Articles | Volume 12, issue 11
https://doi.org/10.5194/tc-12-3535-2018
https://doi.org/10.5194/tc-12-3535-2018
Research article
 | 
13 Nov 2018
Research article |  | 13 Nov 2018

Monitoring snow depth change across a range of landscapes with ephemeral snowpacks using structure from motion applied to lightweight unmanned aerial vehicle videos

Richard Fernandes, Christian Prevost, Francis Canisius, Sylvain G. Leblanc, Matt Maloley, Sarah Oakes, Kiyomi Holman, and Anders Knudby

Related subject area

Discipline: Snow | Subject: Remote Sensing
Simulation of Arctic snow microwave emission in surface-sensitive atmosphere channels
Melody Sandells, Nick Rutter, Kirsty Wivell, Richard Essery, Stuart Fox, Chawn Harlow, Ghislain Picard, Alexandre Roy, Alain Royer, and Peter Toose
The Cryosphere, 18, 3971–3990, https://doi.org/10.5194/tc-18-3971-2024,https://doi.org/10.5194/tc-18-3971-2024, 2024
Short summary
Retrieval of snow and soil properties for forward radiative transfer modeling of airborne Ku-band SAR to estimate snow water equivalent: the Trail Valley Creek 2018/19 snow experiment
Benoit Montpetit, Joshua King, Julien Meloche, Chris Derksen, Paul Siqueira, J. Max Adam, Peter Toose, Mike Brady, Anna Wendleder, Vincent Vionnet, and Nicolas R. Leroux
The Cryosphere, 18, 3857–3874, https://doi.org/10.5194/tc-18-3857-2024,https://doi.org/10.5194/tc-18-3857-2024, 2024
Short summary
Evaluating L-band InSAR snow water equivalent retrievals with repeat ground-penetrating radar and terrestrial lidar surveys in northern Colorado
Randall Bonnell, Daniel McGrath, Jack Tarricone, Hans-Peter Marshall, Ella Bump, Caroline Duncan, Stephanie Kampf, Yunling Lou, Alex Olsen-Mikitowicz, Megan Sears, Keith Williams, Lucas Zeller, and Yang Zheng
The Cryosphere, 18, 3765–3785, https://doi.org/10.5194/tc-18-3765-2024,https://doi.org/10.5194/tc-18-3765-2024, 2024
Short summary
Reanalyzing the spatial representativeness of snow depth at automated monitoring stations using airborne lidar data
Jordan N. Herbert, Mark S. Raleigh, and Eric E. Small
The Cryosphere, 18, 3495–3512, https://doi.org/10.5194/tc-18-3495-2024,https://doi.org/10.5194/tc-18-3495-2024, 2024
Short summary
Tower-based C-band radar measurements of an alpine snowpack
Isis Brangers, Hans-Peter Marshall, Gabrielle De Lannoy, Devon Dunmire, Christian Mätzler, and Hans Lievens
The Cryosphere, 18, 3177–3193, https://doi.org/10.5194/tc-18-3177-2024,https://doi.org/10.5194/tc-18-3177-2024, 2024
Short summary

Cited articles

ANSI/NCSL, Z540-2-1997.: U.S. Guide to the Expression of Uncertainty in Measurement, 1st ed., National Conference of Standards Laboratory, Boulder, USA, 1997. 
Avanzi, F., Bianchi, A., Cina, A., De Michele, C., Maschio, P., Pagliari, D., Passoni, D., Pinto, L., Piras, M., and Rossi, L.: Measuring the snowpack depth with Unmanned Aerial System photogrammetry: comparison with manual probing and a 3D laser scanning over a sample plot, The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-57, 2017. 
Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a warming climate on water availability in snow-dominated regions, Nature, 438, 303–309, 2005. 
Brown, R., Brasnett, B., and Robinson, D.: Gridded North American monthly snow depth and snow water equivalent for GCM evaluation, Atmos.-Ocean, 41, 1–14, 2003. 
Download
Short summary
The use of lightweight UAV-based surveys of surface elevation to map snow depth and weekly snow depth change was evaluated over five study areas spanning a range of topography and vegetation cover. Snow depth was estimated with an accuracy of better than 10 cm in the vertical and 3 cm in the horizontal. Vegetation in the snow-free elevation map was a major source of error. As a result, the snow depth change between two dates with snow cover was estimated with an accuracy of better than 4 cm.