Articles | Volume 16, issue 5
https://doi.org/10.5194/tc-16-2009-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-2009-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Can changes in deformation regimes be inferred from crystallographic preferred orientations in polar ice?
Maria-Gema Llorens
CORRESPONDING AUTHOR
Geosciencies Barcelona CSIC, Lluis Sole i Sabaris s/n, 08028
Barcelona, Spain
Albert Griera
Departament de Geologia, Universitat Autònoma de Barcelona, 08193
Cerdanyola del Vallès, Barcelona, Spain
Paul D. Bons
Department of Geosciences, Eberhard Karls University Tübingen,
Wilhemstr. 56, 72074 Tübingen, Germany
School of Earth Sciences and Resources, China University of Geosciences, Beijing, China
Ilka Weikusat
Department of Geosciences, Eberhard Karls University Tübingen,
Wilhemstr. 56, 72074 Tübingen, Germany
Alfred Wegener Institute Helmholtz Centre for Polar and Marine
Research, Bremerhaven, Germany
David J. Prior
Department of Geology, University of Otago, 362 Leith Street,
Dunedin 9016, New Zealand
Enrique Gomez-Rivas
Departament de Mineralogia, Petrologia i Geologia Aplicada,
Facultat de Ciències de la Terra, Universitat de Barcelona, Martí i
Franquès s/n, 08028 Barcelona, Spain
Tamara de Riese
Department of Geosciences, Eberhard Karls University Tübingen,
Wilhemstr. 56, 72074 Tübingen, Germany
Ivone Jimenez-Munt
Geosciencies Barcelona CSIC, Lluis Sole i Sabaris s/n, 08028
Barcelona, Spain
Daniel García-Castellanos
Geosciencies Barcelona CSIC, Lluis Sole i Sabaris s/n, 08028
Barcelona, Spain
Ricardo A. Lebensohn
Theoretical Division, Los Alamos National Laboratory, Los Alamos,
NM, 87545, USA
Related authors
Paul Dirk Bons, Yuanbang Hu, Maria-Gema Llorens, Steven Franke, Nicolas Stoll, Ilka Weikusat, Julien Wetshoff, and Yu Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3817, https://doi.org/10.5194/egusphere-2024-3817, 2025
Short summary
Short summary
What causes folds in ice layers from the km-scale down to the scale visible in drill core? Classical buckle folding due to variations in viscosity between layers, or the effect of mechanical anisotropy of ice due to an alignment of the crystal-lattice planes? Comparison of power spectra of folds in ice, a biotite schist, and numerical simulations show that folding in ice is due to the mechanical anisotropy, as there is no characteristic fold scale that would result from buckle folding.
Nicolas Stoll, Ilka Weikusat, Daniela Jansen, Paul Bons, Kyra Darányi, Julien Westhoff, Mária-Gema Llorens, David Wallis, Jan Eichler, Tomotaka Saruya, Tomoyuki Homma, Martyn Drury, Frank Wilhelms, Sepp Kipfstuhl, Dorthe Dahl-Jensen, and Johanna Kerch
EGUsphere, https://doi.org/10.5194/egusphere-2024-2653, https://doi.org/10.5194/egusphere-2024-2653, 2024
Short summary
Short summary
A better understanding of ice flow requires more observational data. The EastGRIP core is the first ice core through an active ice stream. We discuss crystal orientation data to determine the present deformation regimes. A comparison with other deep ice cores shows the unique properties of EastGRIP and that deep ice originates from the Eemian. We further show that the overall plug flow of NEGIS is characterised by many small-scale variations, which remain to be considered in ice-flow models.
Paul D. Bons, Tamara de Riese, Steven Franke, Maria-Gema Llorens, Till Sachau, Nicolas Stoll, Ilka Weikusat, Julien Westhoff, and Yu Zhang
The Cryosphere, 15, 2251–2254, https://doi.org/10.5194/tc-15-2251-2021, https://doi.org/10.5194/tc-15-2251-2021, 2021
Short summary
Short summary
The modelling of Smith-Johnson et al. (The Cryosphere, 14, 841–854, 2020) suggests that a very large heat flux of more than 10 times the usual geothermal heat flux is required to have initiated or to control the huge Northeast Greenland Ice Stream. Our comparison with known hotspots, such as Iceland and Yellowstone, shows that such an exceptional heat flux would be unique in the world and is incompatible with known geological processes that can raise the heat flux.
Montserrat Torne, Tiago M. Alves, Ivone Jiménez-Munt, Joao Carvalho, Conxi Ayala, Elsa C. Ramalho, Angela María Gómez-García, Hugo Matias, Hanneke Heida, Abraham Balaguera, José Luis García-Lobón, and Jaume Vergés
Earth Syst. Sci. Data, 17, 1275–1293, https://doi.org/10.5194/essd-17-1275-2025, https://doi.org/10.5194/essd-17-1275-2025, 2025
Short summary
Short summary
Sediments are like history books for geologists and geophysicists. By studying them, we can learn about past environments, sea level and climate changes, and where the sediments came from. To aid in understanding the geology, georesources, and potential hazards in the Iberian Peninsula and its surrounding seas, we present the SedDARE-IB sediment data repository. As an application in geothermal exploration, we investigate how sediment thickness affects the depth of the 150 °C isotherm.
Steven Franke, Daniel Steinhage, Veit Helm, Alexandra M. Zuhr, Julien A. Bodart, Olaf Eisen, and Paul Bons
The Cryosphere, 19, 1153–1180, https://doi.org/10.5194/tc-19-1153-2025, https://doi.org/10.5194/tc-19-1153-2025, 2025
Short summary
Short summary
The study presents internal reflection horizons (IRHs) over an area of 450 000 km² from western Dronning Maud Land, Antarctica, spanning 4.8–91 ka. Using radar and ice core data, nine IRHs were dated and correlated with volcanic events. The data enhance our understanding of the ice sheet's age–depth architecture, accumulation, and dynamics. The findings inform ice flow models and contribute to Antarctic-wide comparisons of IRHs, supporting efforts toward a 3D age–depth ice sheet model.
Florian Painer, Sepp Kipfstuhl, Martyn Drury, Tsutomu Uchida, Johannes Freitag, and Ilka Weikusat
EGUsphere, https://doi.org/10.5194/egusphere-2025-633, https://doi.org/10.5194/egusphere-2025-633, 2025
Short summary
Short summary
Air clathrate hydrates trap ancient air in the deeper part of ice sheets. We use digital microscopy and automated image analysis to investigate the evolution of number, size and shape of air clathrate hydrates from 1250 m depth to the bottom of the ice sheet. We confirm the previously found relation of changes in number and size with past climate and find a connection of their shape to changes in ice deformation. The results will help to better understand air clathrate hydrates in deep ice.
Qinyu Wang, Sheng Fan, Daniel H. Richards, Rachel Worthington, David J. Prior, and Chao Qi
The Cryosphere, 19, 827–848, https://doi.org/10.5194/tc-19-827-2025, https://doi.org/10.5194/tc-19-827-2025, 2025
Short summary
Short summary
Ice often exhibits a single-cluster fabric when deformed to high strains in glaciers and ice sheets. Using the equal-channel angular pressing technique, we achieved high shear strains in laboratory experiments and examined the fabrics. We investigated the evolutions of fabric and recrystallization mechanisms with strain. The results suggest that rotation recrystallization dominates fabric development when ice is deformed to high strains, explaining the fabrics found in natural ice.
Paul Dirk Bons, Yuanbang Hu, Maria-Gema Llorens, Steven Franke, Nicolas Stoll, Ilka Weikusat, Julien Wetshoff, and Yu Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3817, https://doi.org/10.5194/egusphere-2024-3817, 2025
Short summary
Short summary
What causes folds in ice layers from the km-scale down to the scale visible in drill core? Classical buckle folding due to variations in viscosity between layers, or the effect of mechanical anisotropy of ice due to an alignment of the crystal-lattice planes? Comparison of power spectra of folds in ice, a biotite schist, and numerical simulations show that folding in ice is due to the mechanical anisotropy, as there is no characteristic fold scale that would result from buckle folding.
Konstantina Agiadi, Niklas Hohmann, Elsa Gliozzi, Danae Thivaiou, Francesca R. Bosellini, Marco Taviani, Giovanni Bianucci, Alberto Collareta, Laurent Londeix, Costanza Faranda, Francesca Bulian, Efterpi Koskeridou, Francesca Lozar, Alan Maria Mancini, Stefano Dominici, Pierre Moissette, Ildefonso Bajo Campos, Enrico Borghi, George Iliopoulos, Assimina Antonarakou, George Kontakiotis, Evangelia Besiou, Stergios D. Zarkogiannis, Mathias Harzhauser, Francisco Javier Sierro, Angelo Camerlenghi, and Daniel García-Castellanos
Earth Syst. Sci. Data, 16, 4767–4775, https://doi.org/10.5194/essd-16-4767-2024, https://doi.org/10.5194/essd-16-4767-2024, 2024
Short summary
Short summary
We present a dataset of 23032 fossil occurrences of marine organisms from the Late Miocene to the Early Pliocene (~11 to 3.6 million years ago) from the Mediterranean Sea. This dataset will allow us, for the first time, to quantify the biodiversity impact of the Messinian salinity crisis, a major geological event that possibly changed global and regional climate and biota.
Nicolas Stoll, Ilka Weikusat, Daniela Jansen, Paul Bons, Kyra Darányi, Julien Westhoff, Mária-Gema Llorens, David Wallis, Jan Eichler, Tomotaka Saruya, Tomoyuki Homma, Martyn Drury, Frank Wilhelms, Sepp Kipfstuhl, Dorthe Dahl-Jensen, and Johanna Kerch
EGUsphere, https://doi.org/10.5194/egusphere-2024-2653, https://doi.org/10.5194/egusphere-2024-2653, 2024
Short summary
Short summary
A better understanding of ice flow requires more observational data. The EastGRIP core is the first ice core through an active ice stream. We discuss crystal orientation data to determine the present deformation regimes. A comparison with other deep ice cores shows the unique properties of EastGRIP and that deep ice originates from the Eemian. We further show that the overall plug flow of NEGIS is characterised by many small-scale variations, which remain to be considered in ice-flow models.
Julien Westhoff, Johannes Freitag, Anaïs Orsi, Patricia Martinerie, Ilka Weikusat, Michael Dyonisius, Xavier Faïn, Kevin Fourteau, and Thomas Blunier
The Cryosphere, 18, 4379–4397, https://doi.org/10.5194/tc-18-4379-2024, https://doi.org/10.5194/tc-18-4379-2024, 2024
Short summary
Short summary
We study the EastGRIP area, Greenland, in detail with traditional and novel techniques. Due to the compaction of the ice, at a certain depth, atmospheric gases can no longer exchange, and the atmosphere is trapped in air bubbles in the ice. We find this depth by pumping air from a borehole, modeling, and using a new technique based on the optical appearance of the ice. Our results suggest that the close-off depth lies at around 58–61 m depth and more precisely at 58.3 m depth.
Johanna Heeb, David Healy, Nicholas E. Timms, and Enrique Gomez-Rivas
Solid Earth, 14, 985–1003, https://doi.org/10.5194/se-14-985-2023, https://doi.org/10.5194/se-14-985-2023, 2023
Short summary
Short summary
Hydration of rocks is a key process in the Earth’s crust and mantle that is accompanied by changes in physical traits and mechanical behaviour of rocks. This study assesses the influence of stress on hydration reaction kinetics and mechanics in experiments on anhydrite. We show that hydration occurs readily under stress and results in localized hydration along fractures and mechanic weakening. New gypsum growth is selective and depends on the stress field and host anhydrite crystal orientation.
Sheng Fan, David J. Prior, Brent Pooley, Hamish Bowman, Lucy Davidson, David Wallis, Sandra Piazolo, Chao Qi, David L. Goldsby, and Travis F. Hager
The Cryosphere, 17, 3443–3459, https://doi.org/10.5194/tc-17-3443-2023, https://doi.org/10.5194/tc-17-3443-2023, 2023
Short summary
Short summary
The microstructure of ice controls the behaviour of polar ice flow. Grain growth can modify the microstructure of ice; however, its processes and kinetics are poorly understood. We conduct grain-growth experiments on synthetic and natural ice samples at 0 °C. Microstructural data show synthetic ice grows continuously with time. In contrast, natural ice does not grow within a month. The inhibition of grain growth in natural ice is largely contributed by bubble pinning at ice grain boundaries.
Eloi González-Esvertit, Juan Alcalde, and Enrique Gomez-Rivas
Earth Syst. Sci. Data, 15, 3131–3145, https://doi.org/10.5194/essd-15-3131-2023, https://doi.org/10.5194/essd-15-3131-2023, 2023
Short summary
Short summary
Evaporites are, scientifically and economically, key rocks due to their unique geological features and value for industrial purposes. To compile and normalise the vast amount of information of evaporite structures in the Iberian Peninsula, we present the IESDB – the first comprehensive database of evaporite structures and their surrounding rocks in Spain and Portugal. The IESDB is free to use, open access, and can be accessed and downloaded through the interactive IESDB webpage.
Nicolas Stoll, Julien Westhoff, Pascal Bohleber, Anders Svensson, Dorthe Dahl-Jensen, Carlo Barbante, and Ilka Weikusat
The Cryosphere, 17, 2021–2043, https://doi.org/10.5194/tc-17-2021-2023, https://doi.org/10.5194/tc-17-2021-2023, 2023
Short summary
Short summary
Impurities in polar ice play a role regarding its climate signal and internal deformation. We bridge different scales using different methods to investigate ice from the Last Glacial Period derived from the EGRIP ice core in Greenland. We characterise different types of cloudy bands, i.e. frequently occurring milky layers in the ice, and analyse their chemistry with Raman spectroscopy and 2D imaging. We derive new insights into impurity localisation and deposition conditions.
Ole Zeising, Tamara Annina Gerber, Olaf Eisen, M. Reza Ershadi, Nicolas Stoll, Ilka Weikusat, and Angelika Humbert
The Cryosphere, 17, 1097–1105, https://doi.org/10.5194/tc-17-1097-2023, https://doi.org/10.5194/tc-17-1097-2023, 2023
Short summary
Short summary
The flow of glaciers and ice streams is influenced by crystal fabric orientation. Besides sparse ice cores, these can be investigated by radar measurements. Here, we present an improved method which allows us to infer the horizontal fabric asymmetry using polarimetric phase-sensitive radar data. A validation of the method on a deep ice core from the Greenland Ice Sheet shows an excellent agreement, which is a large improvement over previously used methods.
Till Sachau, Haibin Yang, Justin Lang, Paul D. Bons, and Louis Moresi
Geosci. Model Dev., 15, 8749–8764, https://doi.org/10.5194/gmd-15-8749-2022, https://doi.org/10.5194/gmd-15-8749-2022, 2022
Short summary
Short summary
Knowledge of the internal structures of the major continental ice sheets is improving, thanks to new investigative techniques. These structures are an essential indication of the flow behavior and dynamics of ice transport, which in turn is important for understanding the actual impact of the vast amounts of water trapped in continental ice sheets on global sea-level rise. The software studied here is specifically designed to simulate such structures and their evolution.
Franz Lutz, David J. Prior, Holly Still, M. Hamish Bowman, Bia Boucinhas, Lisa Craw, Sheng Fan, Daeyeong Kim, Robert Mulvaney, Rilee E. Thomas, and Christina L. Hulbe
The Cryosphere, 16, 3313–3329, https://doi.org/10.5194/tc-16-3313-2022, https://doi.org/10.5194/tc-16-3313-2022, 2022
Short summary
Short summary
Ice crystal alignment in the sheared margins of fast-flowing polar ice is important as it may control the ice sheet flow rate, from land to the ocean. Sampling shear margins is difficult because of logistical and safety considerations. We show that crystal alignments in a glacier shear margin in Antarctica can be measured using sound waves. Results from a seismic experiment on the 50 m scale and from ultrasonic experiments on the decimetre scale match ice crystal measurements from an ice core.
Julien Westhoff, Giulia Sinnl, Anders Svensson, Johannes Freitag, Helle Astrid Kjær, Paul Vallelonga, Bo Vinther, Sepp Kipfstuhl, Dorthe Dahl-Jensen, and Ilka Weikusat
Clim. Past, 18, 1011–1034, https://doi.org/10.5194/cp-18-1011-2022, https://doi.org/10.5194/cp-18-1011-2022, 2022
Short summary
Short summary
We present a melt event record from an ice core from central Greenland, which covers the past 10 000 years. Our record displays warm summer events, which can be used to enhance our understanding of the past climate. We compare our data to anomalies in tree ring width, which also represents summer temperatures, and find a good correlation. Furthermore, we investigate an outstandingly warm event in the year 986 AD or 991 AD, which has not been analyzed before.
Nicolas Stoll, Maria Hörhold, Tobias Erhardt, Jan Eichler, Camilla Jensen, and Ilka Weikusat
The Cryosphere, 16, 667–688, https://doi.org/10.5194/tc-16-667-2022, https://doi.org/10.5194/tc-16-667-2022, 2022
Short summary
Short summary
We mapped and analysed solid inclusion in the upper 1340 m of the EGRIP ice core with Raman spectroscopy and microstructure mapping, based on bulk dust content derived via continuous flow analysis. We observe a large variety in mineralogy throughout the core and samples. The main minerals are sulfates, especially gypsum, and terrestrial dust minerals, such as quartz, mica, and feldspar. A change in mineralogy occurs around 900 m depth indicating a climate-related imprint.
Steven Franke, Daniela Jansen, Tobias Binder, John D. Paden, Nils Dörr, Tamara A. Gerber, Heinrich Miller, Dorthe Dahl-Jensen, Veit Helm, Daniel Steinhage, Ilka Weikusat, Frank Wilhelms, and Olaf Eisen
Earth Syst. Sci. Data, 14, 763–779, https://doi.org/10.5194/essd-14-763-2022, https://doi.org/10.5194/essd-14-763-2022, 2022
Short summary
Short summary
The Northeast Greenland Ice Stream (NEGIS) is the largest ice stream in Greenland. In order to better understand the past and future dynamics of the NEGIS, we present a high-resolution airborne radar data set (EGRIP-NOR-2018) for the onset region of the NEGIS. The survey area is centered at the location of the drill site of the East Greenland Ice-Core Project (EastGRIP), and radar profiles cover both shear margins and are aligned parallel to several flow lines.
Nicolas Stoll, Jan Eichler, Maria Hörhold, Tobias Erhardt, Camilla Jensen, and Ilka Weikusat
The Cryosphere, 15, 5717–5737, https://doi.org/10.5194/tc-15-5717-2021, https://doi.org/10.5194/tc-15-5717-2021, 2021
Short summary
Short summary
We did a systematic analysis of the location of inclusions in the EGRIP ice core, the first ice core from an ice stream. We combine this with crystal orientation and grain size data, enabling the first overview about the microstructure of this unique ice core. Micro-inclusions show a strong spatial variability and patterns (clusters or horizontal layers); roughly one-third is located at grain boundaries. More holistic approaches are needed to understand deformation processes in the ice better.
Sebastian Hellmann, Melchior Grab, Johanna Kerch, Henning Löwe, Andreas Bauder, Ilka Weikusat, and Hansruedi Maurer
The Cryosphere, 15, 3507–3521, https://doi.org/10.5194/tc-15-3507-2021, https://doi.org/10.5194/tc-15-3507-2021, 2021
Short summary
Short summary
In this study, we analyse whether ultrasonic measurements on ice core samples could be employed to derive information about the particular ice crystal orientation in these samples. We discuss if such ultrasonic scans of ice core samples could provide similarly detailed results as the established methods, which usually destroy the ice samples. Our geophysical approach is minimally invasive and could support the existing methods with additional and (semi-)continuous data points along the ice core.
Paul D. Bons, Tamara de Riese, Steven Franke, Maria-Gema Llorens, Till Sachau, Nicolas Stoll, Ilka Weikusat, Julien Westhoff, and Yu Zhang
The Cryosphere, 15, 2251–2254, https://doi.org/10.5194/tc-15-2251-2021, https://doi.org/10.5194/tc-15-2251-2021, 2021
Short summary
Short summary
The modelling of Smith-Johnson et al. (The Cryosphere, 14, 841–854, 2020) suggests that a very large heat flux of more than 10 times the usual geothermal heat flux is required to have initiated or to control the huge Northeast Greenland Ice Stream. Our comparison with known hotspots, such as Iceland and Yellowstone, shows that such an exceptional heat flux would be unique in the world and is incompatible with known geological processes that can raise the heat flux.
Sebastian Hellmann, Johanna Kerch, Ilka Weikusat, Andreas Bauder, Melchior Grab, Guillaume Jouvet, Margit Schwikowski, and Hansruedi Maurer
The Cryosphere, 15, 677–694, https://doi.org/10.5194/tc-15-677-2021, https://doi.org/10.5194/tc-15-677-2021, 2021
Short summary
Short summary
We analyse the orientation of ice crystals in an Alpine glacier and compare this orientation with the ice flow direction. We found that the crystals orient in the direction of the largest stress which is in the flow direction in the upper parts of the glacier and in the vertical direction for deeper zones of the glacier. The grains cluster around this maximum stress direction, in particular four-point maxima, most likely as a result of recrystallisation under relatively warm conditions.
Morgan E. Monz, Peter J. Hudleston, David J. Prior, Zachary Michels, Sheng Fan, Marianne Negrini, Pat J. Langhorne, and Chao Qi
The Cryosphere, 15, 303–324, https://doi.org/10.5194/tc-15-303-2021, https://doi.org/10.5194/tc-15-303-2021, 2021
Short summary
Short summary
We present full crystallographic orientations of warm, coarse-grained ice deformed in a shear setting, enabling better characterization of how crystals in glacial ice preferentially align as ice flows. A commonly noted c-axis pattern, with several favored orientations, may result from bias due to overcounting large crystals with complex 3D shapes. A new sample preparation method effectively increases the sample size and reduces bias, resulting in a simpler pattern consistent with the ice flow.
Sheng Fan, Travis F. Hager, David J. Prior, Andrew J. Cross, David L. Goldsby, Chao Qi, Marianne Negrini, and John Wheeler
The Cryosphere, 14, 3875–3905, https://doi.org/10.5194/tc-14-3875-2020, https://doi.org/10.5194/tc-14-3875-2020, 2020
Short summary
Short summary
We performed uniaxial compression experiments on synthetic ice samples. We report ice microstructural evolution at –20 and –30 °C that has never been reported before. Microstructural data show the opening angle of c-axis cones decreases with increasing strain or with decreasing temperature, suggesting a more active grain rotation. CPO intensity weakens with temperature because CPO of small grains is weaker, and it can be explained by grain boundary sliding or nucleation with random orientations.
Cited articles
Alley, R. B.: Fabrics in polar ice sheets: development and prediction,
Science, 240, 493–495, 1988.
Azuma, N., Wang, Y., Mori, K., Narita, H., Hondoh, T., Shoji, H., and
Watanabe, O.: Textures and fabrics in the Dome F (Antarctica) ice core,
Ann. Glaciol., 29, 163–168, 1999.
Bachmann, F., Hielscher, R., and Schaeben, H.: Grain detection from 2d and 3d
EBSD data – Specification of the MTEX algorithm, Ultramicroscopy, 111, 1720–1733, 2011.
Behn, M. D., Goldsby, D. L., and Hirth, G.: The role of grain size evolution in the rheology of ice: implications for reconciling laboratory creep data and the Glen flow law, The Cryosphere, 15, 4589–4605, https://doi.org/10.5194/tc-15-4589-2021, 2021.
Boneh, Y. and Skemer, P.: The effect of deformation history on the evolution
of olivine CPO, Earth Planet. Sc. Lett., 406, 213–222, 2014.
Bons, P. D., Koehn, D., and Jessell, M. W.: Microdynamic Simulation, Lecture
Notes in Earth Sciences 106, Springer, Berlin, 405 pp., 2008.
Bons, P. D., Kleiner, T., Llorens, M. G., Prior, D. J., Sachau, T., Weikusat,
I., and Jansen, D.: Greenland Ice Sheet: Higher nonlinearity of ice flow
significantly reduces estimated basal motion, Geophys. Res. Lett.,
45, 6542–6548, 2018.
Budd, W. and Jacka, T.: A review of ice rheology for ice sheet modelling,
Cold Reg. Sci. Technol., 16, 107–144, https://doi.org/10.1016/0165-232X(89)90014-1, 1989.
Budd, W. F., Warner, R. C., Jacka, T. H., Li, J., and Treverrow, A.: Ice flow
relations for stress and strain-rate components from combined shear and
compression laboratory experiments, J. Glaciol., 59, 374–392, 2013.
Castelnau, O., Shoji, H., Mangeney, A., Milsch, H., Duval, P., Miyamoto, A.,
Kawada, K., and Watanabe, O.: Anisotropic behavior of GRIP ices and flow in
central Greenland, Earth Planet. Sc. Lett., 154,
307–322, 1998.
Craw, L., Qi, C., Prior, D. J., Goldsby, D. L., and Kim, D.: Mechanics and
microstructure of deformed natural anisotropic ice, J. Struct. Geol., 115,
152–166, 2018.
Craw, L., Treverrow, A., Fan, S., Peternell, M., Cook, S., McCormack, F., and Roberts, J.: The temperature change shortcut: effects of mid-experiment temperature changes on the deformation of polycrystalline ice, The Cryosphere, 15, 2235–2250, https://doi.org/10.5194/tc-15-2235-2021, 2021.
Cuffey, K. M. and Paterson, W. S. B.: The physics of glaciers, Academic Press, 4th Edn., ISBN 9780123694614, 2010.
Dahl-Jensen, D., Thorsteinsson, T., Alley, R., and Shoji, H.: Flow properties
of the ice from the Greenland Ice Core Project ice core: the reason for
folds?, J. Geophys. Res.-Oceans, 102, 26831–26840,
1997.
Di Leo, J. F., Walker, A. M., Li, Z. H., Wookey, J., Ribe, N. M., Kendall, J. M.,
and Tommasi, A.: Development of texture and seismic anisotropy during the
onset of subduction, Geochem. Geophy. Geosy., 15, 192–212, 2014.
Durand, G., Gillet-Chaulet, F., Svensson, A., Gagliardini, O., Kipfstuhl, S., Meyssonnier, J., Parrenin, F., Duval, P., and Dahl-Jensen, D.: Change in ice rheology during climate variations – implications for ice flow modelling and dating of the EPICA Dome C core, Clim. Past, 3, 155–167, https://doi.org/10.5194/cp-3-155-2007, 2007.
Duval, P. and Castelnau, O.: Dynamic recrystallization of ice in polar ice
sheets, J. Phys. IV, 5, 197–205, 1995.
Duval, P., Ashby, M. F., and Anderman, I.: Rate-controlling processes in the
creep of polycrystalline ice, J. Phys. Chem., 87,
4066–4074, 1983.
Edwards, T. L., Nowicki, S., Marzeion, B., Hock, R., Goelzer, H., Seroussi,
H., Jourdain, N. C., Slater, D. A., Turner, F. E., Smith, C. J., and McKenna,
C. M.: Projected land ice contributions to twenty-first-century sea level
rise, Nature, 593, 74–82, 2021.
ELLE International Consortium: ELLE Numerical Simulation Platform, https://git.code.sf.net/p/elle/gitelle-git (last access: 23 May 2022), 2018.
Fan, S., Hager, T. F., Prior, D. J., Cross, A. J., Goldsby, D. L., Qi, C., Negrini, M., and Wheeler, J.: Temperature and strain controls on ice deformation mechanisms: insights from the microstructures of samples deformed to progressively higher strains at −10, −20 and −30 ∘C, The Cryosphere, 14, 3875–3905, https://doi.org/10.5194/tc-14-3875-2020, 2020.
Fan, S., Cross, A. J., Prior, D. J., Goldsby, D. L., Hager, T. F., Negrini, M. and Qi, C.: Crystallographic Preferred Orientation (CPO) Development Governs Strain Weakening in Ice: Insights From High‐Temperature Deformation Experiments, J. Geophys. Res.-Sol. Ea., 126, e2021JB023173, https://doi.org/10.1029/2021JB023173, 2021.
Faria, S. H., Weikusat, I., and Azuma, N.: The microstructure of polar ice.
Part I: Highlights from ice core research, J. Struct. Geol., 61, 2–20,
https://doi.org/10.1016/j.jsg.2013.09.010, 2014.
Gerbi, C., Mills, S., Clavette, R., Campbell, S., Bernsen, S.,
Clemens-Sewall, D., Lee, I., Hawley, R., Kreutz, K., and Hruby, K.
Microstructures in a shear margin: Jarvis Glacier, Alaska, J.
Glaciol., 67, 1163–1176, 2021.
Golledge, N. R., Kowalewski, D. E., Naish, T. R., Levy, R. H., Fogwill, C.
J., and Gasson, E. G. W.: The multi-millennial Antarctic commitment to future
sea-level rise, Nature, 526, 421–425, https://doi.org/10.1038/nature15706, 2015.
Griera, A., Llorens, M. G., Gomez-Rivas, E., Bons, P. D., Jessell, M. W.,
Evans, L. A., and Lebensohn, R.: Numerical modelling of porphyroclast and
porphyroblast rotation in anisotropic rocks, Tectonophysics, 587, 4–29,
2013.
Gomez-Rivas, E., Griera, A., Llorens, M. G., Bons, P. D., Lebensohn, R. A., and
Piazolo, S.: Subgrain rotation recrystallization during shearing: insights
from full-field numerical simulations of halite polycrystals, J.
Geophys. Res.-Sol. Ea., 122, 8810–8827, 2017.
Gow, A. J., Meese, D. A., Alley, R. B., Fitzpatrick, J. J., Anandakrishnan, S.,
Woods, G. A., and Elder, B. C.: Physical and structural properties of the
Greenland Ice Sheet Project 2 ice core: A review, J. Geophys. Res.-Oceans, 102, 26559–26575,
1997.
Haefeli, R.: Contribution to the movement and the form of ice sheets in the
Arctic and Antarctic, J. Glaciol., 3, 1133–1151, 1961.
Hudleston, P. J.: Similar folds, recumbent folds, and gravity tectonics in ice and rocks, J. Geol., 85, 113–122, 1977.
Hudleston, P. J.: Structures and fabrics in glacial ice: a review, J.
Struct. Geol., 81, 1–27, 2015.
Jacka, T. H. and Maccagnan, M.: Ice crystallographic and strain rate changes
with strain in compression and extension, Cold Reg. Sci. Technol., 8, 269–286, 1984.
Jacka, T. H. and Li, J.: Flow rates and crystal orientation fabrics in compression of polycrystalline ice at low temperatures and stresses, in: International Symposium on Physics of Ice Core Records, edited by: Hondoh, T., Shikotsukohan, Hokkaido, Japan, 14–17 September 1998, 83–102, 2000.
Jackson, M. and Kamb, B.: The marginal shear stress of Ice Stream B, West
Antarctica, J. Glaciol., 43, 415–426, 1997.
Jansen, D., Llorens, M.-G., Westhoff, J., Steinbach, F., Kipfstuhl, S., Bons, P. D., Griera, A., and Weikusat, I.: Small-scale disturbances in the stratigraphy of the NEEM ice core: observations and numerical model simulations, The Cryosphere, 10, 359–370, https://doi.org/10.5194/tc-10-359-2016, 2016.
Jennings, S. J. A. and Hambrey, M. J.: Structures and deformation in
glaciers and ice sheets, Rev. Geophys., 59, e2021RG000743, https://doi.org/10.1029/2021RG000743, 2021.
Joughin, I. A. N., Smith, B. E., and Howat, I. M.: A complete map of Greenland ice
velocity derived from satellite data collected over 20 years, J.
Glaciol., 64, 1–11, 2018.
Journaux, B., Chauve, T., Montagnat, M., Tommasi, A., Barou, F., Mainprice, D., and Gest, L.: Recrystallization processes, microstructure and crystallographic preferred orientation evolution in polycrystalline ice during high-temperature simple shear, The Cryosphere, 13, 1495–1511, https://doi.org/10.5194/tc-13-1495-2019, 2019.
Jun, L. and Jacka, T. H.: Horizontal shear rate of ice initially exhibiting
vertical compression fabrics, J. Glaciol., 44, 670–672,
1998.
Kamb, W. B.: Experimental recrystallization of ice under stress, in: Flow and Fracture of Rocks, edited by: Heard, H. C., Borg, I. Y., Carter, N. L., and Rayleigh, C. B., American Geophysical Union, 211–242, 1972.
Kaminski, E., Ribe, N. M., and Browaeys, J. T.: D-Rex, a program for calculation
of seismic anisotropy due to crystal lattice preferred orientation in the
convective upper mantle, Geophys. J. Int., 158,
744-752, 2004.
Katayama, I. and Karato, S. I.: Effect of temperature on the B-to C-type
olivine fabric transition and implication for flow pattern in subduction
zones, Phys. Earth Planet. Int., 157, 33–45,
2006.
Kim, D., Prior, D. J., Han, Y., Qi, C., Han, H., and Ju, H. T.: Microstructures
and Fabric Transitions of Natural Ice from the Styx Glacier, Northern
Victoria Land, Antarctica, Minerals, 10, 892, https://doi.org/10.3390/min10100892, 2020.
Lebensohn, R. A. and Rollett, A. D.: Spectral methods for full-field
micromechanical modelling of polycrystalline materials, Comput.
Mater. Sci., 173, 109336, https://doi.org/10.1016/j.commatsci.2019.109336, 2020.
Li, Z. H., Di Leo, J. F., and Ribe, N. M.: Subduction-induced mantle flow,
finite strain, and seismic anisotropy: Numerical modeling, J.
Geophys. Res.-Sol. Ea., 119, 5052–5076, 2014.
Lipenkov, V. Y., Barkov, N. I., Duval, P. and Pimienta, P.: Crystalline texture of the 2083 m ice core at Vostok Station, Antarctica, J. Glaciol., 35, 392–398, 1989.
Llorens, M. G., Griera, A., Bons, P. D., Roessiger, J., Lebensohn, R.,
Evans, L., and Weikusat, I. Dynamic recrystallisation of ice aggregates
during co-axial viscoplastic deformation: a numerical approach, J.
Glaciol., 62, 359–377, 2016a.
Llorens, M. G., Griera, A., Bons, P. D., Lebensohn, R. A., Evans, L. A.,
Jansen, D., and Weikusat, I.: Full field predictions of ice dynamic
recrystallisation under simple shear conditions, Earth Planet. Sc.
Lett., 450, 233–242, 2016b.
Llorens, M. G., Griera, A., Steinbach, F., Bons, P. D., Gomez-Rivas, E.,
Jansen, D., Roessiger, J., Lebensohn, R. A., and Weikusat, I.: Dynamic
recrystallization during deformation of polycrystalline ice: insights from
numerical simulations, Philos. T. R. Soc. A, 375, 20150346, https://doi.org/10.1098/rsta.2015.0346, 2017.
Llorens, M. G., Griera, A., Bons, P. D., Gomez-Rivas, E., Weikusat, I., Prior,
D. J., Kerch, J., and Lebensohn, R. A.: Seismic anisotropy of temperate ice in
polar ice sheets, J. Geophys. Res.-Earth, 125, e2020JF005714, https://doi.org/10.1029/2020JF005714, 2020.
Llorens, M.-G., Griera, A., Bons, P. D., Weikusat, I., Prior, D. J., Gómez-Rivas, E., de Riese, T., Jimenez-Munt, I., García-Castellanos, D., and Lebensohn, R. A.: Full-field numerical simulations of ice
viscoplastic deformation during two deformation events, DIGITAL.CSIC [data set], https://doi.org/10.20350/digitalCSIC/14643, 2022.
LeDoux, C. M., Hulbe, C. L., Forbes, M. P., Scambos, T. A., and Alley, K.:
Structural provinces of the ross ice shelf, antarctica, Ann.
Glaciol., 58, 88–98, 2017.
Lilien, D. A., Rathmann, N. M., Hvidberg, C. S., and Dahl-Jensen, D.: Modeling
Ice-Crystal Fabric as a Proxy for Ice-Stream Stability, J.
Geophys. Res.-Earth, 126, e2021JF006306, https://doi.org/10.1029/2021JF006306, 2021.
Lipenkov, V. Y., Barkov, N. I., Duval, P., and Pimienta, P.: Crystalline Texture
of the 2083 m Ice Core at Vostok Station, Antarctica, J. Glaciol., 35,
392–398, 1989.
Llorens, M.-G., Griera, A., Bons, P. D., Weikusat, I., Prior, D. J., Gómez-Rivas, E., de Riese, T., Jimenez-Munt, I., García-Castellanos, D., and Lebensohn, R. A.: Full-field numerical simulations of ice viscoplastic deformation during two deformation events, DIGITAL.CSIC [data set], https://doi.org/10.20350/digitalCSIC/14643, 2022.
Lutz, F., Eccles, J., Prior, D. J., Craw, L., Fan, S., Hulbe, C., Forbes, M.,
Still, H., Pyne, A., and Mandeno, D.: Constraining Ice Shelf Anisotropy Using
Shear Wave Splitting Measurements from Active-Source Borehole Seismics,
J. Geophys. Res.-Earth, 125, e2020JF005707, https://doi.org/10.1029/2020JF005707,
2020.
Lutz, F., Prior, D. J., Still, H., Bowman, M. H., Boucinhas, B., Craw, L., Fan, S., Kim, D., Mulvaney, R., Thomas, R. E., and Hulbe, C. L.: Ultrasonic and seismic constraints on crystallographic preferred orientations of the Priestley Glacier shear margin, Antarctica, The Cryosphere Discuss. [preprint], https://doi.org/10.5194/tc-2021-382, in review, 2022.
Millstein, J., Minchew, B., and Pegler, S. S.: Reassessing the flow law of
glacier ice using satellite observations, Commun. Earth Environ., 3, 1–7, https://doi.org/10.31223/X5D32X, 2021.
Montagnat, M., Blackford, J. R., Piazolo, S., Arnaud, L., and Lebensohn, R. A.:
Measurements and full-field predictions of deformation heterogeneities in
ice, Earth Planet. Sc. Lett., 305, 153–160, https://doi.org/10.1016/j.epsl.2011.02.050, 2011.
Montagnat, M., Buiron, D., Arnaud, L., Broquet, A., Schlitz, P., Jacob, R.,
and Kipfstuhl, S.: Measurements and numerical simulation of fabric evolution
along the Talos Dome ice core, Antarctica, Earth Planet. Sc. Lett., 357, 168–178, 2012.
Montagnat, M., Azuma, N., Dahl-Jensen, D., Eichler, J., Fujita, S., Gillet-Chaulet, F., Kipfstuhl, S., Samyn, D., Svensson, A., and Weikusat, I.: Fabric along the NEEM ice core, Greenland, and its comparison with GRIP and NGRIP ice cores, The Cryosphere, 8, 1129–1138, https://doi.org/10.5194/tc-8-1129-2014, 2014a.
Montagnat, M., Castelnau, O., Bons, P. D., Faria, S. H., Gagliardini, O.,
Gillet-Chaulet, F., Grennerat, F., Griera, A., Lebensohn, R. A., Moulinec,
H., Roessiger, J., and Suquet, P.: Multiscale modeling of ice deformation
behavior, J. Struct. Geol., 61, 78–108,
https://doi.org/10.1016/j.jsg.2013.05.002, 2014b.
Montagnat, M., Chauve, T., Barou, F., Tommasi, A., Beausir, B., and
Frassengeas, C.: Analysis of dynamic recrystallisation of ice from EBSD
orientation mapping, Front. Earth Sci., 3, 13, https://doi.org/10.3389/feart.2015.00081, 2015.
Monz, M. E., Hudleston, P. J., Prior, D. J., Michels, Z., Fan, S., Negrini, M., Langhorne, P. J., and Qi, C.: Full crystallographic orientation (c and a axes) of warm, coarse-grained ice in a shear-dominated setting: a case study, Storglaciären, Sweden, The Cryosphere, 15, 303–324, https://doi.org/10.5194/tc-15-303-2021, 2021.
Nerem, R. S., Beckley, B. D., Fasullo, J. T., Hamlington, B. D., Masters, D., and
Mitchum, G. T.: Climate-change–driven accelerated sea-level rise detected in
the altimeter era, P. Natl. Acad. Sci. USA, 115,
2022–2025, 2018.
Passchier, C. W.: Reconstruction of deformation and flow parameters from
deformed vein sets, Tectonophysics, 180, 185–199, 1990.
Peternell, M. and Wilson, C. J.: Effect of strain rate cycling on
microstructures and crystallographic preferred orientation during
high-temperature creep, Geology, 44, 279–282, 2016.
Piazolo, S., Bons, P. D., Griera, A., Llorens, M. G., Gomez-Rivas, E., Koehn,
D., Wheeler, J., Gardner, R., Godinho, J. R., Evans, L., and Lebensohn, R. A.: A
review of numerical modelling of the dynamics of microstructural development
in rocks and ice: Past, present and future, J. Struct. Geol.,
125, 111–123, 2019.
Qi, C., Goldsby, D. L., and Prior, D. J.: The down-stress transition from
cluster to cone fabrics in experimentally deformed ice, Earth Planet.
Sc. Lett., 471, 136–147, 2017.
Qi, C., Prior, D. J., Craw, L., Fan, S., Llorens, M.-G., Griera, A., Negrini, M., Bons, P. D., and Goldsby, D. L.: Crystallographic preferred orientations of ice deformed in direct-shear experiments at low temperatures, The Cryosphere, 13, 351–371, https://doi.org/10.5194/tc-13-351-2019, 2019.
Richards, D. H., Pegler, S. S., Piazolo, S., and Harlen, O. G.: The evolution of
ice fabrics: A continuum modelling approach validated against laboratory
experiments, Earth Planet. Sc. Lett., 556, 116718, https://doi.org/10.1016/j.epsl.2020.116718, 2021.
Skemer, P., Katayama, I., Jiang, Z., and Karato, S. I.: The misorientation
index: Development of a new method for calculating the strength of
lattice-preferred orientation, Tectonophysics, 411, 157–167, 2005.
Smith, E. C., Baird, A. F., Kendall, J. M., Martín, C., White, R. S., Brisbourne, A. M., and Smith, A. M.: Ice fabric in an Antarctic ice stream interpreted from seismic anisotropy, Geophys. Res. Lett., 44, 3710–3718, 2017.
Steinbach, F., Bons, P. D., Griera, A., Jansen, D., Llorens, M.-G., Roessiger, J., and Weikusat, I.: Strain localization and dynamic recrystallization in the ice–air aggregate: a numerical study, The Cryosphere, 10, 3071–3089, https://doi.org/10.5194/tc-10-3071-2016, 2016.
Thomas, R. E., Negrini, M., Prior, D. J., Mulvaney, R., Still, H., Bowman,
M. H., Craw, L., Fan, S., Hubbard, B., Hulbe, C., Kim, D., and Lutz, F.:
Microstructure and Crystallographic Preferred Orientations of an Azimuthally
Oriented Ice Core from a Lateral Shear Margin: Priestley Glacier,
Antarctica, Front. Earth Sci., 9, 1084, https://doi.org/10.3389/feart.2021.702213, 2021.
Thorsteinsson, T., Kipfstuhl, J., and Miller, H.: Textures and fabrics in the
GRIP ice core, J. Geophys. Res.-Ocean, 102, 26583–26599, 1997.
Thorsteinsson, T., Waddington, E. D., and Fletcher, R. C.: Spatial and temporal
scales of anisotropic effects in ice-sheet flow, Ann. Glaciol., 37, 40–48, 2003.
Treverrow, A., Budd, W. F., Jacka, T. H., amd Warner, R. C.: The tertiary creep of
polycrystalline ice: experimental evidence for stress dependent levels of
strain rate enhancement, J. Glaciol., 58, 301–314, https://doi.org/10.3189/2012JoG11J149, 2012.
Vaughan, M. J., Prior, D. J., Jefferd, M., Brantut, N., Mitchell, T. M., and
Seidemann, M.: Insights into anisotropy development and weakening of ice from
in situ P wave velocity monitoring during laboratory creep, J.
Geophys. Res.-Sol. Ea., 122, 7076–7089, 2017.
Voigt, D. E.: c-Axis Fabric of the South Pole Ice Core, SPC14, U.S. Antarctic
Program (USAP) Data Center [data set], https://doi.org/10.15784/601057, 2017.
Vollmer, F. W.: An application of eigenvalue methods to structural domain
analysis, Geol. Soc. Am. Bull., 102, 786–791, 1990.
Young, N. W. and Hyland, G.: Velocity and strain rates derived from InSAR
analysis over the Amery Ice Shelf, East Antarctica, Ann. Glaciol.,
34, 228–234, 2002.
Wang, Y., Thorsteinsson, T., Kipfstuhl, J., Miller, H., Dahl-Jensen, D., and Shoji, H.: A vertical girdle fabric in the NorthGRIP deep ice core, North Greenland, Ann. Glaciol., 35, 515–520, https://doi.org/10.3189/172756402781817301, 2002.
Weikusat, I., Jansen, D., Binder, T., Eichler, J., Faria, S. H., Wilhelms,
F., Kipfstuhl, S., Sheldon, S., Miller, H., Dahl-Jensen, D., and Kleiner, T.:
Physical analysis of an Antarctic ice core – towards an integration of
micro-and macrodynamics of polar ice, Philos. T.
R. Soc. A, 375, 20150347, https://doi.org/10.1098/rsta.2015.0347, 2017.
Wilson, C. J., Peternell, M., Hunter, N. J., and Luzin, V.: Deformation of
polycrystalline D2O ice: Its sensitivity to temperature and strain-rate as
an analogue for terrestrial ice, Earth Planet. Sc. Lett., 532,
115999, https://doi.org/10.1016/j.epsl.2019.115999, 2020.
Wilson, C. J. L.: Fabrics in polycrystalline ice deformed experimentally at
−108 ∘C, Cold Reg. Sci. Technol., 6, 149–161, 1982.
Wilson, C. J. L. and Peternell, M. A.: Ice deformed in compression and simple
shear: control of temperature and initial fabric, J. Glaciol., 58, 11–22, 2012.
Short summary
Polar ice is formed by ice crystals, which form fabrics that are utilised to interpret how ice sheets flow. It is unclear whether fabrics result from the current flow regime or if they are inherited. To understand the extent to which ice crystals can be reoriented when ice flow conditions change, we simulate and evaluate multi-stage ice flow scenarios according to natural cases. We find that second deformation regimes normally overprint inherited fabrics, with a range of transitional fabrics.
Polar ice is formed by ice crystals, which form fabrics that are utilised to interpret how ice...