Articles | Volume 16, issue 3
https://doi.org/10.5194/tc-16-761-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-761-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Derivation of bedrock topography measurement requirements for the reduction of uncertainty in ice-sheet model projections of Thwaites Glacier
Blake A. Castleman
CORRESPONDING AUTHOR
Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, CA, USA
School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
Nicole-Jeanne Schlegel
Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, CA, USA
Lambert Caron
Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, CA, USA
Eric Larour
Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, CA, USA
Ala Khazendar
Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, CA, USA
Related authors
No articles found.
Alamgir Hossan, Andreas Colliander, Nicole-Jeanne Schlegel, Joel Harper, Lauren Andrews, Jana Kolassa, Julie Z. Miller, and Richard Cullather
EGUsphere, https://doi.org/10.5194/egusphere-2025-2681, https://doi.org/10.5194/egusphere-2025-2681, 2025
Short summary
Short summary
Microwave L-band radiometry offers a promising tool for estimating the total surface-to-subsurface liquid water amount (LWA) in the snow and firn in polar ice sheets. An accurate modelling of wet snow effective permittivity is a key to this. Here, we evaluated the performance of ten commonly used microwave dielectric mixing models for estimating LWA in the percolation zone of the Greenland Ice Sheet to help an appropriate choice of dielectric mixing model for LWA retrieval algorithms.
Lambert Caron, Erik Ivins, Eric Larour, Surendra Adhikari, and Laurent Metivier
EGUsphere, https://doi.org/10.5194/egusphere-2024-3414, https://doi.org/10.5194/egusphere-2024-3414, 2025
Short summary
Short summary
Presented here is a new model of the solid-Earth response to tides and mass changes in ice sheets, oceans, and groundwater, in of terms of gravity change and bedrock motion. The model is capable simulating mantle deformation including elasticity, transient and steady-state viscous flow. We detail our approach to numerical optimization, and report the accuracy of results with respect to community benchmarks. The resulting coupled system features kilometer-scale resolution and fast computation.
Luc Houriez, Eric Larour, Lambert Caron, Nicole-Jeanne Schlegel, Surendra Adhikari, Erik Ivins, Tyler Pelle, Hélène Seroussi, Eric Darve, and Martin Fischer
EGUsphere, https://doi.org/10.5194/egusphere-2024-4136, https://doi.org/10.5194/egusphere-2024-4136, 2025
Short summary
Short summary
We studied how interactions between the ice sheet and the Earth’s evolving surface affect the future of Thwaites Glacier in Antarctica. We find that small features in the bedrock play a major role in these interactions which can delay the glacier’s retreat by decades or even centuries. This can significantly reduce sea-level rise projections. Our work highlights resolution requirements for similar ice—earth models, and the importance of bedrock mapping efforts in Antarctica.
Alamgir Hossan, Andreas Colliander, Baptiste Vandecrux, Nicole-Jeanne Schlegel, Joel Harper, Shawn Marshall, and Julie Z. Miller
EGUsphere, https://doi.org/10.5194/egusphere-2024-2563, https://doi.org/10.5194/egusphere-2024-2563, 2024
Short summary
Short summary
We used L-band observations from the SMAP mission to quantify the surface and subsurface liquid water amounts (LWA) in the percolation zone of the Greenland ice sheet. The algorithm is described, and the validation results are provided. The results demonstrate the potential for creating an LWA data product across GrIS, which will advance our understanding of ice sheet physical processes for better projection of Greenland’s contribution to global sea level rise.
Youngmin Choi, Helene Seroussi, Mathieu Morlighem, Nicole-Jeanne Schlegel, and Alex Gardner
The Cryosphere, 17, 5499–5517, https://doi.org/10.5194/tc-17-5499-2023, https://doi.org/10.5194/tc-17-5499-2023, 2023
Short summary
Short summary
Ice sheet models are often initialized using snapshot observations of present-day conditions, but this approach has limitations in capturing the transient evolution of the system. To more accurately represent the accelerating changes in glaciers, we employed time-dependent data assimilation. We found that models calibrated with the transient data better capture past trends and more accurately reproduce changes after the calibration period, even with limited observations.
Hélène Seroussi, Vincent Verjans, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Peter Van Katwyk, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 17, 5197–5217, https://doi.org/10.5194/tc-17-5197-2023, https://doi.org/10.5194/tc-17-5197-2023, 2023
Short summary
Short summary
Mass loss from Antarctica is a key contributor to sea level rise over the 21st century, and the associated uncertainty dominates sea level projections. We highlight here the Antarctic glaciers showing the largest changes and quantify the main sources of uncertainty in their future evolution using an ensemble of ice flow models. We show that on top of Pine Island and Thwaites glaciers, Totten and Moscow University glaciers show rapid changes and a strong sensitivity to warmer ocean conditions.
Fernando S. Paolo, Alex S. Gardner, Chad A. Greene, Johan Nilsson, Michael P. Schodlok, Nicole-Jeanne Schlegel, and Helen A. Fricker
The Cryosphere, 17, 3409–3433, https://doi.org/10.5194/tc-17-3409-2023, https://doi.org/10.5194/tc-17-3409-2023, 2023
Short summary
Short summary
We report on a slowdown in the rate of thinning and melting of West Antarctic ice shelves. We present a comprehensive assessment of the Antarctic ice shelves, where we analyze at a continental scale the changes in thickness, flow, and basal melt over the past 26 years. We also present a novel method to estimate ice shelf change from satellite altimetry and a time-dependent data set of ice shelf thickness and basal melt rates at an unprecedented resolution.
Mattia Poinelli, Michael Schodlok, Eric Larour, Miren Vizcaino, and Riccardo Riva
The Cryosphere, 17, 2261–2283, https://doi.org/10.5194/tc-17-2261-2023, https://doi.org/10.5194/tc-17-2261-2023, 2023
Short summary
Short summary
Rifts are fractures on ice shelves that connect the ice on top to the ocean below. The impact of rifts on ocean circulation below Antarctic ice shelves has been largely unexplored as ocean models are commonly run at resolutions that are too coarse to resolve the presence of rifts. Our model simulations show that a kilometer-wide rift near the ice-shelf front modulates heat intrusion beneath the ice and inhibits basal melt. These processes are therefore worthy of further investigation.
Alex S. Gardner, Nicole-Jeanne Schlegel, and Eric Larour
Geosci. Model Dev., 16, 2277–2302, https://doi.org/10.5194/gmd-16-2277-2023, https://doi.org/10.5194/gmd-16-2277-2023, 2023
Short summary
Short summary
This is the first description of the open-source Glacier Energy and Mass Balance (GEMB) model. GEMB models the ice sheet and glacier surface–atmospheric energy and mass exchange, as well as the firn state. The model is evaluated against the current state of the art and in situ observations and is shown to perform well.
Inès N. Otosaka, Andrew Shepherd, Erik R. Ivins, Nicole-Jeanne Schlegel, Charles Amory, Michiel R. van den Broeke, Martin Horwath, Ian Joughin, Michalea D. King, Gerhard Krinner, Sophie Nowicki, Anthony J. Payne, Eric Rignot, Ted Scambos, Karen M. Simon, Benjamin E. Smith, Louise S. Sørensen, Isabella Velicogna, Pippa L. Whitehouse, Geruo A, Cécile Agosta, Andreas P. Ahlstrøm, Alejandro Blazquez, William Colgan, Marcus E. Engdahl, Xavier Fettweis, Rene Forsberg, Hubert Gallée, Alex Gardner, Lin Gilbert, Noel Gourmelen, Andreas Groh, Brian C. Gunter, Christopher Harig, Veit Helm, Shfaqat Abbas Khan, Christoph Kittel, Hannes Konrad, Peter L. Langen, Benoit S. Lecavalier, Chia-Chun Liang, Bryant D. Loomis, Malcolm McMillan, Daniele Melini, Sebastian H. Mernild, Ruth Mottram, Jeremie Mouginot, Johan Nilsson, Brice Noël, Mark E. Pattle, William R. Peltier, Nadege Pie, Mònica Roca, Ingo Sasgen, Himanshu V. Save, Ki-Weon Seo, Bernd Scheuchl, Ernst J. O. Schrama, Ludwig Schröder, Sebastian B. Simonsen, Thomas Slater, Giorgio Spada, Tyler C. Sutterley, Bramha Dutt Vishwakarma, Jan Melchior van Wessem, David Wiese, Wouter van der Wal, and Bert Wouters
Earth Syst. Sci. Data, 15, 1597–1616, https://doi.org/10.5194/essd-15-1597-2023, https://doi.org/10.5194/essd-15-1597-2023, 2023
Short summary
Short summary
By measuring changes in the volume, gravitational attraction, and ice flow of Greenland and Antarctica from space, we can monitor their mass gain and loss over time. Here, we present a new record of the Earth’s polar ice sheet mass balance produced by aggregating 50 satellite-based estimates of ice sheet mass change. This new assessment shows that the ice sheets have lost (7.5 x 1012) t of ice between 1992 and 2020, contributing 21 mm to sea level rise.
Joshua K. Cuzzone, Nicolás E. Young, Mathieu Morlighem, Jason P. Briner, and Nicole-Jeanne Schlegel
The Cryosphere, 16, 2355–2372, https://doi.org/10.5194/tc-16-2355-2022, https://doi.org/10.5194/tc-16-2355-2022, 2022
Short summary
Short summary
We use an ice sheet model to determine what influenced the Greenland Ice Sheet to retreat across a portion of southwestern Greenland during the Holocene (about the last 12 000 years). Our simulations, constrained by observations from geologic markers, show that atmospheric warming and ice melt primarily caused the ice sheet to retreat rapidly across this domain. We find, however, that iceberg calving at the interface where the ice meets the ocean significantly influenced ice mass change.
Kevin Bulthuis and Eric Larour
Geosci. Model Dev., 15, 1195–1217, https://doi.org/10.5194/gmd-15-1195-2022, https://doi.org/10.5194/gmd-15-1195-2022, 2022
Short summary
Short summary
We present and implement a stochastic solver to sample spatially and temporal varying uncertain input parameters in the Ice-sheet and Sea-level System Model, such as ice thickness or surface mass balance. We represent these sources of uncertainty using Gaussian random fields with Matérn covariance function. We generate random samples of this random field using an efficient computational approach based on solving a stochastic partial differential equation.
Daniel Cheng, Wayne Hayes, Eric Larour, Yara Mohajerani, Michael Wood, Isabella Velicogna, and Eric Rignot
The Cryosphere, 15, 1663–1675, https://doi.org/10.5194/tc-15-1663-2021, https://doi.org/10.5194/tc-15-1663-2021, 2021
Short summary
Short summary
Tracking changes in Greenland's glaciers is important for understanding Earth's climate, but it is time consuming to do so by hand. We train a program, called CALFIN, to automatically track these changes with human levels of accuracy. CALFIN is a special type of program called a neural network. This method can be applied to other glaciers and eventually other tracking tasks. This will enhance our understanding of the Greenland Ice Sheet and permit better models of Earth's climate.
Eric Larour, Lambert Caron, Mathieu Morlighem, Surendra Adhikari, Thomas Frederikse, Nicole-Jeanne Schlegel, Erik Ivins, Benjamin Hamlington, Robert Kopp, and Sophie Nowicki
Geosci. Model Dev., 13, 4925–4941, https://doi.org/10.5194/gmd-13-4925-2020, https://doi.org/10.5194/gmd-13-4925-2020, 2020
Short summary
Short summary
ISSM-SLPS is a new projection system for future sea level that increases the resolution and accuracy of current projection systems and improves the way uncertainty is treated in such projections. This will pave the way for better inclusion of state-of-the-art results from existing intercomparison efforts carried out by the scientific community, such as GlacierMIP2 or ISMIP6, into sea-level projections.
Heiko Goelzer, Sophie Nowicki, Anthony Payne, Eric Larour, Helene Seroussi, William H. Lipscomb, Jonathan Gregory, Ayako Abe-Ouchi, Andrew Shepherd, Erika Simon, Cécile Agosta, Patrick Alexander, Andy Aschwanden, Alice Barthel, Reinhard Calov, Christopher Chambers, Youngmin Choi, Joshua Cuzzone, Christophe Dumas, Tamsin Edwards, Denis Felikson, Xavier Fettweis, Nicholas R. Golledge, Ralf Greve, Angelika Humbert, Philippe Huybrechts, Sebastien Le clec'h, Victoria Lee, Gunter Leguy, Chris Little, Daniel P. Lowry, Mathieu Morlighem, Isabel Nias, Aurelien Quiquet, Martin Rückamp, Nicole-Jeanne Schlegel, Donald A. Slater, Robin S. Smith, Fiamma Straneo, Lev Tarasov, Roderik van de Wal, and Michiel van den Broeke
The Cryosphere, 14, 3071–3096, https://doi.org/10.5194/tc-14-3071-2020, https://doi.org/10.5194/tc-14-3071-2020, 2020
Short summary
Short summary
In this paper we use a large ensemble of Greenland ice sheet models forced by six different global climate models to project ice sheet changes and sea-level rise contributions over the 21st century.
The results for two different greenhouse gas concentration scenarios indicate that the Greenland ice sheet will continue to lose mass until 2100, with contributions to sea-level rise of 90 ± 50 mm and 32 ± 17 mm for the high (RCP8.5) and low (RCP2.6) scenario, respectively.
Hélène Seroussi, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 14, 3033–3070, https://doi.org/10.5194/tc-14-3033-2020, https://doi.org/10.5194/tc-14-3033-2020, 2020
Short summary
Short summary
The Antarctic ice sheet has been losing mass over at least the past 3 decades in response to changes in atmospheric and oceanic conditions. This study presents an ensemble of model simulations of the Antarctic evolution over the 2015–2100 period based on various ice sheet models, climate forcings and emission scenarios. Results suggest that the West Antarctic ice sheet will continue losing a large amount of ice, while the East Antarctic ice sheet could experience increased snow accumulation.
Cited articles
Abry, P.: Ondelettes et turbulence, Diderot, Paris, 268, ISBN 2841340643 9782841340644, 1997.
Alevropoulos-Borrill, A. V., Nias, I. J., Payne, A. J., Golledge, N. R., and Bingham, R. J.: Ocean-forced evolution of the Amundsen Sea catchment, West Antarctica, by 2100, The Cryosphere, 14, 1245–1258, https://doi.org/10.5194/tc-14-1245-2020, 2020.
Barletta, V. R., Bevis, M., Smith, B. E., Wilson, T., Brown, A., Bordoni, A.,
Willis, M., Khan, S. A., Rovira-Navarro, M., Dalziel, I., Smalley Jr., R.,
Kendrick, E., Konfal, S., Caccamise 2nd, D. J., Aster, R. C., Nyblade, A.,
and Wiens, D. A.: Observed rapid bedrock uplift in Amundsen Sea Embayment
promotes ice-sheet stability, Science, 360, 1335–1339, https://doi.org/10.1126/science.aao1447, 2018.
Bingham, R. G., Vaughan, D. G., King, E. C., Davies, D., Cornford, S. L.,
Smith, A. M., Arthern, R. J., Brisbourne, A. M., De Rydt, J., Graham, A. G. C.,
Spagnolo, M., Marsh, O. J., and Shean, D. E.: Diverse landscapes beneath Pine
Island Glacier influence ice flow, Nat. Commun., 8, 1618,
https://doi.org/10.1038/s41467-017-01597-y, 2017.
Blatter, H.: Velocity and stress fields in grounded glaciers: A simple
algorithm for including deviatoric stress gradients, J. Glaciol.,
41, 333–344. https://doi.org/10.3189/S002214300001621X, 1995.
Bondzio, J. H., Morlighem, M., Seroussi, H., Wood, M., and Mouginot, J.:
Control of ocean temperature on Jakobshavn Isbræ's present and future
mass loss, Geophys. Res. Lett., 45, 12912–12921,
https://doi.org/10.1029/2018GL079827, 2018.
Boon, X. Y. R.: Basal roughness at upper Thwaites glacier, The Pennsylvania State University, The Graduate
School, Department of Geosciences, PhD thesis, https://www.semanticscholar.org/paper/The-Pennsylvania-State-University-The-Graduate-of-A-Boon/91c0d8754cad68731b841deb0239a767d6495351 (last access: 3 February 2022), 2011.
Bulthuis, K., Arnst, M., Sun, S., and Pattyn, F.: Uncertainty quantification of the multi-centennial response of the Antarctic ice sheet to climate change, The Cryosphere, 13, 1349–1380, https://doi.org/10.5194/tc-13-1349-2019, 2019.
Castleman, B. A.: Thwaites Glacier bedrock topography
measurement requirement characterization code, Zenodo [code],
https://doi.org/10.5281/zenodo.6325925, 2021.
Chu, W., Hilger, A. M., Culberg, R., Schroeder, D. M., Jordan, T. M., Seroussi,
H., Young, D. A., Blankenship, D. D., and Vaughan, D. G.: Multisystem synthesis of
radar sounding observations of the Amundsen Sea sector from the 2004–2005
field season, J. Geophys. Res.-Earth Surf., 126, e2021JF006296,
https://doi.org/10.1029/2021JF006296, 2021.
Daubechies, I.: Ten Lectures on Wavelets, CBMS-NSF conference series in
applied mathematics, SIAM Ed., https://doi.org/10.1137/1.9781611970104,
1992.
de Klerk, D. and Voormeeren, S.: Uncertainty Propagation in Experimental Dynamic Substructuring, Proceedings of the Twenty Sixth International Modal Analysis Conference, Society for Experimental Mechanics Paper 133,
https://www.researchgate.net/profile/Dennis-Klerk/publication/228927490_Uncertainty_propagation_in_experimental_dynamic_substructuring/links/5512b62e0cf268a4aaead8b8/Uncertainty-propagation-in-experimental-dynamic-substructuring.pdf (last access: June 2021), February 2008.
Edwards, T. L., Nowicki, S., Marzeion, B., Hock, R., Goelzer, H., Seroussi, H.,
Jourdain, N. C., Slater, D., Turner, F., Smith, C. J., McKenna, C. M., Simon, E.,
Abe-Ouchi, A., Gregory, J. M., Larour, E., Lipscomb, W. H., Payne, A. J.,
Shepherd, A., Agosta, C., Alexander, P., Albrecht, T., Anderson, B., Asay-Davis, X., Aschwanden, A., Barthel, A., Bliss, A., Calov, R., Chambers, C.,
Champollion, N., Choi, Y., Cullather, R., Cuzzone, J., Dumas, C., Felikson, D.,
Fettweis, X., Fujita, K., Galton-Fenzi, B. K., Gladstone, R., Golledge, N. R.,
Greve, R., Hattermann, T., Hoffman, M. J., Humbert, A., Huss, M., Huybrechts,
P., Immerzeel, W., Kleiner, T., Kraaijenbrink, P., Le clec'h, S., Lee, V., Leguy,
G. R., Little, C. M., Lowry, D. P., Malles, J.-H., Martin, D. F., Maussion, F.,
Morlighem, M., O'Neill, J. F., Nias, I., Pattyn, F., Pelle, T., Price, S., Quiquet,
A., Radić, V., Reese, R., Rounce, D. R., Ruckamp, M., Sakai, A., Shafer, C.,
Schlegel, N.-J., Shannon, S., Smith, R. S., Straneo, F., Sun, S., Tarasov, L.,
Trusel, L. D., Breedam, J. V., van de Wal, R., van den Broeke, M., Winkelmann,
R., Zekollari, H., Zhao, C., Zhang, T., and Zwinger, T.: Projected land ice
contributions to twenty-first-century sea level rise, Nature, 593, 74–82,
https://doi.org/10.1038/s41586-021-03302-y, 2021.
Eldred, M. S., Adams, B. M., Gay, D. M., Swiler, L. P., Haskell, K.,
Bohnhoff, W. J., Eddy, J. P., Hart, W. E., Watson, J.-P., Hough, P. D., and
Kolda, T. G.: DAKOTA, A Multilevel Parallel Object-Oriented Framework for
Design Optimization, Parameter Estimation, Uncertainty Quantification, and
Sensitivity Analysis, Version 4.2 User's Manual, Technical Report SAND 2006–6337, Tech. rep., Sandia National Laboratories, Albuquerque, NM, USA, 2008.
Favier, L., Jourdain, N. C., Jenkins, A., Merino, N., Durand, G., Gagliardini, O., Gillet-Chaulet, F., and Mathiot, P.: Assessment of sub-shelf melting parameterisations using the ocean–ice-sheet coupled model NEMO(v3.6)–Elmer/Ice(v8.3) , Geosci. Model Dev., 12, 2255–2283, https://doi.org/10.5194/gmd-12-2255-2019, 2019.
Fretwell, P., Pritchard, H. D., Vaughan, D. G., Bamber, J. L., Barrand, N. E., Bell, R., Bianchi, C., Bingham, R. G., Blankenship, D. D., Casassa, G., Catania, G., Callens, D., Conway, H., Cook, A. J., Corr, H. F. J., Damaske, D., Damm, V., Ferraccioli, F., Forsberg, R., Fujita, S., Gim, Y., Gogineni, P., Griggs, J. A., Hindmarsh, R. C. A., Holmlund, P., Holt, J. W., Jacobel, R. W., Jenkins, A., Jokat, W., Jordan, T., King, E. C., Kohler, J., Krabill, W., Riger-Kusk, M., Langley, K. A., Leitchenkov, G., Leuschen, C., Luyendyk, B. P., Matsuoka, K., Mouginot, J., Nitsche, F. O., Nogi, Y., Nost, O. A., Popov, S. V., Rignot, E., Rippin, D. M., Rivera, A., Roberts, J., Ross, N., Siegert, M. J., Smith, A. M., Steinhage, D., Studinger, M., Sun, B., Tinto, B. K., Welch, B. C., Wilson, D., Young, D. A., Xiangbin, C., and Zirizzotti, A.: Bedmap2: improved ice bed, surface and thickness datasets for Antarctica, The Cryosphere, 7, 375–393, https://doi.org/10.5194/tc-7-375-2013, 2013.
Gillet-Chaulet, F., Gagliardini, O., Seddik, H., Nodet, M., Durand, G., Ritz, C., Zwinger, T., Greve, R., and Vaughan, D. G.: Greenland ice sheet contribution to sea-level rise from a new-generation ice-sheet model, The Cryosphere, 6, 1561–1576, https://doi.org/10.5194/tc-6-1561-2012, 2012.
Hendrickson, B. and Leland, R.: The Chaco user's guide, version 2.0,
Technical Report SAND-95-2344, Tech. rep., Sandia National Laboratories,
Albuquerque, NM, USA, 1995.
Hindmarsh, R.: A numerical comparison of approximations to the Stokes
equations used in ice sheet and glacier modeling, J. Geophys. Res., 109,
1–15, https://doi.org/10.1029/2003JF000065, 2004.
Holland, D. M. and Jenkins, A.: Modeling Thermodynamic Ice–Ocean Interactions at the Base of an Ice Shelf, J. Phys. Oceanogr., 29, 1787–1800, https://doi.org/10.1175/1520-0485(1999)029<1787:MTIOIA>2.0.CO;2, 1999.
Holschuh, N., Christianson, K., Paden, J., Alley, R. B., and Anandakrishnan, S.:
Linking postglacial landscapes to glacier dynamics using swath radar at
Thwaites Glacier, Antarctica, Geology, 48, 268–272, https://doi.org/10.1130/G46772.1, 2020.
Holt, J. W., Blankenship, D. D., Morse, D. L., Young, D. A., Peters, M. E.,
Kempf, S. D., Richter, T. G., Vaughan, D. G., and Corr, H. F. J.: New
boundary conditions for the West Antarctic Ice Sheet: Subglacial topography
of the Thwaites and Smith glacier catchments, Geophys. Res. Lett.,
33, L09502, https://doi.org/10.1029/2005GL025561, 2006.
Khazendar, A., Fenty, I. G., Carroll, D., Gardner, A., Lee, C. M., Fukumori,
I., Wang, O., Zhang, H., Seroussi, H., Moller,
D., Noel, B. P. Y., Van Den Broeke, M. R., Dinardo, S., and Willis, J.:
Interruption of two decades of Jakobshavn Isbrae
acceleration and thinning as regional ocean cools, Nat. Geosci., 12, 277,
https://doi.org/10.1038/s41561-019-0329-3, 2019.
Koellner, S., Parizek, B., Alley, R., Muto, A., and Holschuh, N.: The
Impact of Spatially-Variable Basal Properties on Outlet Glacier Flow,
Earth Planet. Sc. Lett., 515, 200–208,
https://doi.org/10.1016/j.epsl.2019.03.026, 2019.
Kyrke-Smith, T. M., Gudmundsson, G. H., and Farrell, P. E.: Relevance of Detail
in Basal Topography for Basal Slipperiness Inversions: A Case Study on Pine
Island Glacier, Antarctica, Front. Earth Sci., 6, 33,
https://doi.org/10.3389/feart.2018.00033, 2018.
Larour, E. and Schlegel, N.: On ISSM and leveraging the Cloud towards faster
quantification of the uncertainty in ice- sheet mass balance projections,
Comp. Geosci., 96, 193–201, https://doi.org/10.1016/j.cageo.2016.08.007,
2016.
Larour, E., Schiermeier, J., Rignot, E., Seroussi, H., Morlighem, M., and
Paden, J.: Sensitivity Analysis of Pine Island Glacier ice flow using ISSM
and DAKOTA, J. Geophys. Res., 117, F02009,
https://doi.org/10.1029/2011JF002146, 2012a.
Larour, E., Seroussi, H., Morlighem, M., and Rignot, E.: Continental scale,
high order, high spatial resolution, ice sheet modeling using the Ice Sheet
System Model (ISSM), J. Geophys. Res., 117, F01022,
https://doi.org/10.1029/2011JF002140, 2012b.
Larour, E., Seroussi, H., Adhikari, S., Ivins, E., Caron, L., Morlighem, M.,
and Schlegel, N.: Slowdown in Antarctic mass loss from solid Earth and
sea-level feedbacks, Science, 364, eaav7908, https://doi.org/10.1126/science.aav7908, 2019.
Levermann, A., Winkelmann, R., Albrecht, T., Goelzer, H., Golledge, N. R., Greve, R., Huybrechts, P., Jordan, J., Leguy, G., Martin, D., Morlighem, M., Pattyn, F., Pollard, D., Quiquet, A., Rodehacke, C., Seroussi, H., Sutter, J., Zhang, T., Van Breedam, J., Calov, R., DeConto, R., Dumas, C., Garbe, J., Gudmundsson, G. H., Hoffman, M. J., Humbert, A., Kleiner, T., Lipscomb, W. H., Meinshausen, M., Ng, E., Nowicki, S. M. J., Perego, M., Price, S. F., Saito, F., Schlegel, N.-J., Sun, S., and van de Wal, R. S. W.: Projecting Antarctica's contribution to future sea level rise from basal ice shelf melt using linear response functions of 16 ice sheet models (LARMIP-2), Earth Syst. Dynam., 11, 35–76, https://doi.org/10.5194/esd-11-35-2020, 2020.
Lhermitte, S., Sun, S., Shuman, C., Wouters, B., Pattyn, F., Wuite, J.,
Berthier, E., and Nagler, T.: Damage accelerates ice shelf instability and
mass loss in Amundsen Sea Embayment, P. Natl. Acad. Sci. USA, 117, 24735–24741,
https://doi.org/10.1073/pnas.1912890117, 2020.
MacAyeal, D.: Large-scale ice flow over a viscous basal sediment: Theory and
application to Ice Stream B, Antarctica, J. Geophys. Res., 94,
4071–4087, https://doi.org/10.1029/JB094iB04p04071, 1989.
Mackie, E. and Schroeder, D. M.: Paleo Observations Used to
Geostatistically Simulate the Subglacial Geology of Thwaites Glacier, AGUFM,
2019, C51A-03, 2019.
Mallat, S. G.: A Theory for Multiresolution Signal Decomposition: The
Wavelet Representation, IEEE T. Pattern Anal., 11, 674–693,
https://doi.org/10.1109/34.192463, 1989.
Marshall, S. and Clarke, G.: A continuum mixture model of ice stream
thermomechanics in the Laurentide Ice Sheet .2. Application to the Hudson
Strait Ice Stream, J. Geophys. Res.-Sol. Ea., 102, 20615–20637,
https://doi.org/10.1029/97JB01189, 1997.
Meyer, Y.: Ondelettes et opérateurs: Ondelettes [Wavelets and Operators], translated by: Salinger, D. H., Cambridge University Press, Cambridge,
UK, Hermann, ISBN
9782705661250, 1995.
Milillo, P., Rignot, E., Rizzoli, P., Scheuchl, B., Mouginot, J., Bueso-Bello, J., and Prats-Iraola,
P.:
Heterogeneous retreat and ice melt of Thwaites Glacier, West Antarctica,
Sci. Adv., 5, eaau3433, https://doi.org/10.1126/sciadv.aau3433, 2019.
Morlighem, M.: MEaSUREs BedMachine Antarctica, Version 2, Boulder, Colorado USA, NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/E1QL9HFQ7A8M, 2020.
Morlighem, M., Rignot, E., Seroussi, H., Larour, E., Ben Dhia, H., and
Aubry, D.: Spatial patterns of basal drag inferred using control methods
from a full-Stokes and simpler models for Pine Island Glacier, West
Antarctica, Geophys. Res. Lett., 37, 1–6,
https://doi.org/10.1029/2010GL043853, 2010.
Morlighem, M., Rignot, E., Binder, T., Blankenship, D. D., Drews, R., Eagles, G., Eisen,
O., Ferraccioli, F., Forsberg, R., Fretwell, P., Goel, V.,
Greenbaum, J. S., Gudmundsson, H., Guo, J., Helm, V., Hofstede, C., Howat, I.,
Humbert, A., Jokat, W., Karlsson, N. B., Lee, W., Matsuoka, K., Millan, R.,
Mouginot, J., Paden, J., Pattyn, F., Roberts, J. L., Rosier, S., Ruppel, A.,
Seroussi, H., Smith, E. C., Steinhage, D., Sun, B., van den Broeke, M. R., van
Ommen, T., van Wessem, M., and Young, D. A.: Deep glacial troughs and stabilizing
ridges unveiled beneath the margins of the Antarctic ice sheet, Nat.
Geosci., 13, 132–137, https://doi.org/10.1038/s41561-019-0510-8, 2020.
Nakayama, Y., Manucharyan, G., Zhang, H., Dutrieux, P., Torres, H. S.,
Klein, P., Seroussi, H., Schodlok, M., Rignot, E., and Menemenlis, D.:
Pathways of ocean heat towards Pine Island and Thwaites grounding lines.
Sci. Rep.-UK, 9, 16649, https://doi.org/10.1038/s41598-019-53190-6,
2019.
National Academies of Sciences: Engineering, and Medicine. Thriving on Our
Changing Planet: A Decadal Strategy for Earth Observation from Space, The National Academies Press,
Washington, D.C., https://doi.org/10.17226/24938, 2018.
Nias, I., Cornford, S., and Payne, A.: Contrasting the modelled sensitivity
of the Amundsen Sea Embayment ice streams, J. Glaciol., 62,
552–562, https://doi.org/10.1017/jog.2016.40, 2016.
Onofrey, J.: Shaded Plots and Statistical Distribution Visualizations,
MATLAB Central File Exchange [code],
https://www.mathworks.com/matlabcentral/fileexchange/69203-shaded-plots-and-statistical-distribution-visualizations (last access: 15 December 2020), 2020.
Pattyn, F.: A new three-dimensional higher-order thermomechanical ice sheet
model: Basic sensitivity, ice stream development, and ice flow across
subglacial lakes, J. Geophys. Res., 108, 2382, https://doi.org/10.1029/2002JB002329,
2003.
Payne, A. J., Vieli, A., Shepherd, A. P., Wingham, D. J., and Rignot, E.: Recent
dramatic thinning of largest West-Antarctic ice stream triggered by
oceans, Geophys. Res. Lett., 31, L23401,
https://doi.org/10.1029/2004GL021284, 2004.
Rignot, E.: Evidence for rapid retreat and mass loss of Thwaites Glacier,
West Antarctica, J. Glaciol., 47, 213–222,
https://doi.org/10.3189/172756501781832340, 2001.
Rignot, E., Mouginot, J., and Scheuchl, B.: Ice Flow of the Antarctic Ice
Sheet, Science, 333, 6048, https://doi.org/10.1126/science.1208336, 2011.
Rignot, E., Mouginot, J., Morlighem, M., Seroussi, H., and Scheuchl, B.:
Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith,
and Kohler glaciers, West Antarctica, from 1992 to 2011, Geophys. Res.
Lett., 41, 3502–3509, https://doi.org/10.1002/2014GL060140, 2014.
Rignot, E., Xu, Y., Menemenlis, D., Mouginot, J., Scheuchl, B., Li, X.,
Morlighem, M., Seroussi, H., van den Broeke, M., Fenty, I., Cai, C., An, L.,
and de Fleurian, B.: Modeling of ocean-induced ice melt rates of five west
Greenland glaciers over the past two decades. Geophys. Res. Lett., 43,
6374–6382, https://doi.org/10.1002/2016GL068784, 2016.
Rignot, E., Mouginot, J., and Scheuchl, B.: MEaSUREs InSAR-Based Antarctica
Ice Velocity Map, Version 2. Boulder, Colorado USA. NASA National Snow and
Ice Data Center Distributed Active Archive Center, https://doi.org/10.5067/D7GK8F5J8M8R, 2017.
Rignot, E., Mouginot, J., Scheuchl, B., van den Broeke, M., van Wessem, M.
J., and Morlighem, M.: Four decades of Antarctic Ice Sheet mass balance from
1979–2017, P. Natl. Acad. Sci. USA, 116, 1095–1103, https://doi.org/10.1073/pnas.1812883116, 2019.
Rippin, D., Vaughan, D., and Corr, H.: The basal roughness of Pine Island
Glacier, West Antarctica, J. Glaciol., 57, 67–76,
https://doi.org/10.3189/002214311795306574, 2011.
Robel, A. A., Seroussi, H., and Roe, G. H.: Marine ice sheet instability
amplifies and skews uncertainty in projections of future sea-level rise, P.
Natl. Acad. Sci. USA, 116, 14887–14892,
https://doi.org/10.1073/pnas.1904822116, 2019.
Schlegel, N.-J. and Larour, E. Y.: Quantification of surface forcing
requirements for a Greenland Ice Sheet model using uncertainty analyses,
Geophys. Res. Lett., 46, 9700–9709, https://doi.org/10.1029/2019GL083532, 2019.
Schlegel, N.-J., Larour, E., Seroussi, H., Morlighem, M., and Box, J. E.:
Decadal-scale sensitivity of Northeast Greenland ice flow to errors in
surface mass balance using ISSM, J. Geophys. Res.-Earth, 118, 1–14,
https://doi.org/10.1002/jgrf.20062, 2013.
Schlegel, N.-J., Larour, E., Seroussi, H., Morlighem, M., and Box, J. E.:
Ice discharge uncertainties in Northeast Green- land from boundary
conditions and climate forcing of an ice flow model, J. Geophys. Res.-Earth,
120, 29–54, https://doi.org/10.1002/2014JF003359, 2015.
Schlegel, N.-J., Seroussi, H., Schodlok, M. P., Larour, E. Y., Boening, C., Limonadi, D., Watkins, M. M., Morlighem, M., and van den Broeke, M. R.: Exploration of Antarctic Ice Sheet 100-year contribution to sea level rise and associated model uncertainties using the ISSM framework, The Cryosphere, 12, 3511–3534, https://doi.org/10.5194/tc-12-3511-2018, 2018.
Schodlok, M., Menemenlis, D., and Rignot, E.: Ice shelf basal melt rates
around Antarctica from simulations and observations, J. Geophys. Res., 121,
1085–1109, https://doi.org/10.1002/2015JC011117, 2016.
Schoof, C. and Hindmarsh, R. C. A.: Thin-Film Flows with Wall Slip: An
Asymptotic Analysis of Higher Order Glacier Flow Models, Quart. J. Mech.
Appl. Math., 63, 73–114, https://doi.org/10.1093/qjmam/hbp025, 2010.
Schroeder, D. M., Blankenship, D. D., Young, D. A., Witus, A. E., and
Anderson, J. B.: Airborne radar sounding evidence for deformable sediments
and outcropping bedrock beneath Thwaites Glacier, West Antarctica, Geophys.
Res. Lett., 41, 7200–7208, https://doi.org/10.1002/2014GL061645, 2014.
Seroussi, H. and Morlighem, M.: Representation of basal melting at the grounding line in ice flow models, The Cryosphere, 12, 3085–3096, https://doi.org/10.5194/tc-12-3085-2018, 2018.
Seroussi, H., Morlighem, M., Rignot, E., Larour, E., Aubry, D., Ben Dhia,
H., and Kristensen, S. S.: Ice flux divergence anomalies on 79north Glacier,
Greenland, Geophys. Res. Lett., 38, L09501,
https://doi.org/10.1029/2011GL047338, 2011.
Seroussi, H., Nakayama, Y., Larour, E., Menemenlis, D., Morlighem, M.,
Rignot, E., and Khazendar, A.: Continued retreat of Thwaites Glacier, West
Antarctica, controlled by bed topography and ocean circulation, Geophys.
Res. Lett., 44, 6191–6199, https://doi.org/10.1002/2017GL072910, 2017.
Seroussi, H., Nowicki, S., Simon, E., Abe-Ouchi, A., Albrecht, T., Brondex, J., Cornford, S., Dumas, C., Gillet-Chaulet, F., Goelzer, H., Golledge, N. R., Gregory, J. M., Greve, R., Hoffman, M. J., Humbert, A., Huybrechts, P., Kleiner, T., Larour, E., Leguy, G., Lipscomb, W. H., Lowry, D., Mengel, M., Morlighem, M., Pattyn, F., Payne, A. J., Pollard, D., Price, S. F., Quiquet, A., Reerink, T. J., Reese, R., Rodehacke, C. B., Schlegel, N.-J., Shepherd, A., Sun, S., Sutter, J., Van Breedam, J., van de Wal, R. S. W., Winkelmann, R., and Zhang, T.: initMIP-Antarctica: an ice sheet model initialization experiment of ISMIP6, The Cryosphere, 13, 1441–1471, https://doi.org/10.5194/tc-13-1441-2019, 2019.
Seroussi, H., Nowicki, S., Payne, A. J., Goelzer, H., Lipscomb, W. H., Abe-Ouchi, A., Agosta, C., Albrecht, T., Asay-Davis, X., Barthel, A., Calov, R., Cullather, R., Dumas, C., Galton-Fenzi, B. K., Gladstone, R., Golledge, N. R., Gregory, J. M., Greve, R., Hattermann, T., Hoffman, M. J., Humbert, A., Huybrechts, P., Jourdain, N. C., Kleiner, T., Larour, E., Leguy, G. R., Lowry, D. P., Little, C. M., Morlighem, M., Pattyn, F., Pelle, T., Price, S. F., Quiquet, A., Reese, R., Schlegel, N.-J., Shepherd, A., Simon, E., Smith, R. S., Straneo, F., Sun, S., Trusel, L. D., Van Breedam, J., van de Wal, R. S. W., Winkelmann, R., Zhao, C., Zhang, T., and Zwinger, T.: ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century, The Cryosphere, 14, 3033–3070, https://doi.org/10.5194/tc-14-3033-2020, 2020.
Swiler, L. P. and Wyss, G. D.: A User's Guide to Sandia's Latin Hypercube
Sampling Software: LHS UNIX Library/Standalone Version, Technical Report
SAND2004-2439, Tech. rep., Sandia National Laboratories, Albuquerque, NM,
USA, https://doi.org/10.2172/919175, 2004.
Thyng, K. M., Greene, C. A., Hetland, R. D., Zimmerle, H. M., and DiMarco,
S. F.: True colors of oceanography, Oceanography, 29, 10,
https://doi.org/10.5670/oceanog.2016.66, 2016.
Waibel, M. S., Hulbe, C. L., Jackson, C. S., and Martin, D. F.: Rate of
mass loss across the instability threshold for Thwaites Glacier determines
rate of mass loss for entire basin, Geophys. Res. Lett., 45,
809–816, https://doi.org/10.1002/2017GL076470, 2018.
Yu, H., Rignot, E., Seroussi, H., and Morlighem, M.: Retreat of Thwaites Glacier, West Antarctica, over the next 100 years using various ice flow models, ice shelf melt scenarios and basal friction laws, The Cryosphere, 12, 3861–3876, https://doi.org/10.5194/tc-12-3861-2018, 2018.
Zhou, Q. and Hattermann, T., Modeling ice shelf cavities in the
unstructured-grid, Finite Volume Community Ocean Model: Implementation and
effects of resolving small-scale topography, Ocean Model., 146,
2020, 101536, https://doi.org/10.1016/j.ocemod.2019.101536,
2020.
Short summary
In the described study, we derive an uncertainty range for global mean sea level rise (SLR) contribution from Thwaites Glacier in a 200-year period under an extreme ocean warming scenario. We derive the spatial and vertical resolutions needed for bedrock data acquisition missions in order to limit global mean SLR contribution from Thwaites Glacier to ±2 cm in a 200-year period. We conduct sensitivity experiments in order to present the locations of critical regions in need of accurate mapping.
In the described study, we derive an uncertainty range for global mean sea level rise (SLR)...