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Abstract. Differencing of digital surface models derived
from structure from motion (SfM) processing of airborne im-
agery has been used to produce snow depth (SD) maps with
between ∼ 2 and ∼ 15 cm horizontal resolution and accura-
cies of ±10 cm over relatively flat surfaces with little or no
vegetation and over alpine regions. This study builds on these
findings by testing two hypotheses across a broader range
of conditions: (i) that the vertical accuracy of SfM process-
ing of imagery acquired by commercial low-cost unmanned
aerial vehicle (UAV) systems can be adequately modelled us-
ing conventional photogrammetric theory and (ii) that SD
change can be more accurately estimated by differencing
snow-covered elevation surfaces rather than differencing a
snow-covered and snow-free surface. A total of 71 UAV mis-
sions were flown over five sites, ranging from short grass
to a regenerating forest, with ephemeral snowpacks. Point
cloud geolocation performance agreed with photogrammet-
ric theory that predicts uncertainty is proportional to UAV
altitude and linearly related to horizontal uncertainty. The
root-mean-square difference (RMSD) over the observation
period, in comparison to the average of in situ measurements
along ∼ 50 m transects, ranged from 1.58 to 10.56 cm for
weekly SD and from 2.54 to 8.68 cm for weekly SD change.
RMSD was not related to microtopography as quantified by
the snow-free surface roughness. SD change uncertainty was
unrelated to vegetation cover but was dominated by outliers
corresponding to rapid in situ melt or onset; the median ab-
solute difference of SD change ranged from 0.65 to 2.71 cm.
These results indicate that the accuracy of UAV-based esti-
mates of weekly snow depth change was, excepting condi-

tions with deep fresh snow, substantially better than for snow
depth and was comparable to in situ methods.

1 Introduction

The temporal and spatial pattern of snow depth (SD) is of
importance to hydrological, ecological and climate studies
(GCOS, 2016). Together with representative estimates of
snow density, time series of SD are indicative of changes
in snow water equivalent that in turn are of importance
to streamflow forecasting and management of hydroelectric
resources (Clyde, 1939; Barnett et al., 2005; DeWall and
Rango, 2008). In many ecosystems, SD is an important de-
terminant of winter habitat in terms of range and access to
forage (Bokhorst et al., 2016). Snow depth also exerts an in-
fluence on local climate through insulation of permafrost and
ice and global climate through its role in snow albedo feed-
backs (IPCC, 2013, 2014; Bokhorst et al., 2016).

Systematic monitoring of SD is currently performed us-
ing in situ networks (e.g. Worley et al., 2015; Reges
et al., 2016; https://globalcryospherewatch.org/projects/
snowreporting.html, last access: 24 October 2018) provid-
ing daily measurements using automated sensors and less
frequent measurements using manual sampling with rulers.
The former are typically fixed in location with spatial sam-
pling footprints from 1 to 10 m2 (e.g. Ryan et al., 2008; de
Haij, 2011) with the exception of Global Positioning System
(GPS) instruments that can estimate the mean snow depth
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over a footprint of ∼ 104 m2 (Larson, 2014). The sampled
footprint for manual measurements is typically under 10 m2

(US Department of Commerce, 1997; Ryan et al., 2008; Me-
teorological Service of Canada, 2016). While in situ moni-
toring networks offer frequent temporal sampling, with the
exception of GPS approaches, their spatial sampling can be
imprecise and is often biased in terms of their representa-
tiveness of surrounding landscapes (Gelfan, 2004; Essery
and Pomeroy, 2004; Neumann et al., 2010; Wrzesien et al.,
2017). A GPS survey may offer a solution for an average
SD estimation over open terrain, although measurement er-
ror is larger than for manual methods (e.g. Larson et al.,
2014, report bias and precision of −5.7 cm and 10.3 cm re-
spectively when estimating SD of a snowpack typically un-
der 1 m in depth). Irrespective of measurement method, in
situ SD monitoring sites can have vastly different microcli-
mates and topographic conditions than less accessible areas
nearby, thus increasing the potential for biases in estimated
SD (Brown et al., 2003). One solution to address the lim-
itation of sparse and potentially spatially biased in situ SD
monitoring is to estimate the spatio-temporal SD pattern by
combining in situ SD time series and maps of SD change
(1SD) derived from remote-sensing methods (e.g. Liu et
al., 2017). Remote SD mapping at a similar or better reso-
lution of automated in situ measurements (i.e. < 1 m2) can
be performed using airborne survey with lidar (e.g. Deems
et al., 2013; Harpold et al., 2014) or photogrammetric imag-
ing (e.g. Nolan et al., 2015). Here we consider photogram-
metric imaging approaches due to both their potential cost
effectiveness and the widespread availability of unmanned
aerial vehicle (UAV) systems. Nolan et al. (2015) used struc-
ture from motion (SfM; Westoby et al., 2012) processing of
15 cm ground sampling distance (GSD) digital images from a
manned aircraft at an altitude of∼ 750 m above ground level
(a.g.l.) to map SD with an accuracy (precision) of ±10 cm
(8 cm at 1 standard deviation) in comparison to individual
probe measurements over relatively flat surfaces. Similar re-
sults were subsequently reported using UAV systems, with a
GSD ranging from ∼ 2 to ∼ 10 cm and altitude from 60 to
130 m a.g.l., over prairies (Harder et al., 2016), alpine shrub
lands (Bühler et al., 2016; De Michele et al., 2016; Harder et
al., 2016; Avanzi et al., 2017) and glaciers (Gindraux et al.,
2017). Even greater accuracy (1.5 to 3.8 cm) and precision
(4.2 to 9.8 cm at 1 standard deviation) have been reported for
1SD mapping over tundra (Cimoli et al., 2017) and alpine
terrain (Vander Jagt et al., 2015) when using very low (10–
30 m a.g.l.) altitude acquisitions with a GSD less than 4 cm.

While current studies provide increasing evidence of the
potential for SD mapping over certain landscapes using
multi-date UAV imagery, there are a number of issues that
must be addressed if this approach is to be applicable for
routine seasonal estimation of SD or 1SD over natural land-
scapes. A pressing issue is the need to test the performance
of this approach over a range of snowpack, vegetation and
terrain conditions (De Michele et al., 2016). Studies indicate

the presence of large (> 10 cm) errors under specific illumi-
nation, snowpack, vegetation or terrain conditions. The re-
duced contrast in imagery of homogenous snowpacks (due
to fresh snow covering all vegetation) under overcast con-
ditions results in reduced point cloud density (Nolan et al.,
2015; Bühler et al., 2017) and can lead to the failure of com-
mercial SfM algorithms (Harder et al., 2016). While this is-
sue may be partly addressed by using both visible and near-
infrared imaging (Bühler et al., 2017), it may also be less of
a factor when there is structure in the snowpack due to emer-
gent vegetation and when GSD is sufficiently high to identify
the intersection of snow and vegetation. Dense low vegeta-
tion compressed by the snowpack can result in SD underes-
timates due to a positive elevation bias in the snow-free ref-
erence image (Nolan et al., 2015; Bühler et al., 2016; Cimoli
et al., 2017; De Michele et al., 2016). Vegetation above the
snowpack can result in local overestimates of SD if it is in-
correctly interpreted as the snowpack surface (Nolan et al.,
2015; Harder et al., 2016). Topographic shadowing can have
the same impact as overcast conditions when estimating SD
over homogenous snowpacks (Bühler et al., 2017). However,
the shading from vegetation and microtopography on SD es-
timates has not been studied systematically in the sense of
considering different terrain roughness under the same snow-
pack and acquisition conditions.

A second issue that has yet to be addressed is the perfor-
mance of UAV imaging approaches for estimating 1SD be-
tween two dates with partial or complete snow cover. Cur-
rent UAV imaging methods may have a practical lower limit
of ∼ 30 cm SD due to the combined errors in estimating
the snow-covered and snow-free surface elevation (Harder et
al., 2016; Schirmer and Pomeroy, 2018). However, in many
circumstances 1SD may still have relevance (e.g. for tem-
poral monitoring or for estimating SD using a single refer-
ence snow-covered date when SD is well approximated us-
ing in situ methods). Errors due to factors such as vegeta-
tion and terrain may be spatially correlated so that estimates
of 1SD among short periods (e.g. weekly) may be substan-
tially more accurate than estimates of SD itself. There is a
need to compare the relative accuracy and temporal preci-
sion of SD and 1SD estimates, especially for areas with
ephemeral snow packs.

A third issue is the need to model the uncertainty of eleva-
tion estimates as a function of UAV mission parameters. This
is required to both guide mission parameters and understand
the potential limits of current technologies and prospects
for improvements in UAV performance and camera systems.
Nasrullah (2016) demonstrated that photogrammetric theory
could be used for this purpose when estimating the elevation
of fabricated targets using UAV imagery and SfM over fab-
ricated targets. A similar modelling approach has yet to be
tested over snow-covered surfaces.

A fourth issue is the need to have robust low-cost equip-
ment and software for data acquisition and processing (Nolan
et al., 2015). Lightweight systems that require minimal flight
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certification are especially desirable considering that snow
surveys may be episodic in both time and space. Nas-
rullah (2016) found that using commercial SfM software
(Pix4D version 2.1.100) with imagery from off-the-shelf
UAV systems weighing less than 2 kg and costing under
USD 1000 (Phantom 2 Vision+) provided performance com-
parable to larger drones. There is a need to evaluate similar
systems for1SD mapping over a range of environmental and
surface conditions.

The issues that remain to be addressed regarding UAV-
based mapping of SD require multiple experimental treat-
ments including climate and snow conditions that cannot eas-
ily be controlled and land surface conditions that can be con-
trolled. Here we chose to control the survey methodology by
using a single low-cost commercially available solution for
UAV-based mapping of three-dimensional point clouds and
select mission parameters that should maximize the accu-
racy of elevation estimation based on photogrammetric the-
ory, even if the solution may not be optimal in the sense
of logistical constraints of time or cost. Secondly, we select
sites with a range of microtopography and vegetation cover
but limit vegetation cover to < 50 % and only validate SD in
openings. This strategy simplifies the approach used to ex-
tract surface locations within three-dimensional point clouds
leaving the issue of UAV-based SD mapping under closed
canopies for further study. Thirdly, we locate the sites within
regions of ephemeral snowpack since this should correspond
to a worst-case assessment of uncertainty, especially with re-
spect to 1SD. Given these limitations, the initial broad re-
search question regarding snow depth mapping is refined into
two specific research questions addressed in this study:

– What is the accuracy and uncertainty of SD and weekly
1SD maps derived using small commercial UAVs and
commercial SfM technology as a function of varying
microtopography and snowpack condition in sparsely
vegetated regions with ephemeral snowpacks?

– How well does the uncertainty of 1SD maps and their
corresponding digital surface models correspond to a
priori estimates based on photogrammetric theory?

Our null hypothesis is that SD accuracy will be similar to
that of previous studies, with greater biases in the presence
of vegetation, but the accuracy of weekly 1SD will be lower
due to correlated errors related to surface conditions. Fur-
ther, we hypothesize that, except for very smooth snowpack
conditions, the accuracy of weekly 1SD and digital surface
models will correspond to the expected accuracy from pho-
togrammetric theory. For very smooth snowpack conditions
we hypothesize that there will be a decrease in key point
matching density (as observed over glaciers by Gindraux et
al., 2017) that in turn will result in accuracy less than ex-
pected from theory.

In Sect. 2 the study sites and methods used to estimate and
validate 1SD maps are described. A theoretical estimate of

the precision of 1SD as a function of mission parameters
is also proposed. Results are presented in Sect. 3. Section 4
discusses these results in the context of the experimental con-
ditions and their applicability to the research question. Con-
clusions with respect to the two research questions are given
in Sect. 5.

2 Methods

2.1 Study sites

Five study sites were located in two study regions: Gatineau
and Acadia. To simplify the acquisition of permits for in
situ and UAV surveys, both study regions corresponded
to land owned by the government of Canada. The separa-
tion between regions was partly due to the availability of
staff to perform surveys but also due to a desire to sam-
ple different snowpack and land surface conditions. Cli-
mate and weather data were acquired from Environment and
Climate Change Canada data (http://climate.weather.gc.ca/
historical_data/search_historic_data_e.html, last access: 24
October 2018).

The Gatineau region (Fig. 1) was located at 45◦35′ N lat-
itude and 75◦54′W longitude in Gatineau Park (a 391 km2

federal park near Ottawa, Canada). The region consisted of
land used for hay production with the meandering Meech
Creek flowing across the southern half. Table 1 indicates
recorded and climatological monthly rain, snow and temper-
atures for the nearest climate station (Chelsea, Quebec, at
45◦31′ N, 75◦47′W, 112.50 m above sea level (a.s.l.)). Dur-
ing 2016, monthly air temperature was similar to the climate
normal but rain (snow) was substantially higher (lower) than
normal for March and lower (higher) for April. Two sites
with alternatively flat and hilly macrotopography were es-
tablished in the Gatineau region.

Gatineau North (GN) was a rectangular site of ∼ 2.0 ha
with grass cover less than 5 cm high over a flat surface.
Gatineau South (GS) was a rectangular site of ∼ 3.2 ha cen-
tred on Meech Creek. The northern portion of GS (Fig. 1)
shared the same conditions as GN. The centre and southern
portion of GS covered the river valley including spur hill-
slopes. Northern hillslopes where in situ transects were lo-
cated were covered by low shrubs and grasses (< 10 cm).
Shrubs up to 1 m in height covered southern hillslopes.
A small forested area was located at the southwest cor-
ner of GS.

The Acadia region (Fig. 1) was located at 45◦58′ N latitude
and 66◦19′W longitude in the Acadian Research Forest (a
91.6 km2 managed forest near Fredericton, Canada; Swift et
al., 2006). The region consisted of three parcels of managed
forest land, corresponding to sites Acadia A (AA), Acadia B
(AB) and Acadia C (AC), separated by mature forest bound-
aries on gently undulating terrain. Table 1 indicates recorded
and climatological monthly rain, snow and temperatures for
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Figure 1. (a) Gatineau region showing the GN (pink) and GS (yel-
low) sites and (b) Acadia region showing the AA (red), AB (ma-
genta) and AC (gold) sites. Also indicated are ground control points
(hollow circles) and in situ transects (blue lines). Map data: Google,
Digital Globe.

the nearest climate station (Fredericton, New Brunswick, at
45◦52′08′′ N, 66◦32′14′′W, 20.70 m a.s.l.). During 2016, air
temperature was similar to the climate normal but rain (snow)
was substantially lower (higher) than normal from February
to April.

AA was a relatively flat trapezoidal site of ∼ 3 ha with
grass (< 5 cm) and stumps (< 20 cm). AB was a hummocky
rectangular site of ∼ 4.5 ha with stumps (< 20 cm) and sub-
stantial brush and shrubs (< 1 m) left over from clearing. AC
was a rectangular site of ∼ 4.5 ha with recently planted bal-
sam fir (Abies balsamea (L.) Mill.) ranging from 1 to 5 m in
height. AC was also hummocky, although shrubs and herbs
had covered most stumps. The sites were separated by mature
mixed wood stands up to 20 m in height with balsam fir, red
maple (Acer rubrum L.) and white birch (Betula papyrifera
Marsh.).

2.2 Ground control points

Ground control points (GCPs) were established for each site
for geolocation of UAV imagery and derived maps. The num-
ber and location of GCPs were determined based on the work
of Tonkin and Midgley (2016), who assessed the perfor-
mance of a digital surface model (DSM) derived from SfM
processing of UAV imagery acquired at 100 m a.g.l. over a
grassy landscape. Following their recommendation, at least
five GCPs were positioned within the UAV coverage at each
site and at least one GCP near the corner of each site. AC
was an exception as GCPs could not be located at the north-

ern edge due to access constraints. Six GCPs were located
in GN and 10 GCPs in GS with 95 % circular error of proba-
bly less than 2.05 cm (Prévost et al., 2016a). For Acadia, four
GCPs were located in AA, five GCPs in AB and two GCPs in
AC with a 95 % circular error of probably less than 2.46 cm
(Prévost et al., 2016b). GCP targets of either 30 cm square
plywood or 15 cm diameter plastic disks were suspended be-
tween 1 and 1.3 m above ground level to avoid artificially
increasing the accuracy of SD estimates by placing control
points on the snowpack surface (Supplement Sect. S1). GCPs
were located using ASHTECH Z-Xtreme dual-frequency in-
struments using precise point positioning.

2.3 In situ 1SD measurement

Transects of ∼ 50 m in length (see Fig. 1) were positioned
at each site within 5 m of a GCP. Each site had one tran-
sect except for GS where two transects were located (GS-1
in the flat northern portion and GS-2 along and across a spur
hillslope leading into the floodplain). Along each transect,
12 48′′× 2′′× 1′′ wooden stakes were placed equally spaced
apart ∼ 10 cm deep and approximately vertical. The attitude
of the stakes was measured at the start and end of the field
season using a digital level to a precision of 0.1◦. The ele-
vation of the stakes above the soil layer was measured at the
end of the field season using a plumb line and tape measure
to a precision of better than ±0.5 cm (95 % confidence in-
terval). In situ 1SD was estimated at each stake using the
protocol described in Oakes et al. (2016) to process digital
images of stakes taken using a 14 Mpixel camera with a tele-
photo lens (Sect. S2). When comparing snow-covered condi-
tions, the uncertainty for measuring the1SD assuming inde-
pendent errors in determining the exposed stake freeboard
is ∼ 2.06 cm (95 % confidence interval) for typical uncer-
tainties in delineating the snowpack at the base of a stake
and measuring the stake angle (Oakes et al., 2016). As both
sources of uncertainty are spatially random, the uncertainty
in estimating the average snow depth using all 12 stakes in a
transect is estimated at∼ 0.60 cm (95 % confidence interval).

2.4 UAV missions

Missions were performed weekly at Gatineau (26 Jan-
uary 2016 to 19 April 2016) and Acadia (10 February 2016
to 14 April 2016), during periods without precipitation at
the start of the mission, using a Phantom Pro 3 Plus UAV
(https://www.dji.com/phantom-3-pro, last access: 24 Octo-
ber 2018; P3P). The same UAV was used for all missions
in a region. Imagery was acquired using the provided gimbal
mounted 12.4 Mpixel rolling-shutter camera with a f2.8 fixed
aperture in auto-exposure mode recording in 4K MPEG-4
AVC/H.264 format (MP4) (see Table S1). MP4 was used in
preference to full-resolution photographs since (i) the system
firmware limited the maximum photograph sampling rate to
1 frame per 2 s and (ii) the 4K video frames have almost iden-
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Table 1. Monthly climate data representative of study sites. Normals correspond to 1981 to 2010.

Month Chelsea, Quebec (Gatineau region) Fredericton, New Brunswick (Acadia region)

T (◦C) Rainfall (mm) Snowfall (mm) T (◦C) Rainfall (mm) Snowfall (mm)

2016 Normal 2016 Normal 2016 Normal 2016 Normal 2016 Normal 2016 Normal

January −9.2 −11.0 37.2 22.7 29.2 47.9 −6.5 −9.4 25.4 42.4 10.7 59.5
February −9.8 −8.8 10.0 20.5 41.0 38.7 −5.4 −7.5 12.0 31.7 89.9 38.4
March 1.9 −3.0 106.9 34.6 5.2 26.5 −2.1 −2.2 7.2 45.2 82.0 44.9
April 2.5 5.7 21.4 68.4 27.4 6.0 3.7 4.8 20.4 68.1 23.9 13.5
May 12.4 12.6 7.3 89.0 0 0 11.8 11.3 56.7 103.1 0 0.7

tical resolution to the full-resolution photographs (Leblanc,
2018). Auto-exposure mode was used since the flights en-
countered rapid variations between sunlit and shaded snow
and vegetation areas making it challenging to adjust expo-
sure manually during the flight.

Litchi v3.0.4 (https://flylitchi.com/new, last access: 24 Oc-
tober 2018) flight planning software was used to create flight
plans. The same flight plan was used for all missions at a site.
Flight plans were defined using equally spaced parallel linear
tracks flying oriented north to ensure consistent locations of
shadows among dates. The exception was AC where tracks
were oriented parallel to the GPS targets at AB to maximize
overlap over these targets. Cross tracks were not used since
this would increase flight time and since Nasrullah (2016)
found that they did not significantly improve point cloud ac-
curacy or density when using data acquired using a similar
consumer-grade UAV and SfM software. Flight plans, using
nadir view geometry, were defined to cover rectangular (tri-
angular in the case of AA) regions with a buffer of 100 m
to ensure adequate side views at the edges of each study
area and to include GCPs from adjacent sites. Flights were
planned such that the UAV was always flying along the ver-
tical axis of the camera to minimize post-processing com-
plexity. Turns were limited to 90◦ with smoothing of arcs to
provide adequate side overlap during the turn.

Mission parameters were optimized to minimize the verti-
cal precision error in altitude H (σH ) derived from the block
triangulation of images at matching key points covering a
nominal mapped extent of 10 ha assuming a 15 min flight
(Sect. S3). For a matching key point found inK images, each
acquired at a lateral distance of dk from the key point, the
vertical precision error is modelled as (Forstner, 1998)

σH =
H 2

c

σx
√

12√
K∑
k=1

dk

, (1)

where σx is the average horizontal uncertainty when match-
ing the location in each image pair on the camera focal plane
and c is the lens focal length. Ignoring edges of flight tracks,
{dk}, and σH will therefore be a function of the along-track
image spacing (by), the across-track image spacing (bx) and

H . With 4K video it is generally possible to choose a frame
sampling rate f such that by ≤ bx .

Equation (1) assumes that matches are found in all over-
lapping images. Based strictly on geometric considerations,
for the P3P with H ≤ 100 m and bx < 40 m, we expect K >

20 matches. In practice, K is much lower than 20 due to
the difficulty in matching the same feature in multiple im-
ages (Nasrullah, 2016). Adopting the worst-case assumption
that the matched images are closest to the key point location
and assuming similar along- and across-track spacing, from
Forstner (1998),

σH ≤
H 2

cbx

σx
√

12√
K
(
K2− 1

) . (2)

Here, σx was estimated as the Euclidean sum of the mean
reprojection error after block adjustment σre, the uncorrected
motion blur during integration of the detector signal (σm) and
the uncorrected rolling shutter motion (σrs).

σ 2
x = σ

2
re+ σ

2
m+ σ

2
rs (3)

Mean reprojection error is computed during block adjust-
ment by the Pix4Dmapper Pro. Motion blur is given by

σm =
vycτe

Hl
, (4)

where vy is the along-track velocity, c is the lens focal length,
τe is the exposure time and l is the detector size along the
track. Rolling-shutter correction error is determined by the
uncertainty in v and the sensor readout time τs:

σrs = σv
cτs

Hl
. (5)

Estimates of K , σre, σm and σrs were required to model σH .
Trial flights (Supplement Sect. 3) were used to determine
ranges for K (4.3 matches to 7.4 matches), σre (0.179 pixels
to 0.209 pixels) and τe (0.017 to 0.005 s). Worst-case values
of σre = 0.25 pixels and τe = 0.02 s were used for selecting
flight parameters. We did not have sufficiently accurate on-
board sensors to provide reference values of σv . Instead, we
relied on a published comparison of v based on imagery from
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a Pix4D block adjustment and on-board measurement (Vau-
therin et al., 2016) indicating σv ≈ 0.05v.

Using measurements from the training flights, the rela-
tionship between σH and H was modelled for the average
and extreme values of K using the 10 ha minimum area
constraint to relate vy to bx . Figure 2 indicates that σH in-
creases almost linearly withH for any givenK , although the
rate of increase is steeper for low K . This result indicates
it is critical to select the lowest feasible H . At H = 50 m
the sensitivity of σH to bx is negligible (< 10 % σH ) for
15m≤ bx ≤ 30 m. Here we selected bx = 15m to maximize
across-track overlap since we were able to increase f to
achieve a constant along-track overlap irrespective of bx .
This was important since the density of key point matches
per square metre mapped (D) increases with overlap with all
other parameters fixed (Nasrullah, 2016). The selected flight
parameters predict a σH = 1.44 cm forK = 5 matches (rang-
ing from σH = 0.92 cm for K = 8 matches to σH = 3.73 cm
for K = 3) matches. As 1SD was later estimated by com-
puting the temporal difference of DSM (Sect. 2.7), the pre-
cision error in 1SD, assuming uncorrelated errors in H be-
tween two dates, corresponds to the Euclidean sum of σH
for each date. Ignoring uncertainty due to surface roughness
for snow-free conditions, σ1SD = 1.2 cm where both dates
haveK = 8 matches, σ1SD = 2.14 cm where both dates have
K = 5 matches and a worst-case σ1SD = 5.25 cm where both
dates have K = 3 matches.

Each UAV mission resulted in two consecutive MP4
videos (due to a limitation of 3.91 GB for a sin-
gle MP4 file) and an ephemeris file providing the
P3P position and attitude with a temporal resolution of
about 0.1 s. Data from each mission were processed in
Pix4Dmapper Pro version3.2 (https://pix4d.com/product/
pix4dmapper-photogrammetry-software/, last access: 24 Oc-
tober 2018) as described in Sect. S5.

2.5 Assessment of microtopography

Microtopography was assessed for each transect within each
site using a snow-free point cloud acquired within 1 week
of complete snowmelt. Compressed vegetation was included
within microtopography since it also acts to bias estimates
of SD (Harder et al., 2016). Microtopography was quanti-
fied as the deviation from a local robust linear slope trend
(MATLAB function “lmfit” with robust option, https://www.
mathworks.com/help/stats/fitlm.html, last access: 24 October
2018) with a 15 m moving window oriented along the tran-
sect. Deviations greater than the maximum snowpack eleva-
tion at each transect during the season were removed when
computing the RMSD over a transect to eliminate overstory
vegetation that normally would be above the snowpack.

0

5

10

15

20

25

30

35

40 50 60 70 80 90 100 110

s
H

(c
m

)

H (m)

10 m
15 m
20 m

Across-track spacing

Figure 2. Theoretical relationship between vertical uncertainty and
UAV height. Solid lines correspond to five matching images per key
point. Upper (lower) bars correspond to three (eight) matching im-
ages per key point.

2.6 Elevation and overstory cover extraction

Surface elevations were extracted from each point cloud in a
sampling region at a constant sampling region around each
stake. The sampling region corresponded to a 2 m tall verti-
cal elliptic cylinder centred on the nominal horizontal loca-
tion of a stake and extended 50 cm below the nominal ver-
tical location of a stake. The horizontal (vertical) centre of
the sampling region was specified as the average (average
less 50 cm) of the visually determined location of the base
of the stake from the colourized point clouds for two mis-
sions acquired during sunny conditions with less than 5 cm
of snow depth. The 50 cm vertical offset was required to ac-
count for both point cloud geolocation uncertainty and local
topography (including snow pits due to melt at the base of
the stake) close to the stake. The horizontal major and minor
axes of the cylinder were specified to approximate twice the
Euclidean sum of geolocation uncertainty of the point cloud
and the typical geolocation uncertainty of the stake corre-
sponding to the difference between both reference image lo-
cations. These considerations typically resulted in horizontal
axis lengths ranging from 10 to 24 cm depending on the pre-
cision of the stake geolocation among reference images.

The average overstory vegetation cover in the vicinity of
transect sampling locations was estimated for each UAV mis-
sion. Overstory vegetation cover near each stake was esti-
mated for a 1 m radius cylinder centred horizontally at each
nominal stake location as the fraction of grid cells where at
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least one other point was found vertically above a surface
point. A 1 m radius was used as an approximation of points
within the field of view of images used to map the elevation
in the smaller region used around each stake.

2.7 1SD estimation from point clouds

1SD was estimated for each transect using geolocated point
clouds. For each point cloud, snow cover points were identi-
fied in each sampling region using points exceeding the 50th
percentile of the blue band in a sampling region. The blue
band was used as a simple indication of snow considering
that vegetation and shadows should both have substantially
lower blue intensity in a region with similar view geometry
and similar top-of-canopy illumination conditions (Miller et
al., 1997). To minimize bias due to the presence of melt de-
pressions at the base of each stake and due to snow on vege-
tation, the median elevation of snow cover points within the
sampling region was used to estimate the snow surface ele-
vation at the corresponding stake.

The snow-free surface elevation was derived from a point
cloud produced using an UAV flight over snow-free condi-
tions within 1 week after complete snowmelt. For each sam-
pling region, the snow-free elevation was estimated as the
median elevation of all points unobstructed by points ver-
tically below them. For each UAV flight, the average 1SD
across all sampling windows for the transect was used to esti-
mate the transect1SD. The precision of1SD was estimated
using the central percentile 67.5 interval of sampled 1SD
within the transect to include both measurement error and
natural variability.

2.8 Performance assessments

The performance of geolocated DSMs and 1SD, in compar-
ison to reference values from GCPs and in situ transects re-
spectively, was quantified in terms of accuracy, precision and
uncertainty statistics following ANSI/NCSL (1997). Here
accuracy is defined as the mean difference between validated
and referenced data (i.e. the bias), precision is the RMSD
after subtracting the accuracy from the validated data and
uncertainty is the RMSD between the validated and refer-
ence data. For convenience, we use the term “bias” for ac-
curacy and “RMSD” for uncertainty when discussing DSMs
and 1SD performance. In contrast to previous studies that
report RMSD in comparison to individual in situ sample lo-
cations, assessments were performed using transect averages
since addressing the broader research goal of combining in
situ and UAV-based1SD requires an assessment of UAV es-
timates of 1SD over a sampling footprint comparable to the
reported in situ measurement (i.e. transect average at ruler
locations). Camera calibration performance was assessed in
terms of the percentage of images (P) successfully calibrated
using a single block adjustment, the number of key point
matches per image and D.

3 Results

3.1 Data acquisition

UAV flights were conducted on 13 days at Gatineau and 16
days at Acadia, resulting in 74 missions. For brevity, re-
sults for a mission are referenced using the site acronym
followed by the date (e.g. GS 26 January 2016 is the
Gatineau South mission for 26 January 2016). Flights were
performed between 10:00 and 14:00 local time. Environ-
mental conditions for each date are provided in Tables 2
and 3 based on the nearest climate station. Maximum daily
temperatures at Gatineau (Acadia) ranged from −7.6 ◦C
(−9.0 ◦C) to 14.5 ◦C (11.5 ◦C) and can be considered rep-
resentative of typical temperature variability during late win-
ter and spring melt periods. Hourly average wind speed at
10 m a.g.l. ranged from 3 to 26 km h−1, although the higher
value may not be representative of local conditions since
flights were not conducted if there was strong evidence of
surface gusts or swaying conifer trunks. Sky conditions in-
cluded both cloudy and overcast with one instance (GN
10 February 2016) in which snow was falling. Snowpack
conditions included fresh snow, icy snow, wet snow, patchy
snow (incomplete cover) and no snow. Ephemeral melt, pre-
ceded by over 10 mm of rain, occurred at both Gatineau
(2 February 2016) and Acadia (18 February 2019). Three
missions were not processed due to issues with the recorded
data (see Sect. S6).

3.2 UAV data processing

A total of 71 missions were processed with Pix4D (details in
Sect. S6). Of these, three missions over GN, corresponding
to either snowing or icy snow conditions, resulted in < 500
matches per image and subsequently< 50 %. Two other mis-
sions (GN 29 February 2016 and AB 8 March 2016) also re-
sulted in P < 50 %. During both of these missions, there was
spatially uniform fresh snow that possibly reduced the num-
ber of spatial features suitable for matching. The remainder
of the missions were each processed using a single block ad-
justment with a median P = 97 % (minimum= 80 %).

The key point match density varied substantially between
missions and sites (Fig. 3). Fresh snow or ice conditions re-
sulted inD < 10 matches m−2 irrespective of the site. Season
average D was higher over Acadia (83 matches m−2) than
Gatineau (28 matches m−2), even considering only dates
without icy or fresh snow (91 matches m−2 for Acadia ver-
sus 42 matches m−2 for Gatineau). For dates at or exceeding
the median D, K ranged from 4 to 8 (not shown). Pix4D
does not provide a similar statistic over sub-areas. Missions
with differing sky conditions but constant snowpack condi-
tions only occurred at AA for one pair of dates (8 March 2016
and 10 March 2016) when missions were repeated due to in-
strument failure on the first date at AB. For these two mis-
sions, D was higher under clear versus overcast conditions

www.the-cryosphere.net/12/3535/2018/ The Cryosphere, 12, 3535–3550, 2018



3542 R. Fernandes et al.: Monitoring snow depth change using an UAV

Table 2. Environmental conditions during P3P missions over Gatineau. Rain and snow correspond to cumulated totals since the previous
mission. Melt periods are in bold font.

Tmax Cum. rain Cum. snow Wind speed Sky Snow
Date ◦C mm cm km h−1 conditions conditions

26 Jan 2016 −5.5 No data No data 12 Clear Icy
2 Feb 2016 0.5 10.8 1.6 3 Clear Wet
10 Feb 2016 −3.5 0 6.4 4 Snowing Dry
12 Feb 2016 −5.5 0 2.0 10 Overcast Fresh snow
17 Feb 2016 0.5 0 23.6 3 Overcast Icy
18 Feb 2016 −6.5 0 0.6 7 Clear Dry
22 Feb 2016 −7.6 10.0 5.4 11 Clear Icy
29 Feb 2016 0.1 27.4 9.2 9 Overcast Dry
4 Mar 2016 −6.0 0 9.1 10 Clear Icy
17 Mar 2016 7 33.4 0 6 Clear Wet
21 Mar 2016 4 0 0 18 Clear Wet
26 Mar 2016 3.8 11.0 5.2 11 Clear Wet
19 Apr 2016 14.5 72.4 0 22 Clear Bare

Table 3. Environmental conditions during P3P missions over Acadia. Rain and snow correspond to cumulated totals since the previous
mission. Melt periods are in bold font.

Tmax Cum. rain Cum. snow Wind speed Sky Snow
Date ◦C mm cm km h−1 conditions conditions

10 Feb 2016 −3.0 0 22.8 9 Clear Dry
18 Feb 2016 0 26.1 1.6 11 Clear Wet
19 Feb 2016 −1.0 22.0 6.0 26 Clear Wet
23 Feb 2016 −8.0 5.4 0 10 Clear Wet, patchy
4 Mar 2016 −3.5 50.0 0 21 Clear Wet, patchy
6 Mar 2016 −2.0 0 0 25 Clear Wet, patchy
8 Mar 2016 4.0 0 2.0 24 Clear Wet, patchy
10 Mar 2016 4.0 5.5 0 18 Overcast Wet, patchy
11 Mar 2016 0 0 4.3 11 Overcast Dry
14 Mar 2016 0 0 0 13 Clear Dry, patchy
20 Mar 2016 −9.0 0 0 13 Clear Dry
23 Mar 2016 −1.0 19.0 0 18 Overcast Icy
24 Mar 2016 −8.0 0.5 12.2 5 Overcast Fresh snow
26 Mar 2016 −2.0 11.2 4.0 4 Clear Dry
30 Mar 2016 3.0 39.3 0 13 Clear Fresh snow
14 Apr 2016 11.1 65.8 0 15 Overcast Bare

but there was insufficient replication to determine if this im-
pacted 1SD estimation.

Horizontal accuracy ranged from −0.68 to 0.57 cm (me-
dian −0.01 cm) and vertical accuracy ranged from −1.10 to
0.48 cm (median−0.04 cm) (Fig. 4a). There was evidence of
a linear relationship between vertical and horizontal accuracy
after accounting for outliers. Horizontal uncertainty ranged
from 0.44 to 11 cm with a median of 1.87 cm while the verti-
cal uncertainty ranged from 0.045 to 4.6 cm with a median
of 1.02 cm (Fig. 4b). Over 75 % of missions resulted in a
geolocation uncertainty under 4 cm in both horizontal and
vertical directions. Uncertainty less than 0.5 cm RMSD was
only observed for missions with D > 50 matches m−2 but

uncertainty was unrelated to D past this matching density.
Horizontal precision ranged from 0.04 to 10.7 cm (median
1.76 cm) and vertical precision ranged from 0.04 to 4.5 cm
(median 0.99 cm) (not shown). A least absolute residual
regression (https://www.mathworks.com/help/stats/robustfit.
html, last access: 24 October 2018) of vertical versus hori-
zontal precision gave an adjusted r2 of 0.97 with a slope of
1.11 (95 % confidence interval [1.04, 1.18]). Precision error
was closely related to uncertainty due to the low bias rela-
tive to uncertainty (not shown). Similar to accuracy, a least
absolute residual regression of vertical versus horizontal pre-
cision gave an adjusted r2 of 0.95 with a slope of 0.58 (95 %
confidence interval [0.54, 0.62]). The effect of sky conditions
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Figure 3. Pix4D automated key point match density for
(a) Gatineau and (b) Acadia together with an indicator of fresh
snow (square symbols). Missions (solid circular symbols) for the
same site are connected by lines. Red squares indicated overcast
conditions.

on geolocation performance was not systematic across the
entire dataset. There were insufficient replicates having the
same surface conditions but different sky conditions to per-
form a quantitative analysis of this effect on geolocation per-
formance.

As expected, microtopographic roughness increased from
qualitatively smooth to rough sites with average RMSD val-
ues under 5 cm at Gatineau, between 5 cm and 10 cm at
AA and AB, and 42 cm at AC (Fig. 5). AC indicated the
presence of high-spatial-frequency variation (length scales
< 10 cm) that was due to low vegetation rather than varia-
tions in ground surface elevation per se. Figure 6 indicates
that for conditions other than icy/fresh snow, except for the
forested AC site, D increased with microtopographic rough-
ness. Key point density was lower for icy/fresh snow con-
ditions versus other conditions at all sites; decreases ranged
from ∼ 35 % at AC to ∼ 1000 % at GS. The season average
decrease was only different from zero at a significance level
of 0.05 when the RMSD related to topographic roughness
was less than 0.08 (i.e. GN, GS and AA).

The effect of hourly average wind speed on D, geoloca-
tion accuracy or geolocation uncertainty was also evaluated
at each site using ordinary least-squares regression. For each
site, the r2 was below 0.5 and the slope was not significantly
different from 0 at p = 0.05. As with sky conditions there
were insufficient trials to control for snow surface conditions
when evaluating the effect of wind speed.
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tion for digital surface models based on cross-validation with GCPs.
Symbol area proportional to mission average key point match den-
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3.3 1SD mapping performance

The performance of1SD mapping was evaluated in terms of
both changes between successive dates and changes between
a given date and snow-free conditions. Figure 7a shows the
1SD between successive dates for each transect. Vertical
(horizontal) bars indicate the 1 standard deviation confidence
interval due to within-transect variation in1SD from the im-
age data (in situ data). The bars indicate that spatial variabil-
ity in 1SD within a transect was often larger than the 2.6 cm
(1 standard deviation) uncertainty for in situ1SD estimation
for a transect assuming no spatial variability. As such, the in
situ measurement method was considered sufficiently precise
for reference estimates. Nevertheless, due to within-transect
variation in 1SD, the precision of both in situ and image-
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Figure 5. Deviations from the local robust linear trend (based on
15 m moving window) of densified point cloud elevations along
each transect. Only the first 15 m of each transect is shown for clar-
ity. The root-mean-square deviation (RMSD) for elevations over the
entire transect is also indicated. AC is truncated as the transect con-
sisted of shorter line segments.

based methods was often similar in magnitude to observed
1SD so that statistically significant comparisons could not
be conducted for individual dates. Rather, in situ and image-
based 1SD values were compared using statistics based on
differences observed for all dates for each transect. In this
case, uncertainty ranged from 2.54 to 5.12 cm for the non-
forested sites to 8.68 cm at AC. The temporal bias was sub-
stantially smaller than uncertainty, ranging from−0.80 cm at
GS to 0.35 cm at AC. As such, the precision error was only
slightly less than the uncertainty (not shown). There were
seven instances in which the observed difference exceeded
5 cm. Four were overestimates ranging from 5 to 10 cm at
Gatineau and the other three were all at AC, including the
largest residual corresponding to an underestimate of 20 cm.
Four of these instances, including the 20 cm error, involved
at least one date with either extremely icy snow and another
with deep fresh snow. In such cases theD can be low (Fig. 3)
while the snowpack itself has changed substantially among
dates. Two other cases involved rapid melt, leading to ex-
posed ground surfaces on the last date. We also noted that at
AC, the identified key points were often at snow–vegetation
intersections (not shown), which may differ systematically in
1SD when compared to the stakes that were placed within
openings.

Figure 7b compares 1SD between snow-covered and
snow-free conditions (i.e. estimated SD). In this case, the
confidence interval of 1SD for a transect was on average
[+5.2, −6.3 cm] for in situ and [+4.1, −7.8 cm] for image-
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Figure 6. Season average key point matching density versus root-
mean-square deviation (RMSD) of elevation deviation along the
transect for icy and fresh snow missions (hollow triangles) and
“other” missions with snow cover (solid circles) during snow-
covered periods. The difference in season average matching den-
sity between icy/fresh snow and other was statistically significant at
p = 0.05 for RMSD< 0.8 (plots GN, GS, AA) but not statistically
different at p = 0.15 for RMSD< 0.8 (plots AB, AC).

based estimates. Uncertainty ranged from 1.58 cm at AB to
10.56 cm at GN. Accuracy varied among sites. Bias was be-
low 1.2 cm for GS T1, AA and AB. In contrast, bias at the
other sites exceeded±5 cm (−10.05 cm at GN T1,−6.23 cm
at GS T1 and 5.5CM at AC). Moreover, the bias was consis-
tent over time with the exception of large (> 5 cm) underes-
timates for the date just prior to snowmelt for all sites ex-
cept AB.

4 Discussion

4.1 Temporal and spatial variation in snowpack
conditions

Missions were conducted over a range of snowpack con-
ditions including peak snowpack with both fresh and aged
snow, ice-covered snow, partial snow cover during melt and
no snow just after melt. In this sense, the experiment offers a
realistic sampling of ephemeral snowpacks for the temperate
climate regions of our study sites. In contrast to studies re-
viewed in Sect. 1, snowpack conditions were often icy (5 of
29 dates) and patchy (6 of 29 dates) due to frequent rain-on-
snow events. Ideally, the temporal sampling could have been
enhanced by adding additional missions during the same day
or adjacent days to assess the impact of sky and weather con-
ditions on 1SD estimates.

The uncertainty of in situ 1SD was primarily due to pre-
cision error from spatial variability rather than measurement
error. This aspect is important when evaluating image-based
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Figure 7. Validation of (a) snow depth change for successive (∼
weekly) measurements and (b) corresponding snow depth over tran-
sects. Shaded symbols correspond to icy or fresh snow conditions.
Horizontal (vertical) bars correspond to the ±34th percentile inter-
val of within-transect in situ (UAV) snow depth estimates.

estimates of 1SD since the difference between a single in
situ and remote measurement will include some element of
spatial uncertainty due to differences in the compared area. A
number of previous studies have directly reported the RMSD
between image-based 1SD and point measurements (e.g.
Nolan et al., 2015; Harder et al., 2016; Vander Jagt et al.,
2015). One may argue that single-measurement comparisons
include the horizontal uncertainty of the image-based map
but practically speaking users of 1SD maps are likely inter-

ested in the transect average in the same manner that users of
current in situ networks require transect averages rather than
the spatial distribution of1SD at centimetre resolution. Nev-
ertheless, the within-transect range of1SD from both in situ
and image-based approaches is important for understanding
the representativeness of the measurements as well as po-
tential biases. In this regard, the within-transect variation for
image-based1SD was approximately the same magnitude as
for in situ 1SD but skewed towards lower 1SD when con-
sidering snow depth due to local positive biases in the snow-
free DSM in the presence of vegetation. Similar biases have
been reported in previous studies (Vander Jagt et al., 2015;
Gindraux et al., 2017).

4.2 SfM performance with snowpack condition,
microtopography and wind speed

The mission performance of the consumer-grade UAV was
encouraging given that it was often operated at the edge of
its performance envelope in terms of wind speed and air tem-
perature and under varying illumination conditions. The per-
centage of calibrated images and D decreased substantially
in the presence of precipitation or very smooth surface con-
ditions such as fresh snow or ice. The decrease was great-
est over sites with low microtopographic roughness (GN, GS
and AA), although the lack of statistical significance for the
decrease at AB and AC may be due to the limited number of
icy/fresh snow dates (three). Qualitative assessment of im-
agery during snow-covered conditions indicated that, in con-
trast to AB and AC, which had substantial exposed vegeta-
tion and rough topography, key points at the other sites were
chiefly found along ridges and shadows cast by snowdrifts.
Bühler et al. (2017) and Gindraux et al. (2017) reported sim-
ilar findings with other UAV systems for fresh snow but not
for glacier ice. In our study, ice was typically in the form
of a flat surface pond or smoothed snowpack, while in these
studies ice was the surface of a glacier that included topo-
graphic roughness. In any case, the lower key point density
in both their study and ours was due to smooth surfaces. In
principle one could interpolate 1SD across smooth regions
using the 1SD at their perimeter. Otherwise, the percentage
of calibrated images did not vary substantially across sites
and was consistently not a limiting factor in terms of perfor-
mance (i.e. > 97 %).

Key point density decreased by almost 1 order of magni-
tude when comparing missions flown with snow more than 1
day old and missions with either deep fresh snow or smooth
icy snowpacks. Previous studies have identified the drop in
both elevation and SD accuracy due to deep fresh snow
(Nolan et al. 2015; Avanzi et al., 2017) and icy conditions
(Gindraux et al., 2017). Here we demonstrate that D may be
a useful indicator of such conditions and hence an indicator
of the quality of1SD estimates. The experiment did not con-
trol for sky conditions. The one pair of missions with similar
snow conditions but different sky conditions did not show
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substantial changes in either the percentage of calibrated im-
ages orD. Nevertheless, the lack of dense canopy conditions
and controlled sky conditions means that this study does not
address the issue of large cast shadows (or lack thereof) in
estimating snow depth changes using a low-flying UAV. Büh-
ler et al. (2017) reported that digital surface models from
UAV images acquired in cast shadows appeared to be qual-
itatively noisier than those without shadows and resulted in
unrealistic (both negative and very high) estimates of SD af-
ter differencing from bare-earth accuracy models. They sug-
gested that a combination of visible and near-infrared im-
agery might reduce uncertainty in areas of cast shadow. Al-
ternatively, measurements during overcast conditions may be
sufficient to map 1SD with sufficient accuracy in areas of
persistent shadows.

Previous studies have not systematically evaluated the sen-
sitivity of 1SD estimation to microtopography or vegetation
density. The sites selected for this experiment were nomi-
nally flat at length scales of tens of metres, except in the
vicinity of GS T3. However, microtopography varied among
sites. All of the Gatineau sites had little or no microtopo-
graphic variation while the Acadia sites progressed from tree
stumps (AA) to mounds covered with shrubs (AB) to mounds
covered with shrubs and a regenerating canopy (AC). Over-
story vegetation cover was less than 10 % along transects,
except at AC where cover within a 1 m radius vertical cylin-
der centred at each stake was estimated to average 38 %
(range [0 %, 52 %]). However, GN and GS T1 have substan-
tial thatch exceeding 5cm in height under the snow that was
present during the snow-free mission while AC had cover of
understory herbs and low shrubs ranging from 5 to 10 cm in
height. As such, this experiment provides new results for a
range of microtopography and understory/low vegetation but
is limited in terms of overstory cover. As previously indi-
cated, this was a conscious decision due to the difficulty of
adequate non-destructive in situ sampling in forested areas
and our desire not to further complicate the point cloud pro-
cessing when having to deal with snow on vegetation. Ex-
cluding fresh and icy snow, which varied in frequency be-
tween Gatineau and Acadia,D was generally proportional to
microtopographic roughness for sites without overstory. The
behaviour with overstory (AC) may have been due more to
our inclusion of vegetation point cloud points within our mi-
crotopography index since the matching density at AC was
similar to AB where the understory and surface topography
was subjectively similar. Assuming this is the case, these re-
sults suggest a compensating effect between increasing vari-
ability in 1SD due to microtopographic complexity and in-
creasing D that may explain why, outside of icy and fresh
snow, RMSD and accuracy were similar across sites when
estimating 1SD change.

The absence of a statistically significant linear relation-
ship between hourly average wind speed and either D or
geolocation performance was not surprising. Firstly, we did
not perform missions where all other factors but wind speed

were controlled. In addition, our wind speed data may not
have been representative of actual conditions. Daily maxi-
mum gusts, corresponding to instantaneous recordings, were
often twice the magnitude of hourly average wind speed,
suggesting that the UAV may have experienced higher wind
speeds during its mission on calmer days. Additionally, mis-
sions were delayed if extreme local gusts were observed. We
also did not control for snow and illumination conditions
when considering the effect of wind speed (e.g. by perform-
ing missions on subsequent days with different wind speed
by the same illumination). We hypothesize that, except for
very large gusts, the Pix4D block adjustment procedure is
capable of accounting for uncertainty in camera attitude and
location since we observed little or no sensitivity of either
D or geolocation performance when using imagery with or
without ephemeris (not shown). Rather, the major difference
was the decrease in time for key point matching and block ad-
justment when providing accurate ephemeris in comparison
to no ephemeris information except for the time of acquisi-
tion.

4.3 Geolocation and 1SD validation

The geolocation performance of derived DSMs was excep-
tional considering that the UAV was a consumer-grade de-
vice. Bias errors were smaller than the precision of the GCPs
themselves, suggesting that spatial variation in DSM errors
may have a large random component. We could not test this
hypothesis as we had limited control points that were all in
relatively open areas. The DSM accuracy over GCPs was
higher than reported in other studies over natural landscapes
(e.g. Nolan et al., 2015; Harder et al., 2016; Gindraux et
al., 2017) but similar to performance over fabricated targets
(Nasrullah et al., 2016). This is partly explained by the high
spatial resolution of the imagery in our study but we hypoth-
esize it was also due to use of easily visible elevated GCP
targets that were identified in many images. For example, the
number of image matches at GCPs ranged from 10 to 30.
Assuming independent errors at each GCP, the number of
image matches corresponds to a theoretical ratio of vertical
to horizontal accuracy of between 0.9 and 5 at a single point
or 0.42 and 2.2 over five GCPs. The observed ratio based
on a robust line fit was 1.1, indicating agreement with the-
ory. The strong correlation observed between horizontal and
vertical accuracy error was also in line with the theoretical
error model. We did not have sufficient spatial sampling of
surface elevations over snow-covered areas to test the model
in terms of snow surface elevation. This should be performed
in future studies using reference measurements from surface
instruments (e.g. Avanzi et al., 2017).

Validation of 1SD requires minimally invasive reference
estimates using methods that also do not substantially change
the performance of UAV estimates. Considering the potential
for large variations in SD and 1SD with microtopography,
we decided to control the reference locations by using fixed
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stakes. This strategy could have led to an (artificial) increase
in precision if the stakes led to an increase in the D as well
as an increase in accuracy if the same key points on stakes
were detected in multiple images within or among missions.
A posteriori examination of maps of automated key points
indicated that the Pix4D algorithm rarely found a key point
along a stake (e.g. Sect. S7). Furthermore, the few cases in
which a key point was identified on a stake corresponded
to locations with exposed vegetation around the stake that
would potentially exhibit a match in any event. Pix4Dmapper
uses a proprietary implementation of a reduced set of fea-
tures derived from the scale-invariant feature transforma-
tion (SIFT) (Strecha et al., 2011). SIFT features are defined
to specifically eliminate key points that have poorly deter-
mined locations but high edge responses, especially corner
features (Lowe, 2004). We hypothesize that, especially for
snow-covered conditions, the relatively narrow stakes cor-
respond to such features and are subsequently avoided by
Pix4Dmapper when identifying key points. If so, our results
may actually be somewhat pessimistic since there are poten-
tially fewer key points near stakes.

Validation of weekly 1SD indicates that bias across all
sites and dates was smaller than the typical uncertainty for
a given transect from both in situ and image-based methods
and of the same order of magnitude of conventional auto-
mated or manual measurements at point locations. There was
evidence of two larger (> 5 cm) over- and underestimates at
the forested AC site that may be due to snow present on veg-
etation near the ground (overestimates) or under-sampling of
the point cloud due to fresh snow (underestimates). There
were also instances of underestimates exceeding 5 cm dur-
ing melt over the Gatineau sites. Both of these cases corre-
sponded to icy anterior conditions that may have favoured
point cloud matches in areas with rougher snow that had not
yet melted. In each of these cases, one of the compared el-
evation surfaces had far lower D than typical for the site,
suggesting that D may be a useful indicator of confidence
in estimated 1SD. Notwithstanding these issues, the typi-
cal uncertainty of 1SD was close to the theoretical error of
∼ 2.44 cm for a single estimate. This suggests that sources of
error within a transect are likely correlated since one would
expect substantial reduction in the 1SD for the transect con-
sidering that hundreds of point cloud samples are averaged.
The correlation is potentially explained by the fact that the
stakes in each transect share the same images for the most
part and therefore potentially suffer the same lateral displace-
ment errors.

Validation of SD (comparing snow and snow-free con-
ditions) indicated that the range of RMSD (from ∼ 1.5 to
∼ 10.5 cm) falls within the ±10 cm uncertainty reported in
previous studies (see Sect. 1), with a tendency for underesti-
mation in areas with substantial ground thatch layer. The un-
derestimate in these conditions was approximately the same
magnitude of the thatch height, leading us to hypothesize
that they are related to an overestimate in the local DSM

height as previously suggested (Nolan et al., 2015; Avanzi
et al., 2017). This hypothesis could be tested in future stud-
ies using supplementary in situ elevation measurements (e.g.
Avanzi et al., 2017), although it is also consistent with the
relatively unbiased estimate of 1SD changes among snow-
covered dates. We also hypothesize that the overestimate at
AC may be due to snow-covered vegetation being included
in the sampled point cloud around each stake when estimat-
ing the DSM for snow-covered areas. Harder et al. (2016)
noted a similar bias due to stubble protruding from shallow
snowpacks. Here, we used the median snow surface elevation
based on point cloud colour processing that seemed to avoid
this effect for other sites. More sophisticated algorithms for
separating snow-covered surfaces from overstory vegetation
should be evaluated.

5 Conclusions

Snow depth is an important geophysical quantity that ex-
hibits substantial variation in space over distances of me-
tres and in time over daily intervals. Systematic snow depth
monitoring to date has emphasized temporal resolution. This
study evaluated the potential for lightweight UAV imagery,
processed using off-the-shelf SfM software, for mapping the
change in snow depth over natural vegetated landscapes.
The primary goal of this study was to compare this ap-
proach when mapping changes in snow depth between suc-
cessive snow-covered dates versus between a snow-covered
and snow-free date over land cover with varying vegeta-
tion density and microtopography and with ephemeral snow-
packs. The sampled sites exhibited only modest variation in
overstory vegetation cover (from 0 to 38 % averaged over a
transect) but substantial variability in microtopography, in-
cluding tree stumps, hummocky terrain and mowed pasture.
The study also addressed a second goal of comparing ob-
served accuracy and precision of snow depth change and
associated surface elevations with estimates based on pho-
togrammetric theory.

A total of 71 UAV missions were flown in a range of con-
ditions with surface elevation maps derived at a horizontal
ground sampling distance of between 2 and 3 cm and with
a median (range) of horizontal and vertical uncertainty of
1.87 cm (0.44 to 11 cm) and 1.02 cm (0.045 to 4.6 cm) re-
spectively in comparison to man-made ground control points.
Validation over five different study sites from mid-winter
to snow-free conditions indicated an uncertainty of 6.45 cm
(1.58 to 10.56 cm) and accuracy of 3.33 cm (−10.05 to
5.05 cm) for the average snow depth over a ∼ 50 m long
transect. Snow depth was systematically underestimated over
sites with dense low vegetation by ∼ 5 cm. As the underes-
timate was the same magnitude as the vegetation height dur-
ing snow-free conditions, we hypothesize the underestimate
is related to an overestimate of the snow-free ground eleva-
tion. Validation for the average change of snow depth over
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a transect among successive (∼ weekly) missions indicated
a uncertainty of 3.40 cm (2.54 to 8.68 cm) and accuracy of
0.31 cm (−0.19 to 0.80 cm).

Observed uncertainty for snow depth change agreed with
the theoretical uncertainty (mean value of 2.44 cm and range
of 1.2 to 5.25 cm depending on the number of matches at
a key point) when considering the difference between two
snow-covered dates. In general, uncertainty in associated sur-
face elevations agreed with theoretical estimates in both mag-
nitude and in terms of the expected correlation between hor-
izontal and vertical errors. The observed uncertainty in ab-
solute snow depth was larger than theoretical uncertainty
chiefly due to bias in estimates of the bare-ground elevation
in the presence of vegetation within the snow-free reference
image. In this case the bias is likely to be specific to local
conditions and it may be possible to use in situ measurements
to calibrate for this bias if UAV-based estimates of snow
depth are combined with in situ measurements. Even so, the
uncertainty of UAV-based weekly snow depth change is com-
parable to typical in situ measurement approaches, suggest-
ing that a combination of both measurements should be con-
sidered for producing maps of snow depth change in complex
terrain with high spatio-temporal resolution. We recommend
that future studies consider the potential of using UAV in-
formation on snow depth change rather than absolute snow
depth.

Further studies are required to investigate the performance
of snow depth change mapping using similar UAV data in
terms of sensitivity to changes in key point sampling den-
sity due to changing illumination and wind speed, in terms
of the precision of snow depth change estimates under denser
canopies where the non-vegetated surface is substantially ob-
scured and to quantify performance as a function of UAV
mission and SfM software parameters. Nevertheless, the re-
sults from our multi-site and multi-operator study suggest
that UAV-based estimates of snow depth and snow depth
change over areas corresponding to a typical in situ transect
have uncertainty comparable to current manual in situ esti-
mates while offering substantially greater coverage. More-
over, the technology can be applied with widely available
off-the-shelf equipment and software. While our study had
a ∼ 10 ha limit due to using a single mission, spatial cover-
age can be extended to line of site using multiple missions
or multiple cameras on the same UAV or even past line of
sight given adequate certification. Moreover, in situ GPS tar-
gets may not be required if baseline networks can be pro-
cessed using post-processed kinematic methods. Assuming
these results are representative of wider landscapes and snow
conditions, we recommend that subsequent studies address
the problem of combining airborne UAV survey-based infor-
mation on snow depth change with high-temporal-resolution
satellite and in situ information to improve snowpack charac-
terization and reduce uncertainty in estimates of streamflow.
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