of ice sheet mass change. This new assessment shows that the ice sheets have lost (7.5 x 1012) t of ice between 1992 and 2020, contributing 21 mm to sea level rise.
Michelle L. Maclennan, Jan T. M. Lenaerts, Christine A. Shields, Andrew O. Hoffman, Nander Wever, Megan Thompson-Munson, Andrew C. Winters, Erin C. Pettit, Theodore A. Scambos, and Jonathan D. Wille
The Cryosphere, 17, 865–881, https://doi.org/10.5194/tc-17-865-2023, https://doi.org/10.5194/tc-17-865-2023, 2023
Short summary
Short summary
Atmospheric rivers are air masses that transport large amounts of moisture and heat towards the poles. Here, we use a combination of weather observations and models to quantify the amount of snowfall caused by atmospheric rivers in West Antarctica which is about 10 % of the total snowfall each year. We then examine a unique event that occurred in early February 2020, when three atmospheric rivers made landfall over West Antarctica in rapid succession, leading to heavy snowfall and surface melt.
Ghislain Picard, Marion Leduc-Leballeur, Alison F. Banwell, Ludovic Brucker, and Giovanni Macelloni
The Cryosphere, 16, 5061–5083, https://doi.org/10.5194/tc-16-5061-2022, https://doi.org/10.5194/tc-16-5061-2022, 2022
Short summary
Short summary
Using a snowpack radiative transfer model, we investigate in which conditions meltwater can be detected from passive microwave satellite observations from 1.4 to 37 GHz. In particular, we determine the minimum detectable liquid water content, the maximum depth of detection of a buried wet snow layer and the risk of false alarm due to supraglacial lakes. These results provide information for the developers of new, more advanced satellite melt products and for the users of the existing products.
Marin Kneib, Evan S. Miles, Pascal Buri, Stefan Fugger, Michael McCarthy, Thomas E. Shaw, Zhao Chuanxi, Martin Truffer, Matthew J. Westoby, Wei Yang, and Francesca Pellicciotti
The Cryosphere, 16, 4701–4725, https://doi.org/10.5194/tc-16-4701-2022, https://doi.org/10.5194/tc-16-4701-2022, 2022
Short summary
Short summary
Ice cliffs are believed to be important contributors to the melt of debris-covered glaciers, but this has rarely been quantified as the cliffs can disappear or rapidly expand within a few weeks. We used photogrammetry techniques to quantify the weekly evolution and melt of four cliffs. We found that their behaviour and melt during the monsoon is strongly controlled by supraglacial debris, streams and ponds, thus providing valuable insights on the melt and evolution of debris-covered glaciers.
Dominic Saunderson, Andrew Mackintosh, Felicity McCormack, Richard Selwyn Jones, and Ghislain Picard
The Cryosphere, 16, 4553–4569, https://doi.org/10.5194/tc-16-4553-2022, https://doi.org/10.5194/tc-16-4553-2022, 2022
Short summary
Short summary
We investigate the variability in surface melt on the Shackleton Ice Shelf in East Antarctica over the last 2 decades (2003–2021). Using daily satellite observations and the machine learning approach of a self-organising map, we identify nine distinct spatial patterns of melt. These patterns allow comparisons of melt within and across melt seasons and highlight the importance of both air temperatures and local controls such as topography, katabatic winds, and albedo in driving surface melt.
Ghislain Picard, Henning Löwe, and Christian Mätzler
The Cryosphere, 16, 3861–3866, https://doi.org/10.5194/tc-16-3861-2022, https://doi.org/10.5194/tc-16-3861-2022, 2022
Short summary
Short summary
Microwave satellite observations used to monitor the cryosphere require radiative transfer models for their interpretation. These models represent how microwaves are scattered by snow and ice. However no existing theory is suitable for all types of snow and ice found on Earth. We adapted a recently published generic scattering theory to snow and show how it may improve the representation of snows with intermediate densities (~500 kg/m3) and/or with coarse grains at high microwave frequencies.
Gauthier Vérin, Florent Domine, Marcel Babin, Ghislain Picard, and Laurent Arnaud
The Cryosphere, 16, 3431–3449, https://doi.org/10.5194/tc-16-3431-2022, https://doi.org/10.5194/tc-16-3431-2022, 2022
Short summary
Short summary
Snow physical properties on Arctic sea ice are monitored during the melt season. As snow grains grow, and the snowpack thickness is reduced, the surface albedo decreases. The extra absorbed energy accelerates melting. Radiative transfer modeling shows that more radiation is then transmitted to the snow–sea-ice interface. A sharp increase in transmitted radiation takes place when the snowpack thins significantly, and this coincides with the initiation of the phytoplankton bloom in the seawater.
Douglas I. Benn, Adrian Luckman, Jan A. Åström, Anna J. Crawford, Stephen L. Cornford, Suzanne L. Bevan, Thomas Zwinger, Rupert Gladstone, Karen Alley, Erin Pettit, and Jeremy Bassis
The Cryosphere, 16, 2545–2564, https://doi.org/10.5194/tc-16-2545-2022, https://doi.org/10.5194/tc-16-2545-2022, 2022
Short summary
Short summary
Thwaites Glacier (TG), in West Antarctica, is potentially unstable and may contribute significantly to sea-level rise as global warming continues. Using satellite data, we show that Thwaites Eastern Ice Shelf, the largest remaining floating extension of TG, has started to accelerate as it fragments along a shear zone. Computer modelling does not indicate that fragmentation will lead to imminent glacier collapse, but it is clear that major, rapid, and unpredictable changes are underway.
Benjamin Lehmann, Robert S. Anderson, Xavier Bodin, Diego Cusicanqui, Pierre G. Valla, and Julien Carcaillet
Earth Surf. Dynam., 10, 605–633, https://doi.org/10.5194/esurf-10-605-2022, https://doi.org/10.5194/esurf-10-605-2022, 2022
Short summary
Short summary
Rock glaciers are some of the most frequently occurring landforms containing ice in mountain environments. Here, we use field observations, analysis of aerial and satellite images, and dating methods to investigate the activity of the rock glacier of the Vallon de la Route in the French Alps. Our results suggest that the rock glacier is characterized by two major episodes of activity and that the rock glacier system promotes the maintenance of mountain erosion.
Matthew K. Laffin, Charles S. Zender, Melchior van Wessem, and Sebastián Marinsek
The Cryosphere, 16, 1369–1381, https://doi.org/10.5194/tc-16-1369-2022, https://doi.org/10.5194/tc-16-1369-2022, 2022
Short summary
Short summary
The collapses of the Larsen A and B ice shelves on the Antarctic Peninsula (AP) occurred while the ice shelves were covered with large melt lakes, and ocean waves damaged the ice shelf fronts, triggering collapse. Observations show föhn winds were present on both ice shelves and increased surface melt and drove sea ice away from the ice front. Collapsed ice shelves experienced enhanced surface melt driven by föhn winds, whereas extant ice shelves are affected less by föhn-wind-induced melt.
Alvaro Robledano, Ghislain Picard, Laurent Arnaud, Fanny Larue, and Inès Ollivier
The Cryosphere, 16, 559–579, https://doi.org/10.5194/tc-16-559-2022, https://doi.org/10.5194/tc-16-559-2022, 2022
Short summary
Short summary
Topography controls the surface temperature of snow-covered, mountainous areas. We developed a modelling chain that uses ray-tracing methods to quantify the impact of a few topographic effects on snow surface temperature at high spatial resolution. Its large spatial and temporal variations are correctly simulated over a 50 km2 area in the French Alps, and our results show that excluding a single topographic effect results in cooling (or warming) effects on the order of 1 °C.
Christian T. Wild, Karen E. Alley, Atsuhiro Muto, Martin Truffer, Ted A. Scambos, and Erin C. Pettit
The Cryosphere, 16, 397–417, https://doi.org/10.5194/tc-16-397-2022, https://doi.org/10.5194/tc-16-397-2022, 2022
Short summary
Short summary
Thwaites Glacier has the potential to significantly raise Antarctica's contribution to global sea-level rise by the end of this century. Here, we use satellite measurements of surface elevation to show that its floating part is close to losing contact with an underwater ridge that currently acts to stabilize. We then use computer models of ice flow to simulate the predicted unpinning, which show that accelerated ice discharge into the ocean follows the breakup of the floating part.
Andy Aschwanden, Timothy C. Bartholomaus, Douglas J. Brinkerhoff, and Martin Truffer
The Cryosphere, 15, 5705–5715, https://doi.org/10.5194/tc-15-5705-2021, https://doi.org/10.5194/tc-15-5705-2021, 2021
Short summary
Short summary
Estimating how much ice loss from Greenland and Antarctica will contribute to sea level rise is of critical societal importance. However, our analysis shows that recent efforts are not trustworthy because the models fail at reproducing contemporary ice melt. Here we present a roadmap towards making more credible estimates of ice sheet melt.
Karen E. Alley, Christian T. Wild, Adrian Luckman, Ted A. Scambos, Martin Truffer, Erin C. Pettit, Atsuhiro Muto, Bruce Wallin, Marin Klinger, Tyler Sutterley, Sarah F. Child, Cyrus Hulen, Jan T. M. Lenaerts, Michelle Maclennan, Eric Keenan, and Devon Dunmire
The Cryosphere, 15, 5187–5203, https://doi.org/10.5194/tc-15-5187-2021, https://doi.org/10.5194/tc-15-5187-2021, 2021
Short summary
Short summary
We present a 20-year, satellite-based record of velocity and thickness change on the Thwaites Eastern Ice Shelf (TEIS), the largest remaining floating extension of Thwaites Glacier (TG). TG holds the single greatest control on sea-level rise over the next few centuries, so it is important to understand changes on the TEIS, which controls much of TG's flow into the ocean. Our results suggest that the TEIS is progressively destabilizing and is likely to disintegrate over the next few decades.
Maria Belke-Brea, Florent Domine, Ghislain Picard, Mathieu Barrere, and Laurent Arnaud
Biogeosciences, 18, 5851–5869, https://doi.org/10.5194/bg-18-5851-2021, https://doi.org/10.5194/bg-18-5851-2021, 2021
Short summary
Short summary
Expanding shrubs in the Arctic change snowpacks into a mix of snow, impurities and buried branches. Snow is a translucent medium into which light penetrates and gets partly absorbed by branches or impurities. Measurements of light attenuation in snow in Northern Quebec, Canada, showed (1) black-carbon-dominated light attenuation in snowpacks without shrubs and (2) buried branches influence radiation attenuation in snow locally, leading to melting and pockets of large crystals close to branches.
Kelly Kochanski, Gregory Tucker, and Robert Anderson
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-205, https://doi.org/10.5194/tc-2021-205, 2021
Manuscript not accepted for further review
Short summary
Short summary
Falling snow does not life flat. When blown by the wind, it forms elaborate structures, like dunes. Where these dunes form, they change the way heat flows through the snow. This can accelerate sea ice melt and climate change. Here, we use both field observations obtained during blizzards in Colorado and simulations performed with a state-of-the-art model, to quantify the impact of snow dunes on Arctic heat flows.
Ross Maguire, Nicholas Schmerr, Erin Pettit, Kiya Riverman, Christyna Gardner, Daniella N. DellaGiustina, Brad Avenson, Natalie Wagner, Angela G. Marusiak, Namrah Habib, Juliette I. Broadbeck, Veronica J. Bray, and Samuel H. Bailey
The Cryosphere, 15, 3279–3291, https://doi.org/10.5194/tc-15-3279-2021, https://doi.org/10.5194/tc-15-3279-2021, 2021
Short summary
Short summary
In the last decade, airborne radar surveys have revealed the presence of lakes below the Greenland ice sheet. However, little is known about their properties, including their depth and the volume of water they store. We performed a ground-based geophysics survey in northwestern Greenland and, for the first time, were able to image the depth of a subglacial lake and estimate its volume. Our findings have implications for the thermal state and stability of the ice sheet in northwest Greenland.
Devon Dunmire, Alison F. Banwell, Nander Wever, Jan T. M. Lenaerts, and Rajashree Tri Datta
The Cryosphere, 15, 2983–3005, https://doi.org/10.5194/tc-15-2983-2021, https://doi.org/10.5194/tc-15-2983-2021, 2021
Short summary
Short summary
Here, we automatically detect buried lakes (meltwater lakes buried below layers of snow) across the Greenland Ice Sheet, providing insight into a poorly studied meltwater feature. For 2018 and 2019, we compare areal extent of buried lakes. We find greater buried lake extent in 2019, especially in northern Greenland, which we attribute to late-summer surface melt and high autumn temperatures. We also provide evidence that buried lakes form via different processes across Greenland.
Naomi E. Ochwat, Shawn J. Marshall, Brian J. Moorman, Alison S. Criscitiello, and Luke Copland
The Cryosphere, 15, 2021–2040, https://doi.org/10.5194/tc-15-2021-2021, https://doi.org/10.5194/tc-15-2021-2021, 2021
Short summary
Short summary
In May 2018 we drilled into Kaskawulsh Glacier to study how it is being affected by climate warming and used models to investigate the evolution of the firn since the 1960s. We found that the accumulation zone has experienced increased melting that has refrozen as ice layers and has formed a perennial firn aquifer. These results better inform climate-induced changes on northern glaciers and variables to take into account when estimating glacier mass change using remote-sensing methods.
Alan Huston, Nicholas Siler, Gerard H. Roe, Erin Pettit, and Nathan J. Steiger
The Cryosphere, 15, 1645–1662, https://doi.org/10.5194/tc-15-1645-2021, https://doi.org/10.5194/tc-15-1645-2021, 2021
Short summary
Short summary
We simulate the past 1000 years of glacier length variability using a simple glacier model and an ensemble of global climate model simulations. Glaciers with long response times are more likely to record global climate changes caused by events like volcanic eruptions and greenhouse gas emissions, while glaciers with short response times are more likely to record natural variability. This difference stems from differences in the frequency spectra of natural and forced temperature variability.
Alison F. Banwell, Rajashree Tri Datta, Rebecca L. Dell, Mahsa Moussavi, Ludovic Brucker, Ghislain Picard, Christopher A. Shuman, and Laura A. Stevens
The Cryosphere, 15, 909–925, https://doi.org/10.5194/tc-15-909-2021, https://doi.org/10.5194/tc-15-909-2021, 2021
Short summary
Short summary
Ice shelves are thick floating layers of glacier ice extending from the glaciers on land that buttress much of the Antarctic Ice Sheet and help to protect it from losing ice to the ocean. However, the stability of ice shelves is vulnerable to meltwater lakes that form on their surfaces during the summer. This study focuses on the northern George VI Ice Shelf on the western side of the AP, which had an exceptionally long and extensive melt season in 2019/2020 compared to the previous 31 seasons.
Leif S. Anderson, William H. Armstrong, Robert S. Anderson, and Pascal Buri
The Cryosphere, 15, 265–282, https://doi.org/10.5194/tc-15-265-2021, https://doi.org/10.5194/tc-15-265-2021, 2021
Short summary
Short summary
Many glaciers are thinning rapidly beneath debris cover (loose rock) that reduces melt, including Kennicott Glacier in Alaska. This contradiction has been explained by melt hotspots, such as ice cliffs, scattered within the debris cover. However, at Kennicott Glacier declining ice flow explains the rapid thinning. Through this study, Kennicott Glacier is now the first glacier in Alaska, and the largest glacier globally, where melt across its debris-covered tongue has been rigorously quantified.
Alia L. Khan, Heidi M. Dierssen, Ted A. Scambos, Juan Höfer, and Raul R. Cordero
The Cryosphere, 15, 133–148, https://doi.org/10.5194/tc-15-133-2021, https://doi.org/10.5194/tc-15-133-2021, 2021
Short summary
Short summary
We present radiative forcing (RF) estimates by snow algae in the Antarctic Peninsula (AP) region from multi-year measurements of solar radiation and ground-based hyperspectral characterization of red and green snow algae collected during a brief field expedition in austral summer 2018. Mean daily RF was double for green (~26 W m−2) vs. red (~13 W m−2) snow algae during the peak growing season, which is on par with midlatitude dust attributions capable of advancing snowmelt.
François Tuzet, Marie Dumont, Ghislain Picard, Maxim Lamare, Didier Voisin, Pierre Nabat, Mathieu Lafaysse, Fanny Larue, Jesus Revuelto, and Laurent Arnaud
The Cryosphere, 14, 4553–4579, https://doi.org/10.5194/tc-14-4553-2020, https://doi.org/10.5194/tc-14-4553-2020, 2020
Short summary
Short summary
This study presents a field dataset collected over 30 d from two snow seasons at a Col du Lautaret site (French Alps). The dataset compares different measurements or estimates of light-absorbing particle (LAP) concentrations in snow, highlighting a gap in the current understanding of the measurement of these quantities. An ensemble snowpack model is then evaluated for this dataset estimating that LAPs shorten each snow season by around 10 d despite contrasting meteorological conditions.
Maxim Lamare, Marie Dumont, Ghislain Picard, Fanny Larue, François Tuzet, Clément Delcourt, and Laurent Arnaud
The Cryosphere, 14, 3995–4020, https://doi.org/10.5194/tc-14-3995-2020, https://doi.org/10.5194/tc-14-3995-2020, 2020
Short summary
Short summary
Terrain features found in mountainous regions introduce large errors into the calculation of the physical properties of snow using optical satellite images. We present a new model performing rapid calculations of solar radiation over snow-covered rugged terrain that we tested over a site in the French Alps. The results of the study show that all the interactions between sunlight and the terrain should be accounted for over snow-covered surfaces to correctly estimate snow properties from space.
Julie Z. Miller, David G. Long, Kenneth C. Jezek, Joel T. Johnson, Mary J. Brodzik, Christopher A. Shuman, Lora S. Koenig, and Ted A. Scambos
The Cryosphere, 14, 2809–2817, https://doi.org/10.5194/tc-14-2809-2020, https://doi.org/10.5194/tc-14-2809-2020, 2020
Rebecca Dell, Neil Arnold, Ian Willis, Alison Banwell, Andrew Williamson, Hamish Pritchard, and Andrew Orr
The Cryosphere, 14, 2313–2330, https://doi.org/10.5194/tc-14-2313-2020, https://doi.org/10.5194/tc-14-2313-2020, 2020
Short summary
Short summary
A semi-automated method is developed from pre-existing work to track surface water bodies across Antarctic ice shelves over time, using data from Sentinel-2 and Landsat 8. This method is applied to the Nivlisen Ice Shelf for the 2016–2017 melt season. The results reveal two large linear meltwater systems, which hold 63 % of the peak total surface meltwater volume on 26 January 2017. These meltwater systems migrate towards the ice shelf front as the melt season progresses.
Fanny Larue, Ghislain Picard, Laurent Arnaud, Inès Ollivier, Clément Delcourt, Maxim Lamare, François Tuzet, Jesus Revuelto, and Marie Dumont
The Cryosphere, 14, 1651–1672, https://doi.org/10.5194/tc-14-1651-2020, https://doi.org/10.5194/tc-14-1651-2020, 2020
Short summary
Short summary
The effect of surface roughness on snow albedo is often overlooked,
although a small change in albedo may strongly affect the surface energy
budget. By carving artificial roughness in an initially smooth snowpack,
we highlight albedo reductions of 0.03–0.04 at 700 nm and 0.06–0.10 at 1000 nm. A model using photon transport is developed to compute albedo considering roughness and applied to understand the impact of roughness as a function of snow properties and illumination conditions.
Ghislain Picard, Marie Dumont, Maxim Lamare, François Tuzet, Fanny Larue, Roberta Pirazzini, and Laurent Arnaud
The Cryosphere, 14, 1497–1517, https://doi.org/10.5194/tc-14-1497-2020, https://doi.org/10.5194/tc-14-1497-2020, 2020
Short summary
Short summary
Surface albedo is an essential variable of snow-covered areas. The measurement of this variable over a tilted terrain with levelled sensors is affected by artefacts that need to be corrected. Here we develop a theory of spectral albedo measurement over slopes from which we derive four correction algorithms. The comparison to in situ measurements taken in the Alps shows the adequacy of the theory, and the application of the algorithms shows systematic improvements.
Marion Leduc-Leballeur, Ghislain Picard, Giovanni Macelloni, Arnaud Mialon, and Yann H. Kerr
The Cryosphere, 14, 539–548, https://doi.org/10.5194/tc-14-539-2020, https://doi.org/10.5194/tc-14-539-2020, 2020
Short summary
Short summary
To study the coast and ice shelves affected by melt in Antarctica during the austral summer, we exploited the 1.4 GHz radiometric satellite observations. We showed that this frequency provides additional information on melt occurrence and on the location of the water in the snowpack compared to the 19 GHz observations. This opens an avenue for improving the melting season monitoring with a combination of both frequencies and exploring the possibility of deep-water detection in the snowpack.
Philippe Massicotte, Rémi Amiraux, Marie-Pier Amyot, Philippe Archambault, Mathieu Ardyna, Laurent Arnaud, Lise Artigue, Cyril Aubry, Pierre Ayotte, Guislain Bécu, Simon Bélanger, Ronald Benner, Henry C. Bittig, Annick Bricaud, Éric Brossier, Flavienne Bruyant, Laurent Chauvaud, Debra Christiansen-Stowe, Hervé Claustre, Véronique Cornet-Barthaux, Pierre Coupel, Christine Cox, Aurelie Delaforge, Thibaud Dezutter, Céline Dimier, Florent Domine, Francis Dufour, Christiane Dufresne, Dany Dumont, Jens Ehn, Brent Else, Joannie Ferland, Marie-Hélène Forget, Louis Fortier, Martí Galí, Virginie Galindo, Morgane Gallinari, Nicole Garcia, Catherine Gérikas Ribeiro, Margaux Gourdal, Priscilla Gourvil, Clemence Goyens, Pierre-Luc Grondin, Pascal Guillot, Caroline Guilmette, Marie-Noëlle Houssais, Fabien Joux, Léo Lacour, Thomas Lacour, Augustin Lafond, José Lagunas, Catherine Lalande, Julien Laliberté, Simon Lambert-Girard, Jade Larivière, Johann Lavaud, Anita LeBaron, Karine Leblanc, Florence Le Gall, Justine Legras, Mélanie Lemire, Maurice Levasseur, Edouard Leymarie, Aude Leynaert, Adriana Lopes dos Santos, Antonio Lourenço, David Mah, Claudie Marec, Dominique Marie, Nicolas Martin, Constance Marty, Sabine Marty, Guillaume Massé, Atsushi Matsuoka, Lisa Matthes, Brivaela Moriceau, Pierre-Emmanuel Muller, Christopher-John Mundy, Griet Neukermans, Laurent Oziel, Christos Panagiotopoulos, Jean-Jacques Pangrazi, Ghislain Picard, Marc Picheral, France Pinczon du Sel, Nicole Pogorzelec, Ian Probert, Bernard Quéguiner, Patrick Raimbault, Joséphine Ras, Eric Rehm, Erin Reimer, Jean-François Rontani, Søren Rysgaard, Blanche Saint-Béat, Makoto Sampei, Julie Sansoulet, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Caroline Sévigny, Yuan Shen, Margot Tragin, Jean-Éric Tremblay, Daniel Vaulot, Gauthier Verin, Frédéric Vivier, Anda Vladoiu, Jeremy Whitehead, and Marcel Babin
Earth Syst. Sci. Data, 12, 151–176, https://doi.org/10.5194/essd-12-151-2020, https://doi.org/10.5194/essd-12-151-2020, 2020
Short summary
Short summary
The Green Edge initiative was developed to understand the processes controlling the primary productivity and the fate of organic matter produced during the Arctic spring bloom (PSB). In this article, we present an overview of an extensive and comprehensive dataset acquired during two expeditions conducted in 2015 and 2016 on landfast ice southeast of Qikiqtarjuaq Island in Baffin Bay.
Christiaan T. van Dalum, Willem Jan van de Berg, Quentin Libois, Ghislain Picard, and Michiel R. van den Broeke
Geosci. Model Dev., 12, 5157–5175, https://doi.org/10.5194/gmd-12-5157-2019, https://doi.org/10.5194/gmd-12-5157-2019, 2019
Short summary
Short summary
Climate models are often limited to relatively simple snow albedo schemes. Therefore, we have developed the SNOWBAL module to couple a climate model with a physically based wavelength dependent snow albedo model. Using SNOWBAL v1.2 to couple the snow albedo model TARTES with the regional climate model RACMO2 indicates a potential performance gain for the Greenland ice sheet.
Leif S. Anderson, William H. Armstrong, Robert S. Anderson, and Pascal Buri
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-178, https://doi.org/10.5194/tc-2019-178, 2019
Preprint withdrawn
Short summary
Short summary
Thick rock cover (or debris) disturbs the melt of many Alaskan glaciers. Yet the effect of debris on glacier thinning in Alaska has been overlooked. In three companion papers we assess the role of debris and ice flow on the thinning of Kennicott Glacier. In Part C we describe feedbacks contributing to rapid thinning under thick debris. Changes in debris thickness downglacier on Kennicott Glacier are manifested in the pattern of glacier thinning, ice dynamics, melt, and glacier surface features.
Leif S. Anderson, Robert S. Anderson, Pascal Buri, and William H. Armstrong
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-174, https://doi.org/10.5194/tc-2019-174, 2019
Preprint withdrawn
Short summary
Short summary
Thick rock cover (or debris) disturbs the melt of many Alaskan glaciers. Yet the effect of debris on glacier thinning in Alaska has been overlooked. In three companion papers we assess the role of debris and ice flow on the thinning of Kennicott Glacier. In Part A, we report measurements from the glacier surface. We measured surface debris thickness, melt under debris, and the rate of ice cliff backwasting. These data allow for further studies linking debris to glacier shrinkage in Alaska.
Francois Tuzet, Marie Dumont, Laurent Arnaud, Didier Voisin, Maxim Lamare, Fanny Larue, Jesus Revuelto, and Ghislain Picard
The Cryosphere, 13, 2169–2187, https://doi.org/10.5194/tc-13-2169-2019, https://doi.org/10.5194/tc-13-2169-2019, 2019
Short summary
Short summary
Here we present a novel method to estimate the impurity content (e.g. black carbon or mineral dust) in Alpine snow based on measurements of light extinction profiles. This method is proposed as an alternative to chemical measurements, allowing rapid retrievals of vertical concentrations of impurities in the snowpack. In addition, the results provide a better understanding of the impact of impurities on visible light extinction in snow.
Gauthier Verin, Florent Dominé, Marcel Babin, Ghislain Picard, and Laurent Arnaud
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-113, https://doi.org/10.5194/tc-2019-113, 2019
Publication in TC not foreseen
Short summary
Short summary
The results of two sampling campaigns conducted on landfast sea ice in Baffin Bay show that the melt season can be divided into four main phases during which surface albedo and snow properties show distinct signatures. A radiative transfer model was used to successfully reconstruct the albedo from snow properties. This modeling work highlights that only little changes on the very surface of the snowpack are able to dramatically change the albedo, a key element for the energy budget of sea ice.
Ghislain Picard, Laurent Arnaud, Romain Caneill, Eric Lefebvre, and Maxim Lamare
The Cryosphere, 13, 1983–1999, https://doi.org/10.5194/tc-13-1983-2019, https://doi.org/10.5194/tc-13-1983-2019, 2019
Short summary
Short summary
To study how snow accumulates in Antarctica, we analyze daily surface elevation recorded by an automatic laser scanner. We show that new snow often accumulates in thick patches covering a small fraction of the surface. Most patches are removed by erosion within weeks, implying that only a few contribute to the snowpack. This explains the heterogeneity on the surface and in the snowpack. These findings are important for surface mass and energy balance, photochemistry, and ice core interpretation.
Dyre O. Dammann, Leif E. B. Eriksson, Son V. Nghiem, Erin C. Pettit, Nathan T. Kurtz, John G. Sonntag, Thomas E. Busche, Franz J. Meyer, and Andrew R. Mahoney
The Cryosphere, 13, 1861–1875, https://doi.org/10.5194/tc-13-1861-2019, https://doi.org/10.5194/tc-13-1861-2019, 2019
Short summary
Short summary
We validate TanDEM-X interferometry as a tool for deriving iceberg subaerial morphology using Operation IceBridge data. This approach enables a volumetric classification of icebergs, according to volume relevant to iceberg drift and decay, freshwater contribution, and potential impact on structures. We find iceberg volumes to generally match within 7 %. These results suggest that TanDEM-X could pave the way for future interferometric systems of scientific and operational iceberg classification.
Kelly Kochanski, Robert S. Anderson, and Gregory E. Tucker
The Cryosphere, 13, 1267–1281, https://doi.org/10.5194/tc-13-1267-2019, https://doi.org/10.5194/tc-13-1267-2019, 2019
Short summary
Short summary
Wind-blown snow does not lie flat. It forms dunes, ripples, and anvil-shaped sastrugi. These features ornament much of the snow on Earth and change the snow's effects on polar climates, but they have rarely been studied. We spent three winters watching snow move through the Colorado Front Range and present our findings here, including the first time-lapse videos of snow dune and sastrugi growth.
Nicolas Champollion, Ghislain Picard, Laurent Arnaud, Éric Lefebvre, Giovanni Macelloni, Frédérique Rémy, and Michel Fily
The Cryosphere, 13, 1215–1232, https://doi.org/10.5194/tc-13-1215-2019, https://doi.org/10.5194/tc-13-1215-2019, 2019
Short summary
Short summary
The snow density close to the surface has been retrieved from satellite observations at Dome C on the Antarctic Ice Sheet. It shows a marked decrease between 2002 and 2011 of about 10 kg m-3 yr-1. This trend has been confirmed by in situ measurements and other satellite observations though no long-term meteorological evolution has been found. These results have implications for surface mass balance and energy budget.
Bas Altena, Ted Scambos, Mark Fahnestock, and Andreas Kääb
The Cryosphere, 13, 795–814, https://doi.org/10.5194/tc-13-795-2019, https://doi.org/10.5194/tc-13-795-2019, 2019
Short summary
Short summary
Many glaciers in southern Alaska and the Yukon experience changes in flow speed, which occur in episodes or sporadically. These flow changes can be measured with satellites, but the resulting raw velocity products are messy. Thus in this study we developed an automatic method to produce a synthesized velocity product over a large glacier region of roughly 600 km by 200 km. Velocities are at a monthly resolution and at 300 m resolution, making all kinds of glacier dynamics observable.
Andrew G. Williamson, Alison F. Banwell, Ian C. Willis, and Neil S. Arnold
The Cryosphere, 12, 3045–3065, https://doi.org/10.5194/tc-12-3045-2018, https://doi.org/10.5194/tc-12-3045-2018, 2018
Short summary
Short summary
A new approach is presented for automatically monitoring changes to area and volume of surface lakes on the Greenland Ice Sheet using Landsat 8 and Sentinel-2 satellite data. The dual-satellite record improves on previous work since it tracks changes to more lakes (including small ones), identifies more lake-drainage events, and has higher precision. The results also show that small lakes are important in ice-sheet hydrology as they route more surface run-off into the ice sheet than large lakes.
Alexander Kokhanovsky, Maxim Lamare, Biagio Di Mauro, Ghislain Picard, Laurent Arnaud, Marie Dumont, François Tuzet, Carsten Brockmann, and Jason E. Box
The Cryosphere, 12, 2371–2382, https://doi.org/10.5194/tc-12-2371-2018, https://doi.org/10.5194/tc-12-2371-2018, 2018
Short summary
Short summary
This work presents a new technique with which to derive the snow microphysical and optical properties from snow spectral reflectance measurements. The technique is robust and easy to use, and it does not require the extraction of snow samples from a given snowpack. It can be used in processing satellite imagery over extended fresh dry, wet and polluted snowfields.
Ghislain Picard, Melody Sandells, and Henning Löwe
Geosci. Model Dev., 11, 2763–2788, https://doi.org/10.5194/gmd-11-2763-2018, https://doi.org/10.5194/gmd-11-2763-2018, 2018
Short summary
Short summary
The Snow Microwave Radiative Transfer (SMRT) is a novel model developed to calculate how microwaves are scattered and emitted by snow. The model is built from separate, interconnecting modules to make it easy to compare different aspects of the theory. SMRT is the first model to allow a choice of how to represent the microstructure of the snow, which is extremely important, and has been used to unite multiple previous studies. This model will ultimately be used to observe snow from space.
Alexandra Touzeau, Amaëlle Landais, Samuel Morin, Laurent Arnaud, and Ghislain Picard
Geosci. Model Dev., 11, 2393–2418, https://doi.org/10.5194/gmd-11-2393-2018, https://doi.org/10.5194/gmd-11-2393-2018, 2018
Short summary
Short summary
We introduced a new module of water vapor diffusion into the snowpack model Crocus. Vapor transport locally modifies the density of snow layers, possibly influencing compaction. It also affects the original isotopic signature of snow layers. We also introduced water isotopes (𝛿18O) in the model. Over 10 years, the modeled attenuation of isotopic variations due to vapor diffusion is 7–18 % lower than the observations. Thus, other processes are required to explain the total attenuation.
Fifi Ibrahime Adodo, Frédérique Remy, and Ghislain Picard
The Cryosphere, 12, 1767–1778, https://doi.org/10.5194/tc-12-1767-2018, https://doi.org/10.5194/tc-12-1767-2018, 2018
Short summary
Short summary
In Antarctica, the seasonal cycle of the backscatter behaves differently at high and low frequencies, peaking in winter and in summer, respectively. At the intermediate frequency, some areas behave analogously to low frequency in terms of the seasonal cycle, but other areas behave analogously to high frequency. This calls into question the empirical relationships often used to correct elevation changes from radar penetration into the snowpack using backscatter.
Mathieu Casado, Amaelle Landais, Ghislain Picard, Thomas Münch, Thomas Laepple, Barbara Stenni, Giuliano Dreossi, Alexey Ekaykin, Laurent Arnaud, Christophe Genthon, Alexandra Touzeau, Valerie Masson-Delmotte, and Jean Jouzel
The Cryosphere, 12, 1745–1766, https://doi.org/10.5194/tc-12-1745-2018, https://doi.org/10.5194/tc-12-1745-2018, 2018
Short summary
Short summary
Ice core isotopic records rely on the knowledge of the processes involved in the archival processes of the snow. In the East Antarctic Plateau, post-deposition processes strongly affect the signal found in the surface and buried snow compared to the initial climatic signal. We evaluate the different contributions to the surface snow isotopic composition between the precipitation and the exchanges with the atmosphere and the variability of the isotopic signal found in profiles from snow pits.
Alex S. Gardner, Geir Moholdt, Ted Scambos, Mark Fahnstock, Stefan Ligtenberg, Michiel van den Broeke, and Johan Nilsson
The Cryosphere, 12, 521–547, https://doi.org/10.5194/tc-12-521-2018, https://doi.org/10.5194/tc-12-521-2018, 2018
Short summary
Short summary
We map present-day Antarctic surface velocities from Landsat imagery and compare to earlier estimates from radar. Flow accelerations across the grounding lines of West Antarctica's Amundsen Sea Embayment, Getz Ice Shelf and the western Antarctic Peninsula, account for 89 % of the observed increase in ice discharge. In contrast, glaciers draining the East Antarctic have been remarkably stable. Our work suggests that patterns of mass loss are part of a longer-term phase of enhanced flow.
Francois Tuzet, Marie Dumont, Matthieu Lafaysse, Ghislain Picard, Laurent Arnaud, Didier Voisin, Yves Lejeune, Luc Charrois, Pierre Nabat, and Samuel Morin
The Cryosphere, 11, 2633–2653, https://doi.org/10.5194/tc-11-2633-2017, https://doi.org/10.5194/tc-11-2633-2017, 2017
Short summary
Short summary
Light-absorbing impurities deposited on snow, such as soot or dust, strongly modify its evolution. We implemented impurity deposition and evolution in a detailed snowpack model, thereby expanding the reach of such models into addressing the subtle interplays between snow physics and impurities' optical properties. Model results were evaluated based on innovative field observations at an Alpine site. This allows future investigations in the fields of climate, hydrology and avalanche prediction.
Simon L. Pendleton, Gifford H. Miller, Robert A. Anderson, Sarah E. Crump, Yafang Zhong, Alexandra Jahn, and Áslaug Geirsdottir
Clim. Past, 13, 1527–1537, https://doi.org/10.5194/cp-13-1527-2017, https://doi.org/10.5194/cp-13-1527-2017, 2017
Short summary
Short summary
Recent warming in the high latitudes has prompted the accelerated retreat of ice caps and glaciers, especially in the Canadian Arctic. Here we use the radiocarbon age of preserved plants being exposed by shrinking ice caps that once entombed them. These ages help us to constrain the timing and magnitude of climate change on southern Baffin Island over the past ~ 2000 years. Our results show episodic cooling up until ~ 1900 CE, followed by accelerated warming through present.
Marie Dumont, Laurent Arnaud, Ghislain Picard, Quentin Libois, Yves Lejeune, Pierre Nabat, Didier Voisin, and Samuel Morin
The Cryosphere, 11, 1091–1110, https://doi.org/10.5194/tc-11-1091-2017, https://doi.org/10.5194/tc-11-1091-2017, 2017
Short summary
Short summary
Snow spectral albedo in the visible/near-infrared range has been continuously measured during a winter season at Col de Porte alpine site (French Alps; 45.30° N, 5.77°E; 1325 m a.s.l.). This study highlights that the variations of spectral albedo can be successfully explained by variations of the following snow surface variables: snow-specific surface area, effective light-absorbing impurities content, presence of liquid water and slope.
Byeong-Hoon Kim, Choon-Ki Lee, Ki-Weon Seo, Won Sang Lee, and Ted Scambos
The Cryosphere, 10, 2971–2980, https://doi.org/10.5194/tc-10-2971-2016, https://doi.org/10.5194/tc-10-2971-2016, 2016
Short summary
Short summary
Kamb Ice Stream (KIS) in Antarctica ceased rapid ice flow approximately 160 years ago, still influencing on the current mass balance of the West Antarctic Ice Sheet. We identify two previously unknown subglacial lakes beneath the stagnated trunk of the KIS. Rapid fill-drain hydrologic events over several months indicate that the lakes are probably connected by a subglacial drainage network. Our findings support previously published conceptual models of the KIS shutdown.
Megan O'Sadnick, Malcolm Ingham, Hajo Eicken, and Erin Pettit
The Cryosphere, 10, 2923–2940, https://doi.org/10.5194/tc-10-2923-2016, https://doi.org/10.5194/tc-10-2923-2016, 2016
Short summary
Short summary
Non-destructive in situ monitoring of sea-ice microstructure is of value to sea-ice research and operations but remains elusive to date. We relate in situ measurements of sea-ice dielectric properties at frequencies of 10 to 95 Hz to ice temperature, salinity, and microstructure. Results support the possible use of low-frequency electric measurements to monitor the seasonal evolution of brine volume fraction, pore volume, and connectivity of pore space in sea ice.
Mathieu Casado, Amaelle Landais, Ghislain Picard, Thomas Münch, Thomas Laepple, Barbara Stenni, Giuliano Dreossi, Alexey Ekaykin, Laurent Arnaud, Christophe Genthon, Alexandra Touzeau, Valérie Masson-Delmotte, and Jean Jouzel
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-263, https://doi.org/10.5194/tc-2016-263, 2016
Revised manuscript not accepted
Short summary
Short summary
Ice core isotopic records rely on the knowledge of the processes involved in the archival of the snow. In the East Antarctic Plateau, post-deposition processes strongly affect the signal found in the surface and buried snow compared to the initial climatic signal. We evaluate the different contributions to the surface snow isotopic composition between the precipitation and the exchanges with the atmosphere and the variability of the isotopic signal found in profiles from snow pits.
Ghislain Picard, Quentin Libois, and Laurent Arnaud
The Cryosphere, 10, 2655–2672, https://doi.org/10.5194/tc-10-2655-2016, https://doi.org/10.5194/tc-10-2655-2016, 2016
Short summary
Short summary
The absorption of visible light in ice is very weak but its precise value is unknown. By measuring the profile of light intensity in snow, Warren and Brand (2006) deduced that light is attenuated by a factor 2 per kilometer in pure ice at a wavelength of 400 nm. We replicated their experiment on a large number of samples and found that ice absorption is at least 10 times stronger. The paper explores various potential physical and statistical biases that could impact the experiment.
Josué Bock, Joël Savarino, and Ghislain Picard
Atmos. Chem. Phys., 16, 12531–12550, https://doi.org/10.5194/acp-16-12531-2016, https://doi.org/10.5194/acp-16-12531-2016, 2016
Short summary
Short summary
We develop a physically based parameterisation of the co-condensation process. Our model includes solid-state diffusion within a snow grain. It reproduces with good agreement the nitrate measurement in surface snow. Winter and summer concentrations are driven respectively by thermodynamic equilibrium and co-condensation. Adsorbed nitrate likely accounts for a minor part. This work shows that co-condensation is required to explain the chemical composition of snow undergoing temperature gradient.
Ghislain Picard, Laurent Arnaud, Jean-Michel Panel, and Samuel Morin
The Cryosphere, 10, 1495–1511, https://doi.org/10.5194/tc-10-1495-2016, https://doi.org/10.5194/tc-10-1495-2016, 2016
Short summary
Short summary
A cost-effective automatic laser scan has been built to measure snow depth spatio-temporal variations. Deployed in the Alps and in Dome C (Antarctica), two devices acquired daily scans covering a surface area of 100–150 m2. The precision and long-term stability of the measurements are about 1 cm and the accuracy is better than 5 cm. These high performances are particularly suited at Dome C, where it was possible to reveal that most of the accumulation in the year 2015 stems from a single event.
Mathieu Casado, Amaelle Landais, Valérie Masson-Delmotte, Christophe Genthon, Erik Kerstel, Samir Kassi, Laurent Arnaud, Ghislain Picard, Frederic Prie, Olivier Cattani, Hans-Christian Steen-Larsen, Etienne Vignon, and Peter Cermak
Atmos. Chem. Phys., 16, 8521–8538, https://doi.org/10.5194/acp-16-8521-2016, https://doi.org/10.5194/acp-16-8521-2016, 2016
Short summary
Short summary
Climatic conditions in Concordia are very cold (−55 °C in average) and very dry, imposing difficult conditions to measure the water vapour isotopic composition. New developments in infrared spectroscopy enable now the measurement of isotopic composition in water vapour traces (down to 20 ppmv). Here we present the results results of a first campaign of measurement of isotopic composition of water vapour in Concordia, the site where the 800 000 years long ice core was drilled.
Ghislain Picard, Quentin Libois, Laurent Arnaud, Gauthier Verin, and Marie Dumont
The Cryosphere, 10, 1297–1316, https://doi.org/10.5194/tc-10-1297-2016, https://doi.org/10.5194/tc-10-1297-2016, 2016
Short summary
Short summary
Albedo of snow surfaces depends on snow grain size. By measuring albedo during 3 years at Dome C in Antarctica with an automatic spectroradiometer, we were able to monitor the snow specific surface area and show an overall growth of the grains in spring and summer followed by an accumulation of small-grained snow from mid-summer. This study focuses on the uncertainties due to the spectroradiometer and concludes that the observed variations are significant with respect to the precision.
Leif S. Anderson and Robert S. Anderson
The Cryosphere, 10, 1105–1124, https://doi.org/10.5194/tc-10-1105-2016, https://doi.org/10.5194/tc-10-1105-2016, 2016
Short summary
Short summary
Mountains erode and shed rocks down slope. When these rocks (debris) fall on glacier ice they can suppress ice melt. By protecting glaciers from melt, debris can make glaciers extend to lower elevations. Using mathematical models of glaciers and debris deposition, we find that debris can more than double the length of glaciers. The amount of debris deposited on the glacier, which scales with mountain height and steepness, is the most important control on debris-covered glacier length and volume.
Luc Charrois, Emmanuel Cosme, Marie Dumont, Matthieu Lafaysse, Samuel Morin, Quentin Libois, and Ghislain Picard
The Cryosphere, 10, 1021–1038, https://doi.org/10.5194/tc-10-1021-2016, https://doi.org/10.5194/tc-10-1021-2016, 2016
Short summary
Short summary
This study investigates the assimilation of optical reflectances, snowdepth data and both combined into a multilayer snowpack model. Data assimilation is performed with an ensemble-based method, the Sequential Importance Resampling Particle filter. Experiments assimilating only synthetic data are conducted at one point in the French Alps, the Col du Lautaret, over five hydrological years. Results of the assimilation experiments show improvements of the snowpack bulk variables estimates.
Lucie Bazin, Amaelle Landais, Emilie Capron, Valérie Masson-Delmotte, Catherine Ritz, Ghislain Picard, Jean Jouzel, Marie Dumont, Markus Leuenberger, and Frédéric Prié
Clim. Past, 12, 729–748, https://doi.org/10.5194/cp-12-729-2016, https://doi.org/10.5194/cp-12-729-2016, 2016
Short summary
Short summary
We present new measurements of δO2⁄N2 and δ18Oatm performed on well-conserved ice from EDC covering MIS5 and between 380 and 800 ka. The combination of the observation of a 100 ka periodicity in the new δO2⁄N2 record with a MIS5 multi-site multi-proxy study has revealed a potential influence of local climatic parameters on δO2⁄N2. Moreover, we propose that the varying delay between d18Oatm and precession for the last 800 ka is affected by the occurrence of ice sheet discharge events.
Alexandre Roy, Alain Royer, Olivier St-Jean-Rondeau, Benoit Montpetit, Ghislain Picard, Alex Mavrovic, Nicolas Marchand, and Alexandre Langlois
The Cryosphere, 10, 623–638, https://doi.org/10.5194/tc-10-623-2016, https://doi.org/10.5194/tc-10-623-2016, 2016
J. M. van Wessem, S. R. M. Ligtenberg, C. H. Reijmer, W. J. van de Berg, M. R. van den Broeke, N. E. Barrand, E. R. Thomas, J. Turner, J. Wuite, T. A. Scambos, and E. van Meijgaard
The Cryosphere, 10, 271–285, https://doi.org/10.5194/tc-10-271-2016, https://doi.org/10.5194/tc-10-271-2016, 2016
Short summary
Short summary
This study presents the first high-resolution (5.5 km) modelled estimate of surface mass balance (SMB) over the period 1979–2014 for the Antarctic Peninsula (AP). Precipitation (snowfall and rain) largely determines the SMB, and is exceptionally high over the western mountain slopes, with annual values > 4 m water equivalent. Snowmelt is widespread over the AP, but only runs off into the ocean at some locations: the Larsen B,C, and Wilkins ice shelves, and along the north-western mountains.
A. Pope, T. A. Scambos, M. Moussavi, M. Tedesco, M. Willis, D. Shean, and S. Grigsby
The Cryosphere, 10, 15–27, https://doi.org/10.5194/tc-10-15-2016, https://doi.org/10.5194/tc-10-15-2016, 2016
Short summary
Short summary
Liquid water stored on the surface of ice sheets and glaciers, such as that in surface (supraglacial) lakes, plays a key role in the glacial hydrological system. Multispectral remote sensing can be used to detect lakes and estimate their depth. Here, we use in situ data to assess lake depth retrieval using the recently launched Landsat 8. We validate Landsat 8-derived depths and provide suggestions for future applications. We apply our method to a case study are in Greenland for summer 2014.
Q. Libois, G. Picard, L. Arnaud, M. Dumont, M. Lafaysse, S. Morin, and E. Lefebvre
The Cryosphere, 9, 2383–2398, https://doi.org/10.5194/tc-9-2383-2015, https://doi.org/10.5194/tc-9-2383-2015, 2015
Short summary
Short summary
The albedo and surface energy budget of the Antarctic Plateau are largely determined by snow specific surface area. The latter experiences substantial daily-to-seasonal variations in response to meteorological conditions. In particular, it decreases by a factor three in summer, causing a drop in albedo. These variations are monitored from in situ and remote sensing observations at Dome C. For the first time, they are also simulated with a snowpack evolution model adapted to Antarctic conditions.
H. Löwe and G. Picard
The Cryosphere, 9, 2101–2117, https://doi.org/10.5194/tc-9-2101-2015, https://doi.org/10.5194/tc-9-2101-2015, 2015
Short summary
Short summary
The paper establishes a theoretical link between two widely used microwave models for snow. The scattering formulations from both models are unified by reformulating their microstructure models in a common framework. The results show that the scattering formulations can be considered equivalent, if exactly the same microstructure model is used. The paper also provides a method to measure a hitherto unknown input parameter for the microwave models from tomography images of snow.
C. Lavoie, E. W. Domack, E. C. Pettit, T. A. Scambos, R. D. Larter, H.-W. Schenke, K. C. Yoo, J. Gutt, J. Wellner, M. Canals, J. B. Anderson, and D. Amblas
The Cryosphere, 9, 613–629, https://doi.org/10.5194/tc-9-613-2015, https://doi.org/10.5194/tc-9-613-2015, 2015
T. A. Scambos, E. Berthier, T. Haran, C. A. Shuman, A. J. Cook, S. R. M. Ligtenberg, and J. Bohlander
The Cryosphere, 8, 2135–2145, https://doi.org/10.5194/tc-8-2135-2014, https://doi.org/10.5194/tc-8-2135-2014, 2014
Short summary
Short summary
This study of one of the most rapidly changing glacier regions on earth -- the Antarctic Peninsula -- uses two types of satellite data to measure the rates of ice loss in detail for the individual glaciers. The satellite data is laser altimetry from ICESat and stereo image DEM differences. The results show that 24..9 ± 7.8 billion tons of ice are lost from the region north of 66°S on the peninsula each year. The majority of the data cover 2003-2008.
K. R. Barnhart, I. Overeem, and R. S. Anderson
The Cryosphere, 8, 1777–1799, https://doi.org/10.5194/tc-8-1777-2014, https://doi.org/10.5194/tc-8-1777-2014, 2014
N. S. Arnold, A. F. Banwell, and I. C. Willis
The Cryosphere, 8, 1149–1160, https://doi.org/10.5194/tc-8-1149-2014, https://doi.org/10.5194/tc-8-1149-2014, 2014
G. Picard, A. Royer, L. Arnaud, and M. Fily
The Cryosphere, 8, 1105–1119, https://doi.org/10.5194/tc-8-1105-2014, https://doi.org/10.5194/tc-8-1105-2014, 2014
Q. Libois, G. Picard, J. L. France, L. Arnaud, M. Dumont, C. M. Carmagnola, and M. D. King
The Cryosphere, 7, 1803–1818, https://doi.org/10.5194/tc-7-1803-2013, https://doi.org/10.5194/tc-7-1803-2013, 2013
K. Kawamura, J. P. Severinghaus, M. R. Albert, Z. R. Courville, M. A. Fahnestock, T. Scambos, E. Shields, and C. A. Shuman
Atmos. Chem. Phys., 13, 11141–11155, https://doi.org/10.5194/acp-13-11141-2013, https://doi.org/10.5194/acp-13-11141-2013, 2013
Related subject area
Discipline: Glaciers | Subject: Climate Interactions
Arctic glacier snowline altitudes rise 150 m over the last 4 decades
Assessing the glacier projection uncertainties in the Patagonian Andes (40–56° S) from a catchment perspective
Climatic control of the surface mass balance of the Patagonian Icefields
On the attribution of industrial-era glacier mass loss to anthropogenic climate change
Distributed summer air temperatures across mountain glaciers in the south-east Tibetan Plateau: temperature sensitivity and comparison with existing glacier datasets
Glacier runoff variations since 1955 in the Maipo River basin, in the semiarid Andes of central Chile
Impact of warming shelf waters on ice mélange and terminus retreat at a large SE Greenland glacier
A long-term dataset of climatic mass balance, snow conditions, and runoff in Svalbard (1957–2018)
Laura J. Larocca, James M. Lea, Michael P. Erb, Nicholas P. McKay, Megan Phillips, Kara A. Lamantia, and Darrell S. Kaufman
The Cryosphere, 18, 3591–3611, https://doi.org/10.5194/tc-18-3591-2024, https://doi.org/10.5194/tc-18-3591-2024, 2024
Short summary
Short summary
Here we present summer snowline altitude (SLA) time series for 269 Arctic glaciers. Between 1984 and 2022, SLAs rose ∼ 150 m, equating to a ∼ 127 m shift per 1 °C of summer warming. SLA is most strongly correlated with annual temperature variables, highlighting their dual effect on ablation and accumulation processes. We show that SLAs are rising fastest on low-elevation glaciers and that > 50 % of the studied glaciers could have SLAs that exceed the maximum ice elevation by 2100.
Rodrigo Aguayo, Fabien Maussion, Lilian Schuster, Marius Schaefer, Alexis Caro, Patrick Schmitt, Jonathan Mackay, Lizz Ultee, Jorge Leon-Muñoz, and Mauricio Aguayo
EGUsphere, https://doi.org/10.5194/egusphere-2023-2325, https://doi.org/10.5194/egusphere-2023-2325, 2023
Short summary
Short summary
Predicting how much water will come from glaciers in the future is a complex task, and there are many factors that make it uncertain. Using a glacier model, we explored 1,920 scenarios for each glacier in the Patagonian Andes. We found that the choice of climate data was the most important factor, while other factors such as different data sources, climate models and emission scenarios played a smaller role.
Tomás Carrasco-Escaff, Maisa Rojas, René Darío Garreaud, Deniz Bozkurt, and Marius Schaefer
The Cryosphere, 17, 1127–1149, https://doi.org/10.5194/tc-17-1127-2023, https://doi.org/10.5194/tc-17-1127-2023, 2023
Short summary
Short summary
In this study, we investigate the interplay between climate and the Patagonian Icefields. By modeling the glacioclimatic conditions of the southern Andes, we found that the annual variations in net surface mass change experienced by these icefields are mainly controlled by annual variations in the air pressure field observed near the Drake Passage. Little dependence on main modes of variability was found, suggesting the Drake Passage as a key region for understanding the Patagonian Icefields.
Gerard H. Roe, John Erich Christian, and Ben Marzeion
The Cryosphere, 15, 1889–1905, https://doi.org/10.5194/tc-15-1889-2021, https://doi.org/10.5194/tc-15-1889-2021, 2021
Short summary
Short summary
The worldwide retreat of mountain glaciers and consequent loss of ice mass is one of the most obvious signs of a changing climate and has significant implications for the hydrology and natural hazards in mountain landscapes. Consistent with our understanding of the human role in temperature change, we demonstrate that the central estimate of the size of the human-caused mass loss is essentially 100 % of the observed loss. This assessment resolves some important inconsistencies in the literature.
Thomas E. Shaw, Wei Yang, Álvaro Ayala, Claudio Bravo, Chuanxi Zhao, and Francesca Pellicciotti
The Cryosphere, 15, 595–614, https://doi.org/10.5194/tc-15-595-2021, https://doi.org/10.5194/tc-15-595-2021, 2021
Short summary
Short summary
Near surface air temperature (Ta) is important for simulating the melting of glaciers, though its variability in space and time on mountain glaciers is still poorly understood. We combine new Ta observations on glacier in Tibet with several glacier datasets around the world to explore the applicability of an existing method to estimate glacier Ta based upon glacier flow distance. We make a first step at generalising a method and highlight the remaining unknowns for this field of research.
Álvaro Ayala, David Farías-Barahona, Matthias Huss, Francesca Pellicciotti, James McPhee, and Daniel Farinotti
The Cryosphere, 14, 2005–2027, https://doi.org/10.5194/tc-14-2005-2020, https://doi.org/10.5194/tc-14-2005-2020, 2020
Short summary
Short summary
We reconstruct past glacier changes (1955–2016) and estimate the committed ice loss in the Maipo River basin (semi-arid Andes of Chile), with a focus on glacier runoff. We found that glacier volume has decreased by one-fifth since 1955 and that glacier runoff shows a sequence of decreasing maxima starting in a severe drought in 1968. As meltwater originating from the Andes plays a key role in this dry region, our results can be useful for developing adaptation or mitigation strategies.
Suzanne L. Bevan, Adrian J. Luckman, Douglas I. Benn, Tom Cowton, and Joe Todd
The Cryosphere, 13, 2303–2315, https://doi.org/10.5194/tc-13-2303-2019, https://doi.org/10.5194/tc-13-2303-2019, 2019
Short summary
Short summary
Kangerlussuaq Glacier in Greenland retreated significantly in the early 2000s and typified the response of calving glaciers to climate change. Satellite images show that it has recently retreated even further. The current retreat follows the appearance of extremely warm surface waters on the continental shelf during the summer of 2016, which likely entered the fjord and caused the rigid mass of sea ice and icebergs, which normally inhibits calving, to melt and break up.
Ward van Pelt, Veijo Pohjola, Rickard Pettersson, Sergey Marchenko, Jack Kohler, Bartłomiej Luks, Jon Ove Hagen, Thomas V. Schuler, Thorben Dunse, Brice Noël, and Carleen Reijmer
The Cryosphere, 13, 2259–2280, https://doi.org/10.5194/tc-13-2259-2019, https://doi.org/10.5194/tc-13-2259-2019, 2019
Short summary
Short summary
The climate in Svalbard is undergoing amplified change compared to the global mean, which has a strong impact on the climatic mass balance of glaciers and the state of seasonal snow in land areas. In this study we analyze a coupled energy balance–subsurface model dataset, which provides detailed information on distributed climatic mass balance, snow conditions, and runoff across Svalbard between 1957 and 2018.
Cited articles
Adusumilli, S., Fricker, H. A., Siegfried, M. R., Padman, L., Paolo, F. S., and Ligtenberg, S. R. M.:. Variable basal melt rates of Antarctic Peninsula ice shelves, 1994–2016, Geophys. Res. Lett., 45, 4086–4095, https://doi.org/10.1002/2017GL076652, 2018.
Amundson, J. M., Fahnestock, M., Truffer, M., Brown, J., Lüthi, M. P., and Motyka, R. J.: Ice mélange dynamics and implications for terminus stability, Jakobshavn Isbræ, Greenland, J. Geophys. Res., 115, F01005, https://doi.org/10.1029/2009JF001405, 2010.
Arthur, J., Stokes, C., Jamieson, S., Miles, B., Carr, J., and Leeson, A.: The triggers of the disaggregation of Voyeykov Ice Shelf (2007), Wilkes Land, East Antarctica, and its subsequent evolution, J. Glaciol., 67, 933–951, https://doi.org/10.1017/jog.2021.45, 2021.
Banwell, A. F. and Macayeal, D. R.: Ice-shelf fracture due to viscoelastic flexure stress induced by fill/drain cycles of supraglacial lakes, Antarct. Sci., 27, 587–597, https://doi.org/10.1017/S0954102015000292, 2015.
Banwell, A. F., MacAyeal, D. R., and Sergienko, O. V.: Breakup of the Larsen B Ice Shelf triggered by chain reaction drainage of supraglacial lakes, Geophys. Res. Lett., 40, 5872–5876, https://doi.org/10.1002/2013GL057694, 2013.
Banwell, A. F., Willis, I. C., Goodsell, B., Macdonald, G. J., Mayer, D., Powell, A. and MacAyeal, D. R.: Calving and Rifting on McMurdo Ice Shelf, Antarctica, Ann. Glaciol., 58, 78–87, https://doi.org/10.1017/aog.2017.12, 2017.
Banwell, A. F., Datta, R. T., Dell, R. L., Moussavi, M., Brucker, L., Picard, G., Shuman, C. A., and Stevens, L. A.: The 32-year record-high surface melt in 2019/2020 on the northern George VI Ice Shelf, Antarctic Peninsula, The Cryosphere, 15, 909–925, https://doi.org/10.5194/tc-15-909-2021, 2021.
Banwell, A. F., Wever, N., Dunmire, D., and Picard, G.: Quantifying Antarctic-wide ice-shelf surface melt volume using microwave and firn model data: 1980 to 2021, Geophys. Res. Lett., 50, e2023GL102744, https://doi.org/10.1029/2023GL102744, 2023.
Bassis, J. N., Berg, B., Crawford, A. J., and Benn, D. I.: Transition to marine ice cliff instability controlled by ice thickness gradients and velocity, Science, 372, 1342–1344, https://doi.org/10.1126/science.abf6271, 2021.
Bevan, S. L., Luckman, A. J., Kuipers Munneke, P., Hubbard, B., Kulessa, B., and Ashmore, D. W.: Decline in surface melt duration on Larsen C Ice Shelf revealed by the advanced scatterometer (ASCAT), Earth Space Sci., 5, 578–591, https://doi.org/10.1029/2018EA000421, 2018.
Bevan, S., Luckman, A., Hendon, H., and Wang, G.: The 2020 Larsen C Ice Shelf surface melt is a 40-year record high, The Cryosphere, 14, 3551–3564, https://doi.org/10.5194/tc-14-3551-2020, 2020.
Borstad, C. P., Rignot, E., Mouginot, J., and Schodlok, M. P.: Creep deformation and buttressing capacity of damaged ice shelves: theory and application to Larsen C ice shelf, The Cryosphere, 7, 1931–1947, https://doi.org/10.5194/tc-7-1931-2013, 2013.
Bozkurt, D., Rondanelli, R., Marin, J. C., and Garreaud, R.L: Foehn event triggered by an atmospheric river underlies record-setting temperature along continental Antarctica, J. Geophys. Res.-Atmos., 123, 3871–3892, https://doi.org/10.1002/2017JD027796, 2018.
Braun, M., Humbert, A., and Moll, A.: Changes of Wilkins Ice Shelf over the past 15 years and inferences on its stability, The Cryosphere, 3, 41–56, https://doi.org/10.5194/tc-3-41-2009, 2009.
Cape, M. R., Vernet, M., Skvarca, P., Marinsek, S., Scambos, T., and Domack, E.: Foehn winds link climate-driven warming to ice shelf evolution in Antarctica, J. Geophys. Res.-Atmos., 120, 11–37, https://doi.org/10.1002/2015JD023465, 2015.
Cassotto, R., Fahnestock, M., Amundson, J., Truffer, M., and Joughin, I.: Seasonal and interannual variations in ice mélange and its impact on terminus stability, Jakobshavn Isbræ, Greenland, J. Glaciol., 61, 76–88, https://doi.org/10.3189/2015JoG13J235, 2015.
Christie, F. D. W., Benham, T. J., Batchelor, C. L., Rack, W., Montelli, A., and Dowdeswell, J. A.: Antarctic ice-shelf advance driven by anomalous atmospheric and sea-ice circulation, Nat. Geosci., 15, 356–362, https://doi.org/10.1038/s41561-022-00938-x, 2022.
Cook, A. J. and Vaughan, D. G.: Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years, The Cryosphere, 4, 77–98, https://doi.org/10.5194/tc-4-77-2010, 2010.
Crawford, A. J., Benn, D. I., Todd, J., Åström, J. A., Bassis, J. N., and Zwinger, T.: Marine ice-cliff instability modelling shows mixed-mode ice-cliff failure and yields calving rate parameterization, Nat. Commun., 12, 2701, https://doi.org/10.1038/s41467-021-23070-7, 2021.
Crocker, G. and Wadhams, P.: Breakup of Antarctic fast ice, Cold Reg. Sci. Technol., 17, 61–76, https://doi.org/10.1016/S0165-232X(89)80016-3, 1989.
Datta, R. T., Tedesco, M., Fettweis, X., Agosta, C., Lhermitte, S., Lenaerts, J. T. M., and Wever, N.: The effect of Foehn-induced surface melt on firn evolution over the northeast Antarctic peninsula, Geophys. Res. Lett., 46, 3822–3831, https://doi.org/10.1029/2018GL080845, 2019.
De Rydt, J., Gudmundsson, G. H., Rott, H., and Bamber, J. L.: Modeling the instantaneous response of glaciers after the collapse of the Larsen B Ice Shelf, Geophys. Res. Lett., 42, 5355–5363, https://doi.org/10.1002/2015GL064355, 2015.
Doake, C. and Vaughan, D.: Rapid disintegration of the Wordie Ice Shelf in response to atmospheric warming, Nature, 350, 328–330, https://doi.org/10.1038/350328a0, 1991.
Durrant, T., Hemer, M., Smith, G., Trenham, C., and Greenslade, D.: CAWCR Wave Hindcast – Aggregated Collection. v5, CSIRO Service Collection [data set], http://hdl.handle.net/102.100.100/137152?index=1 (last access: 10 November 2022), 2019.
Fahnestock, M., Scambos, T., Moon, T., Gardner, A., Haran, T., and Klinger, M.: Rapid large-area mapping of ice flow using Landsat 8, Remote Sens. Environ., 185, 84–94, https://doi.org/10.1016/j.rse.2015.11.023, 2016.
Fogt, R. L., and Marshall, G. J.: The Southern Annular Mode: Variability, trends, and climate impacts across the Southern Hemisphere, Rev. Clim. Change, 11, 1–24, https://doi.org/10.1002/wcc.652, 2020.
Francis, D., Mattingly, K. S., Lhermitte, S., Temimi, M., and Heil, P.: Atmospheric extremes caused high oceanward sea surface slope triggering the biggest calving event in more than 50 years at the Amery Ice Shelf, The Cryosphere, 15, 2147–2165, https://doi.org/10.5194/tc-15-2147-2021, 2021.
Francis, D., Fonseca, R., Mattingly, K. S., Marsh, O. J., Lhermitte, S., and Cherif, C.: Atmospheric triggers of the Brunt Ice Shelf calving in February 2021, J. Geophys. Res.-Atmos., 127, e2021JD036424, https://doi.org/10.1029/2021JD036424, 2022.
Fraser, A. D., Massom, R. A., Handcock, M. S., Reid, P., Ohshima, K. I., Raphael, M. N., Cartwright, J., Klekociuk, A. R., Wang, Z., and Porter-Smith, R.: Eighteen-year record of circum-Antarctic landfast-sea-ice distribution allows detailed baseline characterisation and reveals trends and variability, The Cryosphere, 15, 5061–5077, https://doi.org/10.5194/tc-15-5061-2021, 2021.
Friedl, P., Weiser, F., Fluhrer, A., and Braun, M. H.: Remote sensing of glacier and ice sheet grounding lines: A review, Earth-Sci. Rev., 201, 102948, https://doi.org/10.1016/j.earscirev.2019.102948, 2020.
Gardner, A. S., Moholdt, G., Scambos, T., Fahnstock, M., Ligtenberg, S., van den Broeke, M., and Nilsson, J.: Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years, The Cryosphere, 12, 521–547, https://doi.org/10.5194/tc-12-521-2018, 2018.
Gilbert, E., and Kittel, C.: Surface melt and runoff on Antarctic ice shelves at 1.5 °C, 2 °C, and 4 °C of future warming, Geophys. Res. Lett., 48, e2020GL091733, https://doi.org/10.1029/2020GL091733, 2021.
Glasser, N. F. and Scambos, T. A.: A structural glaciological analysis of the 2002 Larsen B ice-shelf collapse, J. Glaciol., 54, 3–16, https://doi.org/10.3189/002214308784409017, 2008.
Glasser, N. F., Scambos, T. A., Bohlander, J., Truffer, M., Pettit, E., and Davies, B. J.: From ice-shelf tributary to tidewater glacier: continued rapid recession, acceleration and thinning of Röhss Glacier following the 1995 collapse of the Prince Gustav Ice Shelf, Antarctic Peninsula, J. Glaciol., 57, 397–406, https://doi.org/10.3189/002214311796905578, 2011.
Gomez-Fell, R., Rack, W., Purdie, H., and Marsh, O.: Parker Ice Tongue collapse, Antarctica, triggered by loss of stabilizing land-fast sea ice, Geophys. Res. Lett., 49, e2021GL096156, https://doi.org/10.1029/2021GL096156, 2022.
Greene, C. A., Young, D. A., Gwyther, D. E., Galton-Fenzi, B. K., and Blankenship, D. D.: Seasonal dynamics of Totten Ice Shelf controlled by sea ice buttressing, The Cryosphere, 12, 2869–2882, https://doi.org/10.5194/tc-12-2869-2018, 2018.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flem- ming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2023.
Hogenson, K., Kristenson, H., Kennedy, J., Johnston, A., Rine, J., Logan, T., Zhu, J., Williams, F., Herrmann, J., Smale, J., and Meyer, F.: Hybrid Pluggable Processing Pipeline (HyP3): A cloud-native infrastructure for generic processing of SAR data, Zenodo [software], https://doi.org/10.5281/zenodo.4646138, 2020.
Holmes, C. R., Bracegirdle, T. J., and Holland, P. R.: Antarctic sea ice projections constrained by historical ice cover and future global temperature change, Geophys. Res. Lett., 49, e2021GL097413, https://doi.org/10.1029/2021GL097413, 2022.
Howat, I., Porter C., Noh, M-J., Erik, H., Samuel, K., Danish, E., Tomko, K., Gardiner, J., Negrete, A., Yadav, B., Klassen, J., Kelleher, C., Cloutier, M., Bakker, J., Enos, J., Arnold, G., Bauer, G., Morin, P.: The Reference Elevation Model of Antarctica – Strips, Version 4.1, Harvard Dataverse [data set], https://doi.org/10.7910/DVN/X7NDNY, 2022.
Hulbe, C. L., Scambos, T. A., Youngberg, T., and Lamb, A. K.: Patterns of glacier response to disintegration of the Larsen B ice shelf, Antarctic Peninsula, Global Planet. Change, 63, 1–8, https://doi.org/10.1016/j.gloplacha.2008.04.001, 2008.
Khazendar, A., Rignot, E., and Larour, E.: Larsen B Ice Shelf rheology preceding its disintegration inferred by a control method, Geophys. Res. Lett., 34, L19503, https://doi.org/10.1029/2007GL030980, 2007.
King, J. C., Turner, J., Marshall, G. J., Connolley, W. M., and Lachlan-Cope, T. A.: Antarctic Peninsula climate variability and its causes as revealed by analysis of instrumental records, Antarct. Res. Ser., 79, 17–30, https://doi.org/10.1029/AR079p0017, 2003.
Kwon, H., Choi, H., Kim, B. M., Kim, S. W., and Kim, S. J.: Recent weakening of the southern stratospheric polar vortex and its impact on the surface climate over Antarctica, Environ. Res. Lett., 15, 094072, https://doi.org/10.1088/1748-9326/ab9d3d, 2020.
Laffin, M. K., Zender, C. S., van Wessem, M., and Marinsek, S.: The role of föhn winds in eastern Antarctic Peninsula rapid ice shelf collapse, The Cryosphere, 16, 1369–1381, https://doi.org/10.5194/tc-16-1369-2022, 2022.
Langhorne, P. J., Squire, V. A., Fox, C., and Haskell, T. G.: Lifetime estimation for a land-fast ice sheet subjected to ocean swell, Ann. Glaciol., 33, 333, https://doi.org/10.3189/172756401781818419, 2001.
Larour, E., Rignot, E., Poinelli, M., and Scheuchl, B.: Physical processes controlling the rifting of Larsen C Ice Shelf, Antarctica, prior to the calving of iceberg A68, P. Natl. Acad. Sci. USA, 118, e2105080118, https://doi.org/10.1073/pnas.2105080118, 2021.
Leeson, A. A., Van Wessem, J. M., Ligtenberg, S. R. M., Shepherd, A., Van den Broeke, M. R., Killick, R., Skvarca, P., Marinsek, S., and Colwell, S.: Regional climate of the Larsen B embayment 1980–2014, J. Glaciol., 63, 683–690, https://doi.org/10.1017/jog.2017.39, 2017.
Lei, Y., Gardner, A., and Agram, P.: Autonomous Repeat Image Feature Tracking (autoRIFT) and Its Application for Tracking Ice Displacement, Remote Sens., 13, 749, https://doi.org/10.3390/rs13040749, 2021.
Li, X., Cai, W., Meehl, G. A., Chen, D., Yuan, X., Raphael, M., Holland, D. M., Ding, Q., Fogt, R. L., Markle, B. R., Wang, G., Bromwich, D. H., Turner, J., Xie, S.-P., Steig, E. J., Gille, S. T., Xiao, C., Wu, B., Lazzara, M. A., Chen, X., Stammerjohn, S., Holland, P. R., Holland, M. M., Cheng, X., Price, S. F., Wang, Z., Bitz, C. M., Shi, J., Gerber, E. P., Liang, X., Goosse, H., Yoo, C., Ding, M., Geng, L., Xin, M., Li, C., Dou, T., Liu, C., Sun, W., Wang, X., and Song, C.: Tropical teleconnection impacts on Antarctic climate changes, Nat. Rev.Earth Environ., 2, 680–698, https://doi.org/10.1038/s43017-021-00204-5, 2021.
Liang, K., Wang, J., Luo, H., and Yang, Q.: The role of atmospheric rivers in Antarctic sea ice variations, Geophys. Res. Lett., 50, e2022GL102588, https://doi.org/10.1029/2022GL102588, 2023.
Massom, R. A., Giles, A. B., Fricker, H. A., Warner, R. C., Legrésy, B., Hyland, G., Young, N., and Fraser, A. D : Examining the interaction between multi-year fast ice and the Mertz Glacier Tongue, East Antarctica: Another factor in ice sheet stability?, J. Geophys. Res., 115, C12027, https://doi.org/10.1029/2009JC006083, 2010.
Massom, R. A., Scambos, T. A., Bennetts, L. G., Reid, P., Squire, V. A., and Stammerjohn, S. E.: Antarctic ice shelf disintegration triggered by sea ice loss and ocean swell, Nature, 558, 383–389, https://doi.org/10.1038/s41586-018-0212-1, 2018.
Matsuoka, K., Skoglund, A., Roth, G., de Pomereu, J., Griffiths, H., Headland, R., Herried, B., Katsumata, K., Le Brocq, A., Licht, K., Morgan, F., Neff, P. D., Ritz, C., Scheinert, M., Tamura, T., Van de Putte, A., van den Broeke, M., von De- schwanden, A., Deschamps-Berger, C., Van Liefferinge, B., Tronstad, S., and Melvær, Y.: Quantarctica, an integrated mapping environment for Antarctica, the Southern Ocean, and sub-Antarctic islands. Environmental Modelling & Software, 140, 105015, https://doi.org/10.1016/j.envsoft.2021.105015, 2021 (data available at: https://www.npolar.no/quantarctica/, last access: 13 March 2020).
Meehl, G. A., Arblaster, J. M., Bitz, C. M., Chung, C. T., and Teng, H.: Antarctic sea- ice expansion between 2000 and 2014 driven by tropical Pacific decadal climate variability, Nat. Geosci., 9, 590–595, https://doi.org/10.1038/ngeo2751, 2016.
Meier, W. N., Markus, T., and Comiso, J. C.: AMSR-E/AMSR2 Unified L3 Daily 12.5 km Brightness Temperatures, Sea Ice Concentration, Motion & Snow Depth Polar Grids, Version 1. Boulder, Colorado USA, NASA National Snow and Ice Data Center Distributed, Active Archive Center [data set], https://doi.org/10.5067/RA1MIJOYPK3P, 2018.
Melton, S. M., Alley, R. B., Anandakrishnan, S., Parizek, B. R., Shahin, M. G., Stearns, L. A., LeWinter, A. L., and Finnegan, D. C.: Meltwater drainage and iceberg calving observed in high-spatiotemporal resolution at Helheim Glacier, Greenland, J. Glaciol., 68, 812–828, https://doi.org/10.1017/jog.2021.141, 2022.
Mercer, J. H.: West Antarctic ice sheet and CO2 greenhouse effect: a threat of disaster, Nature, 271, 321–325, https://doi.org/10.1038/271321a0, 1978.
Miles, B. W. J., Stokes, C. R., and Jamieson, S. S. R.: Simultaneous disintegration of outlet glaciers in Porpoise Bay (Wilkes Land), East Antarctica, driven by sea ice break-up, The Cryosphere, 11, 427–442, https://doi.org/10.5194/tc-11-427-2017, 2017.
Miles, B. W. J., Stokes, C. R., and Jamieson, S. S. R.: Velocity increases at Cook Glacier, East Antarctica, linked to ice shelf loss and a subglacial flood event, The Cryosphere, 12, 3123–3136, https://doi.org/10.5194/tc-12-3123-2018, 2018.
Moon, T., Joughin, I., and Smith, B.: Seasonal to multiyear variability of glacier surface velocity, terminus position, and sea ice/ice mélange in northwest Greenland, J. Geophys. Res.-Earth Surf., 120, 818–833, https://doi.org/10.1002/2015JF003494, 2015.
Murray, T., Selmes, N., James, T. D., Edwards, S., Martin, I., O'Farrell, T., Aspey, R., Rutt, I., Nettles, M., and Baugé, T.: Dynamics of glacier calving at the ungrounded margin of Helheim Glacier, southeast Greenland, J. Geophys. Res.-Earth Surf., 120, 964–982, https://doi.org/10.1002/2015JF003531, 2015.
Murty, T. S.: Modification of hydrographic characteristics, tides, and normial modes by ice cover, Mar. Geod., 9, 451–468, https://doi.org/10.1080/15210608509379538, 1985.
NASA: WorldView, Earth Observing System Data and Information System (EOSDIS), Version 4.30.0, NASA [data set], https://worldview.earthdata.nasa.gov (last access: 1 January 2024), 2024.
Needell, C. and Holschuh, N.: Evaluating the retreat, arrest, and regrowth of Crane Glacier against marine ice cliff process models, Geophys. Res. Lett., 50, e2022GL102400, https://doi.org/10.1029/2022GL102400, 2023.
NSIDC: Operation IceBridge, NSIDC [data set], https://nsidc.org/data/icebridge, last access: 1 January 2024.
Ochwat, N.: NASA MODIS imagery time series, Copernicus Publications [video], https://doi.org/10.5446/66845, 2024.
Ochwat, N., Banwell, A., and Scambos, T.: Larsen B fast-ice breakout and initial glacier response, in: “State of the Climate 2023”. Antarctica and the Southern Ocean, B. Am. Meteorol. Soc., 104, S349–S351, https://doi.org/10.1175/BAMS-D-23-0077.1, 2023a.
Ochwat, N., Scambos, T., Fahnestock, M., and Stammerjohn, S.: Characteristics, recent evolution, and ongoing retreat of Hunt Fjord Ice Shelf, northern Greenland, J. Glaciol., 69, 57–70, https://doi.org/10.1017/jog.2022.44, 2023b.
Orr, A., Marshall, G. J., Hunt, J. C. R., Sommeria, J., Wang, C., van Lipzig, N. P. M., Cresswell, D., and King, J. C.: Characteristics of Summer Airflow over the Antarctic Peninsula in Response to Recent Strengthening of Westerly Circumpolar Winds, J. Atmos. Sci., 65, 1396–1413, https://doi.org/10.1175/2007JAS2498.1, 2008.
Parizek, B. R., Christianson, K., Alley, R. B., Voytenko, D., Vankova, I., Dixon, T. H., Walker, R. T., and Holland, D. M.: Ice-cliff failure via retrogressive slumping, Geology, 47, 449–452, https://doi.org/10.1130/G45880.1, 2019.
Pettit, E. C., Scambos, T., Truffer, M., Gudmundsson, H., and Luckman, A.: Fast-Ice/Ice-Shelf Interactions in the Larsen B Embayment. West Antarctic Ice Sheet Workshop, 5 October 2016, Sterling, VA, 2016.
Picard, G.: Snow status (wet/dry) in Antarctica from AMSR-E and AMSR2 passive microwave radiometers 2002–2023, PerSCiDO [data set], https://doi.org/10.18709/perscido.2023.04.ds391, 2023.
Picard, G., Fily, M., and Gallee, H.: Surface melting derived from microwave radiometers: A climatic indicator in Antarctica, Ann. Glaciol., 46, 29–34, https://doi.org/10.3189/172756407782871684, 2007.
Picard, G., Leduc-Leballeur, M., Banwell, A. F., Brucker, L., and Macelloni, G.: The sensitivity of satellite microwave observations to liquid water in the Antarctic snowpack, The Cryosphere, 16, 5061–5083, https://doi.org/10.5194/tc-16-5061-2022, 2022.
Rack, W. and Rott, H.: Pattern of retreat and disintegration of the Larsen B ice shelf, Antarctic Peninsula, Ann. Glaciol., 39, 505–510, https://doi.org/10.3189/172756404781814005, 2004.
Reeh, N., Thomsen, H., Higgins, A., and Weidick, A.: Sea ice and the stability of north and northeast Greenland floating glaciers, Ann. Glaciol., 33, 474–480, https://doi.org/10.3189/172756401781818554, 2001.
Reid, P. A. and Massom, R. A.: Change and variability in Antarctic coastal exposure, 1979–2020, Nat. Commun., 13, 1164, https://doi.org/10.1038/s41467-022-28676-z, 2022.
Rignot, E., Casassa, G., Gogineni, P., Krabill, W., Rivera, A., and Thomas, R.: Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf, Geophys. Res. Lett., 31, L18401, https://doi.org/10.1029/2004GL020697, 2004.
Robel, A. A.: Thinning sea ice weakens buttressing force of iceberg mélange and promotes calving, Nat. Commun., 8, 14596, https://doi.org/10.1038/ncomms14596, 2017.
Robinson, W. H. and Haskell, T. G.: Travelling flexural waves in the Erebus Glacier Tongue, McMurdo Sound, Antarctica, Cold Reg. Sci. Technol., 20, 289–293, https://doi.org/10.1016/0165-232X(92)90035-S, 1992.
Rott, H., Skvarca, P., and Nagler, T.: Rapid collapse of northern Larsen ice shelf, Antarct. Sci., 271, 788–792, https://doi.org/10.1126/science.271.5250.788, 1996.
Rott, H., Rack, W., Nagler, T., and Skvarca, P.: Climatically induced retreat and collapse of northern Larsen Ice Shelf, Antarctic Peninsula, Ann. Glaciol., 27, 86–92, https://doi.org/10.3189/S0260305500017262, 1998.
Rott, H., Abdel Jaber, W., Wuite, J., Scheiblauer, S., Floricioiu, D., van Wessem, J. M., Nagler, T., Miranda, N., and van den Broeke, M. R.: Changing pattern of ice flow and mass balance for glaciers discharging into the Larsen A and B embayments, Antarctic Peninsula, 2011 to 2016, The Cryosphere, 12, 1273–1291, https://doi.org/10.5194/tc-12-1273-2018, 2018.
Rott, H., Waite, J., De Rydt, J., Gudmundsson, G. H., Floricioiu, D., and Rack, W.: Impact of marine processes on flow dynamics of northern Antarctic Peninsula outlet glaciers, Nat Commun., 11, 2969, https://doi.org/10.1038/s41467-020-16658-y, 2020.
Scambos, T. A., Hulbe, C., Fahnestock, M., and Bohlander, J.: The link between climate warming and break-up of ice shelves in the Antarctic Peninsula, J. Glaciol., 46, 516–530, https://doi.org/10.3189/172756500781833043, 2000.
Scambos, T., Hulbe, C., and Fahnestock, M.: Climate-induced ice shelf disintegration in the Antarctic Peninsula, in: Antarctic Peninsula Climate Variability: Historical and Paleoenvironmental Perspectives. Antarctic Research Series, 79, edited by: Domack, E., Leventer, A., Burnett, A., Bindschadler, R., Convey, P., and Kirby, M., AGU, Washington, DC, 79–92, https://doi.org/10.1029/AR079p0079, 2003.
Scambos, T., Fricker, H. A., Liu, C. C., Bohlander, J., Fastook, J., Sargent, A., Massom, R., and Wu, A. M.: Ice shelf disintegration by plate bending and hydro-fracture: Satellite observations and model results of the 2008 Wilkins ice shelf break-ups, Earth Planet. Sc. Lett., 280, 51–60, https://doi.org/10.1016/j.epsl.2008.12.027, 2009.
Scambos, T., Moussavi, M. S., Abdalati, W., and Pettit, E. C.: December. Evolution of fast ice thickness from Cryosat-2 radar altimetry data, a case study in Scar Inlet, Antarctica, AGU Fall Meeting Abstracts, vol. 2017, C21G-1181, 2017.
Scambos, T. A., Bohlander, J. A., Shuman, C. A., and Skvarca, P.: Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica, Geophys. Res. Lett., 31, L18402, https://doi.org/10.1029/2004GL020670, 2004.
Scambos, T. A., Berthier, E., and Shuman, C. A.: The triggering of subglacial lake drainage during rapid glacier drawdown: Crane Glacier, Antarctic Peninsula, Ann. Glaciol., 52, 74–82, https://doi.org/10.3189/172756411799096204, 2011.
Scambos, T. A., Ross, R., Haran, T., Bauer, R., Ainley, D.G., Seo, K.W., De Keyser, M., Behar, A., and MacAyeal, D.R.: A camera and multisensor automated station design for polar physical and biological systems monitoring: AMIGOS, J. Glaciol., 59, 303–314, https://doi.org/10.3189/2013JoG12J170, 2013.
Seehaus, T., Sommer, C., Dethinne, T., and Malz, P.: Mass changes of the northern Antarctic Peninsula Ice Sheet derived from repeat bi-static synthetic aperture radar acquisitions for the period 2013–2017, The Cryosphere, 17, 4629–4644, https://doi.org/10.5194/tc-17-4629-2023, 2023.
Shields, C. A., Wille, J. D., Marquardt Collow, A. B., Maclennan, M., and Gorodetskaya, I. V.: Evaluating uncertainty and modes of variability for Antarctic atmospheric rivers, Geophys. Res. Lett., 49, e2022GL099577, https://doi.org/10.1029/2022GL099577, 2022.
Shuman, C., Scambos, T., and Berthier, E.: Ice loss processes in the Seal Nunataks ice shelf region from satellite altimetry and imagery, Ann. Glaciol., 57, 94–104, https://doi.org/10.1017/aog.2016.29, 2016.
Shuman, C. A., Berthier, E., and Scambos, T. A.: 2001–2009 Elevation and mass losses in the Larsen A and B embayments, Antarctic Peninsula, J. Glaciol., 57, 737–754, https://doi.org/10.3189/002214311797409811, 2011.
Skvarca, P., Rack, W., Rott, H., and Donángelo, T. I.: Climatic trend and the retreat and disintegration of ice shelves on the Antarctic Peninsula: an overview, Polar Res., 18, 151–157, 1999.
Smith, B., Fricker, H. A., Gardner, A. S., Medley, B., Nilsson, J., Paolo, F. S., Holschuh, N., Adusumilli, S., Brunt, K., Csatho, B., and Harbeck, K.: Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes, Science, 368, 239–1242, https://doi.org/10.1126/science.aaz5845, 2020.
Smith, B., Adusumilli, S., Csathó, B. M., Felikson, D., Fricker, H. A., Gardner, A., Holschuh, N., Lee, J., Nilsson, J., Paolo, F. S., Siegfried, M. R., Sutterley, T., and the ICESat-2 Science Team: ATLAS/ICESat-2 L3A Land Ice Height, Version 5, Boulder, Colorado USA, NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/ATLAS/ATL06.005, 2021.
Smith, B., Adusumilli, S., Csathó, B. M., Felikson, D., Fricker, H. A., Gardner, A., Holschuh, N., Lee, J., Nilsson, J., Paolo, F. S., Siegfried, M. R., Sutterley, T., and the ICESat-2 Science Team: ATLAS/ICESat-2 L3A Land Ice Height, Version 6, Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/ATLAS/ATL06.006, 2023.
Spreen, G., Kaleschke, L., and Heygster, G.: Sea ice remote sensing using AMSR-E 89 GHz channels, J. Geophys. Res., 113, C02S03, https://doi.org/10.1029/2005JC003384, 2008 (data available at: https://seaice.uni-bremen.de/sea-ice-concentration/amsre-amsr2, last access: 1 April 2023).
Squire, V. A.: Of ocean waves and sea-ice revisited, Cold Reg. Sci. Technol., 49, 110, https://doi.org/10.1016/j.coldregions.2007.04.007, 2007.
Studinger, M.: Pre-IceBridge ATM L1B Qfit Elevation and Return Strength, Version 1, Boulder, Colorado USA, NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/8Q93SAT2LG3Q, 2012.
Sun, Y., Riel, B., and Minchew, B.: Disintegration and buttressing effect of the landfast sea ice in the Larsen B embayment, Antarctic Peninsula, Geophys. Res. Lett., 50, e2023GL104066, https://doi.org/10.1029/2023GL104066, 2023.
Surawy-Stepney, T., Hogg, A. E., Cornford, S. L., Wallis, B. J., Davison, B. J., Selley, H. L., Slater, R. A. W., Lie, E. K., Jakob, L., Ridout, A. L., Gourmelen, N., Freer, B. I. D., Wilson, S. F., and Shepherd, A.: The impact of landfast sea ice buttressing on ice dynamic speedup in the Larsen-B Embayment, Antarctica, The Cryosphere Discuss. [preprint], https://doi.org/10.5194/tc-2023-128, in review, 2023.
Teder, N. J., Bennetts, L. G., Reid, P. A., and Massom, R. A.: Sea ice-free corridors for large swell to reach Antarctic ice shelves, Environ. Res. Lett., 17, 045026, https://doi.org/10.1088/1748-9326/ac5edd, 2022.
Torinesi, O., Fily, M., and Genthon, C.: Variability and Trends of the Summer Melt Period of Antarctic Ice Margins since 1980 from Microwave Sensors, J. Climate, 16, 1047–1060, https://doi.org/10.1175/1520-0442(2003)016<1047:VATOTS>2.0.CO;2, 2003.
Tuckett, P. A., Ely, J. C., Sole, A. J., Livingstone, S. J., Davison, B. J., and van Wessem, J. M.: Reply to: “Impact of marine processes on flow dynamics of northern Antarctic Peninsula outlet glaciers” by Rott et al., Nat. Commun., 11, 2970, https://doi.org/10.1038/s41467-020-16685-9, 2020.
Turner, J., Lu, H., White, I., King, J. C., Phillips, T., Hosking, J. S., Bracegirdle, T. J., Marshall, G. J., Mulvaney, R., and Deb, P.: Absence of 21st century warming on Antarctic Peninsula consistent with natural variability, Nature, 535, 411–415, https://doi.org/10.1038/nature18645, 2016.
Turner, J., Holmes, C., Caton Harrison, T., Phillips, T., Jena, B., Reeves-Francois, T., Fogt, R., Thomas, E. R., and Bajish, C.: Record low Antarctic sea ice cover in February 2022, Geophys. Res. Lett., 49, e2022GL098904, https://doi.org/10.1029/2022GL098904, 2022.
van Lipzig, N. P. M., Marshall, G. J., Orr, A., and King, J. C.: The Relationship between the Southern Hemisphere Annular Mode and Antarctic Peninsula Summer Temperatures: Analysis of a High-Resolution Model Climatology, J. Climate, 21, 1649–1668, https://doi.org/10.1175/2007JCLI1695.1, 2008.
Van Wessem, J. M., Reijmer, C. H., Van De Berg, W. J., van Den Broeke, M. R., Cook, A. J., Van Ulft, L. H., and Van Meijgaard, E.: Temperature and wind climate of the Antarctic Peninsula as simulated by a high-resolution Regional Atmospheric Climate Model, J. Climate, 28, 7306–7326, https://doi.org/10.1175/JCLI-D-15-0060.1, 2015.
Vaughan, D. G., Marshall, G. J., Connolley, W. M., Parkinson, C., Mulvaney, R., Hodgson, D. A., King, J. C., Pudsey, C. J., and Turner, J.: Recent Rapid Regional Climate Warming on the Antarctic Peninsula, Clim. Change, 60, 243–274, https://doi.org/10.1023/A:1026021217991, 2003.
Wellner, J. S., Scambos, T., Domack, E. W., Vernet, M., Leventer, A., Balco, G., Brachfeld, S., Cape, M. R., Huber, B., Ishman, S., and McCormick, M. L.: The Larsen ice shelf system, Antarctica (LARISSA): Polar systems bound together, changing fast, GSA Today, 29, 4–10, https://doi.org/10.1130/GSATG382A.1, 2019.
Wille, J. D., Favier, V., Dufour, A., Gorodetskaya, I. V., Turner, J., Agosta, C., and Codron, F.: West Antarctic surface melt triggered by atmospheric rivers, Nat. Geosci., 12, 911–916, https://doi.org/10.1038/s41561-019-0460-1, 2019.
Wille, J. D., Favier, V., Gorodetskaya, I. V., Agosta, C., Kittel, C., Beeman, J. C., Jourdain, N. C., Lenaerts, J. T. M., and Codron, F.: Antarctic atmospheric river climatology and precipitation impacts, J. Geophys.-Atmos., 126, e2020JD033788, https://doi.org/10.1029/2020JD033788, 2021.
Wille, J. D., Favier, V., Jourdain, N. C., Kittel, C., Turton, J. V., Agosta, C., Gorodetskaya, I. V., Picard, G., Codron, F., Santos, C. L.-D., Amory, C., Fettweis, X., Blanchet, J., Jomelli, V., and Berchet, A.: Intense atmospheric rivers can weaken ice shelf stability at the Antarctic Peninsula, Nat. Commun. Earth Environ., 3, 90, https://doi.org/10.1038/s43247-022-00422-9, 2022.
Wuite, J., Rott, H., Hetzenecker, M., Floricioiu, D., De Rydt, J., Gudmundsson, G. H., Nagler, T., and Kern, M.: Evolution of surface velocities and ice discharge of Larsen B outlet glaciers from 1995 to 2013, The Cryosphere, 9, 957–969, https://doi.org/10.5194/tc-9-957-2015, 2015.
Young, N., Turner, D., Hyland, G., and Williams, R.: Near-coastal iceberg distributions in East Antarctica, 50–145° E, Ann. Glaciol, 27, 68–74, https://doi.org/10.3189/1998AoG27-1-68-74, 1998.
Zagorodnov, V., Nagornov, O., Scambos, T. A., Muto, A., Mosley-Thompson, E., Pettit, E. C., and Tyuflin, S.: Borehole temperatures reveal details of 20th century warming at Bruce Plateau, Antarctic Peninsula, The Cryosphere, 6, 675–686, https://doi.org/10.5194/tc-6-675-2012, 2012.
Short summary
On the Antarctic Peninsula, there is a small bay that had sea ice fastened to the shoreline (
fast ice) for over a decade. The fast ice stabilized the glaciers that fed into the ocean. In January 2022, the fast ice broke away. Using satellite data we found that this was because of low sea ice concentrations and a high long-period ocean wave swell. We find that the glaciers have responded to this event by thinning, speeding up, and retreating by breaking off lots of icebergs at remarkable rates.
On the Antarctic Peninsula, there is a small bay that had sea ice fastened to the shoreline...