Articles | Volume 11, issue 1
https://doi.org/10.5194/tc-11-585-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/tc-11-585-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Distributed snow and rock temperature modelling in steep rock walls using Alpine3D
Anna Haberkorn
CORRESPONDING AUTHOR
WSL Institute for Snow and Avalanche Research SLF, 7260 Davos,
Switzerland
Department of Geosciences, Unit of Geography, University of Fribourg,
1700 Fribourg, Switzerland
Nander Wever
WSL Institute for Snow and Avalanche Research SLF, 7260 Davos,
Switzerland
CRYOS, School of Architecture, Civil and Environmental Engineering,
EPFL, 1015 Lausanne, Switzerland
Martin Hoelzle
Department of Geosciences, Unit of Geography, University of Fribourg,
1700 Fribourg, Switzerland
Marcia Phillips
WSL Institute for Snow and Avalanche Research SLF, 7260 Davos,
Switzerland
Robert Kenner
WSL Institute for Snow and Avalanche Research SLF, 7260 Davos,
Switzerland
Mathias Bavay
WSL Institute for Snow and Avalanche Research SLF, 7260 Davos,
Switzerland
Michael Lehning
WSL Institute for Snow and Avalanche Research SLF, 7260 Davos,
Switzerland
CRYOS, School of Architecture, Civil and Environmental Engineering,
EPFL, 1015 Lausanne, Switzerland
Related authors
No articles found.
Riccardo Barella, Mathias Bavay, Francesca Carletti, Nicola Ciapponi, Valentina Premier, and Carlo Marin
The Cryosphere, 18, 5323–5345, https://doi.org/10.5194/tc-18-5323-2024, https://doi.org/10.5194/tc-18-5323-2024, 2024
Short summary
Short summary
This research revisits a classic scientific technique, melting calorimetry, to measure snow liquid water content. This study shows with a novel uncertainty propagation framework that melting calorimetry, traditionally less trusted than freezing calorimetry, can produce accurate results. The study defines optimal experiment parameters and a robust field protocol. Melting calorimetry has the potential to become a valuable tool for validating other liquid water content measuring techniques.
Hongxiang Yu, Michael Lehning, Guang Li, Benjamin Walter, Jianping Huang, and Ning Huang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2458, https://doi.org/10.5194/egusphere-2024-2458, 2024
Short summary
Short summary
Cornices are overhanging snow accumulations that form on mountain crests. Previous studies focused on how cornices collapse, little is known about why they form in the first place, specifically how snow particles adhere together to form the front end of the cornice. This study looked at the movement of snow particles around a developing cornice to understand how they gather, the speed and angle at which the snow particles hit the cornice surface, and how this affects the shape of the cornice.
Tamara Mathys, Muslim Azimshoev, Zhoodarbeshim Bektursunov, Christian Hauck, Christin Hilbich, Murataly Duishonakunov, Abdulhamid Kayumov, Nikolay Kassatkin, Vassily Kapitsa, Leo C. P. Martin, Coline Mollaret, Hofiz Navruzshoev, Eric Pohl, Tomas Saks, Intizor Silmonov, Timur Musaev, Ryskul Usubaliev, and Martin Hoelzle
EGUsphere, https://doi.org/10.5194/egusphere-2024-2795, https://doi.org/10.5194/egusphere-2024-2795, 2024
Short summary
Short summary
This study provides a comprehensive geophysical dataset on permafrost in the data-scarce Tien Shan and Pamir mountain regions of Central Asia. It also introduces a novel modeling method to quantify ground ice content across different landforms. The findings indicate that this approach is well-suited for characterizing ice-rich permafrost, which is crucial for evaluating future water availability and assessing risks associated with thawing permafrost.
Marcus Gastaldello, Enrico Mattea, Martin Hoelzle, and Horst Machguth
EGUsphere, https://doi.org/10.5194/egusphere-2024-2892, https://doi.org/10.5194/egusphere-2024-2892, 2024
Short summary
Short summary
Inside the highest glaciers of the Alps lies an invaluable archive of data revealing the Earth's historic climate. However, as the atmosphere warms due to climate change, so does the glaciers' internal temperature – threatening the future longevity of these records. Using our customised Python model, validated by on-site measurements, we show how a doubling in surface melt has caused a warming of 1.5 °C in the past 21 years and explore the challenges of modelling in complex mountainous terrain.
Sonja Wahl, Benjamin Walter, Franziska Aemisegger, Luca Bianchi, and Michael Lehning
The Cryosphere, 18, 4493–4515, https://doi.org/10.5194/tc-18-4493-2024, https://doi.org/10.5194/tc-18-4493-2024, 2024
Short summary
Short summary
Wind-driven airborne transport of snow is a frequent phenomenon in snow-covered regions and a process difficult to study in the field as it is unfolding over large distances. Thus, we use a ring wind tunnel with infinite fetch positioned in a cold laboratory to study the evolution of the shape and size of airborne snow. With the help of stable water isotope analyses, we identify the hitherto unobserved process of airborne snow metamorphism that leads to snow particle rounding and growth.
Dylan Reynolds, Louis Quéno, Michael Lehning, Mahdi Jafari, Justine Berg, Tobias Jonas, Michael Haugeneder, and Rebecca Mott
The Cryosphere, 18, 4315–4333, https://doi.org/10.5194/tc-18-4315-2024, https://doi.org/10.5194/tc-18-4315-2024, 2024
Short summary
Short summary
Information about atmospheric variables is needed to produce simulations of mountain snowpacks. We present a model that can represent processes that shape mountain snowpack, focusing on the accumulation of snow. Simulations show that this model can simulate the complex path that a snowflake takes towards the ground and that this leads to differences in the distribution of snow by the end of winter. Overall, this model shows promise with regard to improving forecasts of snow in mountains.
Enrico Mattea, Etienne Berthier, Amaury Dehecq, Tobias Bolch, Atanu Bhattacharya, Sajid Ghuffar, Martina Barandun, and Martin Hoelzle
EGUsphere, https://doi.org/10.5194/egusphere-2024-2169, https://doi.org/10.5194/egusphere-2024-2169, 2024
Short summary
Short summary
We reconstruct the evolution of terminus position, ice thickness and surface flow velocity of the reference Abramov glacier (Kyrgyzstan) from 1968 to present. We describe a front pulsation in the early 2000s and the multi-annual present-day buildup of a new pulsation. Such dynamic instabilities can challenge the representativity of Abramov as reference glacier. For our work we used satellite‑based optical remote sensing from multiple platforms, including recently declassified archives.
Alexander Bast, Robert Kenner, and Marcia Phillips
The Cryosphere, 18, 3141–3158, https://doi.org/10.5194/tc-18-3141-2024, https://doi.org/10.5194/tc-18-3141-2024, 2024
Short summary
Short summary
We monitor ground temperature, water pressure, and relative ice/water contents in a creeping ice-rich rock glacier in mountain permafrost to study its characteristics during a deceleration period with dry conditions and a summer heat wave. The snowpack has an important role as a provider of water and as a thermal insulator. Snow-poor winters, followed by dry summers, induce cooling and drying of the permafrost, leading to rock glacier deceleration.
Gwendolyn Dasser, Valentin T. Bickel, Marius Rüetschi, Mylène Jacquemart, Mathias Bavay, Elisabeth D. Hafner, Alec van Herwijnen, and Andrea Manconi
EGUsphere, https://doi.org/10.5194/egusphere-2024-1510, https://doi.org/10.5194/egusphere-2024-1510, 2024
Short summary
Short summary
Understanding snowpack wetness is crucial for predicting wet snow avalanches, but detailed data is often limited to certain locations. Using satellite radar, we monitor snow wetness spatially continuously. By combining different radar tracks from Sentinel-1, we improved spatial resolution and tracked snow wetness over several seasons. Our results indicate higher snow wetness to correlate with increased wet snow avalanche activity, suggesting our method can help identify potential risk areas.
Benjamin Bouchard, Daniel F. Nadeau, Florent Domine, Nander Wever, Adrien Michel, Michael Lehning, and Pierre-Erik Isabelle
The Cryosphere, 18, 2783–2807, https://doi.org/10.5194/tc-18-2783-2024, https://doi.org/10.5194/tc-18-2783-2024, 2024
Short summary
Short summary
Observations over several winters at two boreal sites in eastern Canada show that rain-on-snow (ROS) events lead to the formation of melt–freeze layers and that preferential flow is an important water transport mechanism in the sub-canopy snowpack. Simulations with SNOWPACK generally show good agreement with observations, except for the reproduction of melt–freeze layers. This was improved by simulating intercepted snow microstructure evolution, which also modulates ROS-induced runoff.
Dominik Amschwand, Martin Scherler, Martin Hoelzle, Bernhard Krummenacher, Anna Haberkorn, Christian Kienholz, and Hansueli Gubler
The Cryosphere, 18, 2103–2139, https://doi.org/10.5194/tc-18-2103-2024, https://doi.org/10.5194/tc-18-2103-2024, 2024
Short summary
Short summary
Rock glaciers are coarse-debris permafrost landforms that are comparatively climate resilient. We estimate the surface energy balance of rock glacier Murtèl (Swiss Alps) based on a large surface and sub-surface sensor array. During the thaw seasons 2021 and 2022, 90 % of the net radiation was exported via turbulent heat fluxes and only 10 % was transmitted towards the ground ice table. However, early snowmelt and droughts make these permafrost landforms vulnerable to climate warming.
Dominik Amschwand, Seraina Tschan, Martin Scherler, Martin Hoelzle, Bernhard Krummenacher, Anna Haberkorn, Christian Kienholz, Lukas Aschwanden, and Hansueli Gubler
EGUsphere, https://doi.org/10.5194/egusphere-2024-844, https://doi.org/10.5194/egusphere-2024-844, 2024
Short summary
Short summary
Meltwater from rock glaciers, landforms of debris and ice, has gained attention in dry mountain regions. We estimated how much ice melts in Murtèl rock glacier (Swiss Alps) using below-ground heat flow measurements and observations of the rising and falling ground ice table. We found seasonal aggradation and melt of 150–300 mm w.e. or up to 30 % of the yearly precipitation. The ice, largely sourced from refreezing snowmelt, melts in dry summer periods but cannot increase the total yearly runoff.
Horst Machguth, Anja Eichler, Margit Schwikowski, Sabina Brütsch, Enrico Mattea, Stanislav Kutuzov, Martin Heule, Ryskul Usubaliev, Sultan Belekov, Vladimir N. Mikhalenko, Martin Hoelzle, and Marlene Kronenberg
The Cryosphere, 18, 1633–1646, https://doi.org/10.5194/tc-18-1633-2024, https://doi.org/10.5194/tc-18-1633-2024, 2024
Short summary
Short summary
In 2018 we drilled an 18 m ice core on the summit of Grigoriev ice cap, located in the Tien Shan mountains of Kyrgyzstan. The core analysis reveals strong melting since the early 2000s. Regardless of this, we find that the structure and temperature of the ice have changed little since the 1980s. The probable cause of this apparent stability is (i) an increase in snowfall and (ii) the fact that meltwater nowadays leaves the glacier and thereby removes so-called latent heat.
Dominik Amschwand, Jonas Wicky, Martin Scherler, Martin Hoelzle, Bernhard Krummenacher, Anna Haberkorn, Christian Kienholz, and Hansueli Gubler
EGUsphere, https://doi.org/10.5194/egusphere-2024-172, https://doi.org/10.5194/egusphere-2024-172, 2024
Short summary
Short summary
Rock glaciers are comparatively climate-resilient coarse-debris permafrost landforms. We estimate the energy budget of the seasonally thawing active layer (AL) of rock glacier Murtèl (Swiss Alps) based on a novel sub-surface sensor array. In the coarse-blocky AL during the thaw season, heat is transferred by thermal radiation and air convection. The ground heat flux is largely used to melt ground ice in the AL that protects to some degree the permafrost body beneath.
Riccardo Barella, Mathias Bavay, Francesca Carletti, Nicola Ciapponi, Valentina Premier, and Carlo Marin
EGUsphere, https://doi.org/10.5194/egusphere-2023-2892, https://doi.org/10.5194/egusphere-2023-2892, 2024
Preprint archived
Short summary
Short summary
Unlocking the potential of melting calorimetry, traditionally confined to school labs, this paper demonstrates its application in the field for accurate measurement of liquid water content in snow. Dispelling misconceptions about measurement uncertainty, it provide a robust protocol and quantifies associated uncertainties. The findings endorse the broader adoption of melting calorimetry for quantification of snow liquid water content in operational context.
Lars Widmer, Marcia Phillips, and Chasper Buchli
The Cryosphere, 17, 4289–4295, https://doi.org/10.5194/tc-17-4289-2023, https://doi.org/10.5194/tc-17-4289-2023, 2023
Short summary
Short summary
Long-term temperature measurements are challenging to carry out in mountain-permafrost boreholes. The widely used resistance thermistors are highly accurate but prone to drift when they are exposed to moisture, or the cable connecting them is stretched. We explore the possibility of supplementing them with digital sensors and analyse the performance of both systems at 15 depths in the same mountain-permafrost borehole.
Dylan Reynolds, Ethan Gutmann, Bert Kruyt, Michael Haugeneder, Tobias Jonas, Franziska Gerber, Michael Lehning, and Rebecca Mott
Geosci. Model Dev., 16, 5049–5068, https://doi.org/10.5194/gmd-16-5049-2023, https://doi.org/10.5194/gmd-16-5049-2023, 2023
Short summary
Short summary
The challenge of running geophysical models is often compounded by the question of where to obtain appropriate data to give as input to a model. Here we present the HICAR model, a simplified atmospheric model capable of running at spatial resolutions of hectometers for long time series or over large domains. This makes physically consistent atmospheric data available at the spatial and temporal scales needed for some terrestrial modeling applications, for example seasonal snow forecasting.
Marcia Phillips, Chasper Buchli, Samuel Weber, Jacopo Boaga, Mirko Pavoni, and Alexander Bast
The Cryosphere, 17, 753–760, https://doi.org/10.5194/tc-17-753-2023, https://doi.org/10.5194/tc-17-753-2023, 2023
Short summary
Short summary
A new combination of temperature, water pressure and cross-borehole electrical resistivity data is used to investigate ice/water contents in an ice-rich rock glacier. The landform is close to 0°C and has locally heterogeneous characteristics, ice/water contents and temperatures. The techniques presented continuously monitor temporal and spatial phase changes to a depth of 12 m and provide the basis for a better understanding of accelerating rock glacier movements and future water availability.
Hongxiang Yu, Guang Li, Benjamin Walter, Michael Lehning, Jie Zhang, and Ning Huang
The Cryosphere, 17, 639–651, https://doi.org/10.5194/tc-17-639-2023, https://doi.org/10.5194/tc-17-639-2023, 2023
Short summary
Short summary
Snow cornices lead to the potential risk of causing snow avalanche hazards, which are still unknown so far. We carried out a wind tunnel experiment in a cold lab to investigate the environmental conditions for snow cornice accretion recorded by a camera. The length growth rate of the cornices reaches a maximum for wind speeds approximately 40 % higher than the threshold wind speed. Experimental results improve our understanding of the cornice formation process.
Varun Sharma, Franziska Gerber, and Michael Lehning
Geosci. Model Dev., 16, 719–749, https://doi.org/10.5194/gmd-16-719-2023, https://doi.org/10.5194/gmd-16-719-2023, 2023
Short summary
Short summary
Most current generation climate and weather models have a relatively simplistic description of snow and snow–atmosphere interaction. One reason for this is the belief that including an advanced snow model would make the simulations too computationally demanding. In this study, we bring together two state-of-the-art models for atmosphere (WRF) and snow cover (SNOWPACK) and highlight both the feasibility and necessity of such coupled models to explore underexplored phenomena in the cryosphere.
Marlene Kronenberg, Ward van Pelt, Horst Machguth, Joel Fiddes, Martin Hoelzle, and Felix Pertziger
The Cryosphere, 16, 5001–5022, https://doi.org/10.5194/tc-16-5001-2022, https://doi.org/10.5194/tc-16-5001-2022, 2022
Short summary
Short summary
The Pamir Alay is located at the edge of regions with anomalous glacier mass changes. Unique long-term in situ data are available for Abramov Glacier, located in the Pamir Alay. In this study, we use this extraordinary data set in combination with reanalysis data and a coupled surface energy balance–multilayer subsurface model to compute and analyse the distributed climatic mass balance and firn evolution from 1968 to 2020.
Alessandro Cicoira, Samuel Weber, Andreas Biri, Ben Buchli, Reynald Delaloye, Reto Da Forno, Isabelle Gärtner-Roer, Stephan Gruber, Tonio Gsell, Andreas Hasler, Roman Lim, Philippe Limpach, Raphael Mayoraz, Matthias Meyer, Jeannette Noetzli, Marcia Phillips, Eric Pointner, Hugo Raetzo, Cristian Scapozza, Tazio Strozzi, Lothar Thiele, Andreas Vieli, Daniel Vonder Mühll, Vanessa Wirz, and Jan Beutel
Earth Syst. Sci. Data, 14, 5061–5091, https://doi.org/10.5194/essd-14-5061-2022, https://doi.org/10.5194/essd-14-5061-2022, 2022
Short summary
Short summary
This paper documents a monitoring network of 54 positions, located on different periglacial landforms in the Swiss Alps: rock glaciers, landslides, and steep rock walls. The data serve basic research but also decision-making and mitigation of natural hazards. It is the largest dataset of its kind, comprising over 209 000 daily positions and additional weather data.
Océane Hames, Mahdi Jafari, David Nicholas Wagner, Ian Raphael, David Clemens-Sewall, Chris Polashenski, Matthew D. Shupe, Martin Schneebeli, and Michael Lehning
Geosci. Model Dev., 15, 6429–6449, https://doi.org/10.5194/gmd-15-6429-2022, https://doi.org/10.5194/gmd-15-6429-2022, 2022
Short summary
Short summary
This paper presents an Eulerian–Lagrangian snow transport model implemented in the fluid dynamics software OpenFOAM, which we call snowBedFoam 1.0. We apply this model to reproduce snow deposition on a piece of ridged Arctic sea ice, which was produced during the MOSAiC expedition through scan measurements. The model appears to successfully reproduce the enhanced snow accumulation and deposition patterns, although some quantitative uncertainties were shown.
Francesca Carletti, Adrien Michel, Francesca Casale, Alice Burri, Daniele Bocchiola, Mathias Bavay, and Michael Lehning
Hydrol. Earth Syst. Sci., 26, 3447–3475, https://doi.org/10.5194/hess-26-3447-2022, https://doi.org/10.5194/hess-26-3447-2022, 2022
Short summary
Short summary
High Alpine catchments are dominated by the melting of seasonal snow cover and glaciers, whose amount and seasonality are expected to be modified by climate change. This paper compares the performances of different types of models in reproducing discharge among two catchments under present conditions and climate change. Despite many advantages, the use of simpler models for climate change applications is controversial as they do not fully represent the physics of the involved processes.
David N. Wagner, Matthew D. Shupe, Christopher Cox, Ola G. Persson, Taneil Uttal, Markus M. Frey, Amélie Kirchgaessner, Martin Schneebeli, Matthias Jaggi, Amy R. Macfarlane, Polona Itkin, Stefanie Arndt, Stefan Hendricks, Daniela Krampe, Marcel Nicolaus, Robert Ricker, Julia Regnery, Nikolai Kolabutin, Egor Shimanshuck, Marc Oggier, Ian Raphael, Julienne Stroeve, and Michael Lehning
The Cryosphere, 16, 2373–2402, https://doi.org/10.5194/tc-16-2373-2022, https://doi.org/10.5194/tc-16-2373-2022, 2022
Short summary
Short summary
Based on measurements of the snow cover over sea ice and atmospheric measurements, we estimate snowfall and snow accumulation for the MOSAiC ice floe, between November 2019 and May 2020. For this period, we estimate 98–114 mm of precipitation. We suggest that about 34 mm of snow water equivalent accumulated until the end of April 2020 and that at least about 50 % of the precipitated snow was eroded or sublimated. Further, we suggest explanations for potential snowfall overestimation.
Martin Hoelzle, Christian Hauck, Tamara Mathys, Jeannette Noetzli, Cécile Pellet, and Martin Scherler
Earth Syst. Sci. Data, 14, 1531–1547, https://doi.org/10.5194/essd-14-1531-2022, https://doi.org/10.5194/essd-14-1531-2022, 2022
Short summary
Short summary
With ongoing climate change, it is crucial to understand the interactions of the individual heat fluxes at the surface and within the subsurface layers, as well as their impacts on the permafrost thermal regime. A unique set of high-altitude meteorological measurements has been analysed to determine the energy balance at three mountain permafrost sites in the Swiss Alps, where data have been collected since the late 1990s in collaboration with the Swiss Permafrost Monitoring Network (PERMOS).
Joel Fiddes, Kristoffer Aalstad, and Michael Lehning
Geosci. Model Dev., 15, 1753–1768, https://doi.org/10.5194/gmd-15-1753-2022, https://doi.org/10.5194/gmd-15-1753-2022, 2022
Short summary
Short summary
This study describes and evaluates a new downscaling scheme that addresses the need for hillslope-scale atmospheric forcing time series for modelling the local impact of regional climate change on the land surface in mountain areas. The method has a global scope and is able to generate all model forcing variables required for hydrological and land surface modelling. This is important, as impact models require high-resolution forcings such as those generated here to produce meaningful results.
Mathias Bavay, Michael Reisecker, Thomas Egger, and Daniela Korhammer
Geosci. Model Dev., 15, 365–378, https://doi.org/10.5194/gmd-15-365-2022, https://doi.org/10.5194/gmd-15-365-2022, 2022
Short summary
Short summary
Most users struggle with the configuration of numerical models. This can be improved by relying on a GUI, but this requires a significant investment and a specific skill set and does not fit with the daily duties of model developers, leading to major maintenance burdens. Inishell generates a GUI on the fly based on an XML description of the required configuration elements, making maintenance very simple. This concept has been shown to work very well in our context.
Pirmin Philipp Ebner, Franziska Koch, Valentina Premier, Carlo Marin, Florian Hanzer, Carlo Maria Carmagnola, Hugues François, Daniel Günther, Fabiano Monti, Olivier Hargoaa, Ulrich Strasser, Samuel Morin, and Michael Lehning
The Cryosphere, 15, 3949–3973, https://doi.org/10.5194/tc-15-3949-2021, https://doi.org/10.5194/tc-15-3949-2021, 2021
Short summary
Short summary
A service to enable real-time optimization of grooming and snow-making at ski resorts was developed and evaluated using both GNSS-measured snow depth and spaceborne snow maps derived from Copernicus Sentinel-2. The correlation to the ground observation data was high. Potential sources for the overestimation of the snow depth by the simulations are mainly the impact of snow redistribution by skiers, compensation of uneven terrain, or spontaneous local adaptions of the snow management.
Enrico Mattea, Horst Machguth, Marlene Kronenberg, Ward van Pelt, Manuela Bassi, and Martin Hoelzle
The Cryosphere, 15, 3181–3205, https://doi.org/10.5194/tc-15-3181-2021, https://doi.org/10.5194/tc-15-3181-2021, 2021
Short summary
Short summary
In our study we find that climate change is affecting the high-alpine Colle Gnifetti glacier (Swiss–Italian Alps) with an increase in melt amounts and ice temperatures.
In the near future this trend could threaten the viability of the oldest ice core record in the Alps.
To reach our conclusions, for the first time we used the meteorological data of the highest permanent weather station in Europe (Capanna Margherita, 4560 m), together with an advanced numeric simulation of the glacier.
Benjamin Walter, Hendrik Huwald, Josué Gehring, Yves Bühler, and Michael Lehning
The Cryosphere, 14, 1779–1794, https://doi.org/10.5194/tc-14-1779-2020, https://doi.org/10.5194/tc-14-1779-2020, 2020
Short summary
Short summary
We applied a horizontally mounted low-cost precipitation radar to measure velocities, frequency of occurrence, travel distances and turbulence characteristics of blowing snow off a mountain ridge. Our analysis provides a first insight into the potential of radar measurements for determining blowing snow characteristics, improves our understanding of mountain ridge blowing snow events and serves as a valuable data basis for validating coupled numerical weather and snowpack simulations.
Nander Wever, Leonard Rossmann, Nina Maaß, Katherine C. Leonard, Lars Kaleschke, Marcel Nicolaus, and Michael Lehning
Geosci. Model Dev., 13, 99–119, https://doi.org/10.5194/gmd-13-99-2020, https://doi.org/10.5194/gmd-13-99-2020, 2020
Short summary
Short summary
Sea ice is an important component of the global climate system. The presence of a snow layer covering sea ice can impact ice mass and energy budgets. The detailed, physics-based, multi-layer snow model SNOWPACK was modified to simulate the snow–sea-ice system, providing simulations of the snow microstructure, water percolation and flooding, and superimposed ice formation. The model is applied to in situ measurements from snow and ice mass-balance buoys installed in the Antarctic Weddell Sea.
Varun Sharma, Louise Braud, and Michael Lehning
The Cryosphere, 13, 3239–3260, https://doi.org/10.5194/tc-13-3239-2019, https://doi.org/10.5194/tc-13-3239-2019, 2019
Short summary
Short summary
Snow surfaces, under the action of wind, form beautiful shapes such as waves and dunes. This study is the first ever study to simulate these shapes using a state-of-the-art numerical modelling tool. While these beautiful and ephemeral shapes on snow surfaces are fascinating from a purely aesthetic point of view, they are also critical in regulating the transfer of heat and mass between the atmosphere and snowpacks, thus being of huge importance to the Earth system.
Robert Kenner, Jeannette Noetzli, Martin Hoelzle, Hugo Raetzo, and Marcia Phillips
The Cryosphere, 13, 1925–1941, https://doi.org/10.5194/tc-13-1925-2019, https://doi.org/10.5194/tc-13-1925-2019, 2019
Short summary
Short summary
A new permafrost mapping method distinguishes between ice-poor and ice-rich permafrost. The approach was tested for the entire Swiss Alps and highlights the dominating influence of the factors elevation and solar radiation on the distribution of ice-poor permafrost. Our method enabled the indication of mean annual ground temperatures and the cartographic representation of permafrost-free belts, which are bounded above by ice-poor permafrost and below by permafrost-containing excess ice.
Kathrin Naegeli, Matthias Huss, and Martin Hoelzle
The Cryosphere, 13, 397–412, https://doi.org/10.5194/tc-13-397-2019, https://doi.org/10.5194/tc-13-397-2019, 2019
Short summary
Short summary
The paper investigates the temporal changes of bare-ice glacier surface albedo in the Swiss Alps between 1999 and 2016 from a regional to local scale using satellite data. Significant negative trends were found in the lowermost elevations and margins of the ablation zones. Although significant changes of glacier ice albedo are only present over a limited area, we emphasize that albedo feedback will considerably enhance the rate of glacier mass loss in the Swiss Alps in the near future.
Anselm Köhler, Jan-Thomas Fischer, Riccardo Scandroglio, Mathias Bavay, Jim McElwaine, and Betty Sovilla
The Cryosphere, 12, 3759–3774, https://doi.org/10.5194/tc-12-3759-2018, https://doi.org/10.5194/tc-12-3759-2018, 2018
Short summary
Short summary
Snow avalanches show complicated flow behaviour, characterized by several flow regimes which coexist in one avalanche. In this work, we analyse flow regime transitions where a powder snow avalanche transforms into a plug flow avalanche by incorporating warm snow due to entrainment. Prediction of such a transition is very important for hazard mitigation, as the efficiency of protection dams are strongly dependent on the flow regime, and our results should be incorporated into avalanche models.
Varun Sharma, Francesco Comola, and Michael Lehning
The Cryosphere, 12, 3499–3509, https://doi.org/10.5194/tc-12-3499-2018, https://doi.org/10.5194/tc-12-3499-2018, 2018
Short summary
Short summary
The Thorpe-Mason (TM) model describes how an ice grain sublimates during aeolian transport. We revisit this classic model using simple numerical experiments and discover that for many common scenarios, the model is likely to underestimate the amount of ice loss. Extending this result to drifting and blowing snow using high-resolution turbulent flow simulations, the study shows that current estimates for ice loss due to sublimation in regions such as Antarctica need to be significantly updated.
Franziska Gerber, Nikola Besic, Varun Sharma, Rebecca Mott, Megan Daniels, Marco Gabella, Alexis Berne, Urs Germann, and Michael Lehning
The Cryosphere, 12, 3137–3160, https://doi.org/10.5194/tc-12-3137-2018, https://doi.org/10.5194/tc-12-3137-2018, 2018
Short summary
Short summary
A comparison of winter precipitation variability in operational radar measurements and high-resolution simulations reveals that large-scale variability is well captured by the model, depending on the event. Precipitation variability is driven by topography and wind. A good portion of small-scale variability is captured at the highest resolution. This is essential to address small-scale precipitation processes forming the alpine snow seasonal snow cover – an important source of water.
Christian Gabriel Sommer, Nander Wever, Charles Fierz, and Michael Lehning
The Cryosphere, 12, 2923–2939, https://doi.org/10.5194/tc-12-2923-2018, https://doi.org/10.5194/tc-12-2923-2018, 2018
Short summary
Short summary
Wind packing is how wind produces hard crusts at the surface of the snowpack. This is relevant for the local mass balance in polar regions. However, not much is known about this process and it is difficult to capture its high spatial and temporal variability. A wind-packing event was measured in Antarctica. It could be quantified how drifting snow leads to wind packing and generates barchan dunes. The documentation of these deposition dynamics is an important step in understanding polar snow.
Martina Barandun, Matthias Huss, Ryskul Usubaliev, Erlan Azisov, Etienne Berthier, Andreas Kääb, Tobias Bolch, and Martin Hoelzle
The Cryosphere, 12, 1899–1919, https://doi.org/10.5194/tc-12-1899-2018, https://doi.org/10.5194/tc-12-1899-2018, 2018
Short summary
Short summary
In this study, we used three independent methods (in situ measurements, comparison of digital elevation models and modelling) to reconstruct the mass change from 2000 to 2016 for three glaciers in the Tien Shan and Pamir. Snow lines observed on remote sensing images were used to improve conventional modelling by constraining a mass balance model. As a result, glacier mass changes for unmeasured years and glaciers can be better assessed. Substantial mass loss was confirmed for the three glaciers.
C. Mulsow, R. Kenner, Y. Bühler, A. Stoffel, and H.-G. Maas
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2, 739–744, https://doi.org/10.5194/isprs-archives-XLII-2-739-2018, https://doi.org/10.5194/isprs-archives-XLII-2-739-2018, 2018
Cesar Vera Valero, Nander Wever, Marc Christen, and Perry Bartelt
Nat. Hazards Earth Syst. Sci., 18, 869–887, https://doi.org/10.5194/nhess-18-869-2018, https://doi.org/10.5194/nhess-18-869-2018, 2018
Short summary
Short summary
Snow avalanche motion is strongly dependent on the temperature and water content of the snow cover. In this paper we use a snow cover model, driven by measured meteorological data, to set the initial and boundary conditions for wet-snow avalanche calculations. The snow cover model provides estimates of snow depth, density, temperature and liquid water content. These initial conditions are used to drive an avalanche dynamics model. The runout results are compared using a contigency analysis.
Martin Beniston, Daniel Farinotti, Markus Stoffel, Liss M. Andreassen, Erika Coppola, Nicolas Eckert, Adriano Fantini, Florie Giacona, Christian Hauck, Matthias Huss, Hendrik Huwald, Michael Lehning, Juan-Ignacio López-Moreno, Jan Magnusson, Christoph Marty, Enrique Morán-Tejéda, Samuel Morin, Mohamed Naaim, Antonello Provenzale, Antoine Rabatel, Delphine Six, Johann Stötter, Ulrich Strasser, Silvia Terzago, and Christian Vincent
The Cryosphere, 12, 759–794, https://doi.org/10.5194/tc-12-759-2018, https://doi.org/10.5194/tc-12-759-2018, 2018
Short summary
Short summary
This paper makes a rather exhaustive overview of current knowledge of past, current, and future aspects of cryospheric issues in continental Europe and makes a number of reflections of areas of uncertainty requiring more attention in both scientific and policy terms. The review paper is completed by a bibliography containing 350 recent references that will certainly be of value to scholars engaged in the fields of glacier, snow, and permafrost research.
Thomas Grünewald, Fabian Wolfsperger, and Michael Lehning
The Cryosphere, 12, 385–400, https://doi.org/10.5194/tc-12-385-2018, https://doi.org/10.5194/tc-12-385-2018, 2018
Short summary
Short summary
Snow farming is the conservation of snow during summer. Large snow piles are covered with a sawdust insulation layer, reducing melt and guaranteeing a specific amount of available snow in autumn, independent of the weather conditions. Snow volume changes in two heaps were monitored, showing that about a third of the snow was lost. Model simulations confirmed the large effect of the insulation on energy balance and melt. The model can now be used as a tool to examine future snow-farming projects.
Martin Hoelzle, Erlan Azisov, Martina Barandun, Matthias Huss, Daniel Farinotti, Abror Gafurov, Wilfried Hagg, Ruslan Kenzhebaev, Marlene Kronenberg, Horst Machguth, Alexandr Merkushkin, Bolot Moldobekov, Maxim Petrov, Tomas Saks, Nadine Salzmann, Tilo Schöne, Yuri Tarasov, Ryskul Usubaliev, Sergiy Vorogushyn, Andrey Yakovlev, and Michael Zemp
Geosci. Instrum. Method. Data Syst., 6, 397–418, https://doi.org/10.5194/gi-6-397-2017, https://doi.org/10.5194/gi-6-397-2017, 2017
Nander Wever, Francesco Comola, Mathias Bavay, and Michael Lehning
Hydrol. Earth Syst. Sci., 21, 4053–4071, https://doi.org/10.5194/hess-21-4053-2017, https://doi.org/10.5194/hess-21-4053-2017, 2017
Short summary
Short summary
The assessment of flood risks in alpine, snow-covered catchments requires an understanding of the
linkage between the snow cover, soil and discharge in the stream network. Simulations of soil moisture and streamflow were performed and compared with observations. It was found that discharge at the catchment outlet during intense rainfall or snowmelt periods correlates positively with the initial soil moisture state, in both measurements and simulations.
Sebastian Würzer, Nander Wever, Roman Juras, Michael Lehning, and Tobias Jonas
Hydrol. Earth Syst. Sci., 21, 1741–1756, https://doi.org/10.5194/hess-21-1741-2017, https://doi.org/10.5194/hess-21-1741-2017, 2017
Short summary
Short summary
We discuss a dual-domain water transport model in a physics-based snowpack model to account for preferential flow (PF) in addition to matrix flow. So far no operationally used snow model has explicitly accounted for PF. The new approach is compared to existing water transport models and validated against in situ data from sprinkling and natural rain-on-snow (ROS) events. Our work demonstrates the benefit of considering PF in modelling hourly snowpack runoff, especially during ROS conditions.
Christoph Marty, Sebastian Schlögl, Mathias Bavay, and Michael Lehning
The Cryosphere, 11, 517–529, https://doi.org/10.5194/tc-11-517-2017, https://doi.org/10.5194/tc-11-517-2017, 2017
Short summary
Short summary
We simulate the future snow cover in the Alps with the help of a snow model, which is fed by projected temperature and precipitation changes from a large set of climate models. The results demonstrate that snow below 1000 m is probably a rare guest at the end of the century. Moreover, even above 3000 m the simulations show a drastic decrease in snow depth. However, the results reveal that the projected snow cover reduction can be mitigated by 50 % if we manage to keep global warming below 2°.
Johan Gaume, Alec van Herwijnen, Guillaume Chambon, Nander Wever, and Jürg Schweizer
The Cryosphere, 11, 217–228, https://doi.org/10.5194/tc-11-217-2017, https://doi.org/10.5194/tc-11-217-2017, 2017
Short summary
Short summary
Based on DEM simulations we developed a new model for the onset of crack propagation in snow slab avalanche release. The model reconciles past approaches by considering the complex interplay between slab elasticity and the mechanical behavior of the weak layer including its structural collapse. The model agrees with extensive field data and can reproduce crack propagation on low-angle terrain and the decrease in critical crack length with increasing slope angle observed in numerical experiments.
Aurélien Gallice, Mathias Bavay, Tristan Brauchli, Francesco Comola, Michael Lehning, and Hendrik Huwald
Geosci. Model Dev., 9, 4491–4519, https://doi.org/10.5194/gmd-9-4491-2016, https://doi.org/10.5194/gmd-9-4491-2016, 2016
Short summary
Short summary
This paper presents the improvements brought to an existing model for discharge and temperature prediction in Alpine streams. Compared to the original model version, it is now possible to choose between various alternatives to simulate certain parts of the water cycle, such as the technique used to transfer water along the stream network. The paper includes an example of application of the model over an Alpine catchment in Switzerland.
Nander Wever, Sebastian Würzer, Charles Fierz, and Michael Lehning
The Cryosphere, 10, 2731–2744, https://doi.org/10.5194/tc-10-2731-2016, https://doi.org/10.5194/tc-10-2731-2016, 2016
Short summary
Short summary
The study presents a dual domain approach to simulate liquid water flow in snow using the 1-D physics based snow cover model SNOWPACK. In this approach, the pore space is separated into a part for matrix flow and a part that represents preferential flow. Using this approach, water can percolate sub-freezing snow and form dense (ice) layers. A comparison with snow pits shows that some of the observed ice layers were reproduced by the model while others remain challenging to simulate.
Antoine Marmy, Jan Rajczak, Reynald Delaloye, Christin Hilbich, Martin Hoelzle, Sven Kotlarski, Christophe Lambiel, Jeannette Noetzli, Marcia Phillips, Nadine Salzmann, Benno Staub, and Christian Hauck
The Cryosphere, 10, 2693–2719, https://doi.org/10.5194/tc-10-2693-2016, https://doi.org/10.5194/tc-10-2693-2016, 2016
Short summary
Short summary
This paper presents a new semi-automated method to calibrate the 1-D soil model COUP. It is the first time (as far as we know) that this approach is developed for mountain permafrost. It is applied at six test sites in the Swiss Alps. In a second step, the calibrated model is used for RCM-based simulations with specific downscaling of RCM data to the borehole scale. We show projections of the permafrost evolution at the six sites until the end of the century and according to the A1B scenario.
Cesar Vera Valero, Nander Wever, Yves Bühler, Lukas Stoffel, Stefan Margreth, and Perry Bartelt
Nat. Hazards Earth Syst. Sci., 16, 2303–2323, https://doi.org/10.5194/nhess-16-2303-2016, https://doi.org/10.5194/nhess-16-2303-2016, 2016
Short summary
Short summary
Simulating medium–small avalanches operationally on a mine service road allows avalanche hazard to be assessed on the mine transportation route. Using accurate data from the snow cover and the avalanche paths, the avalanche dynamic model developed can calculate the avalanche runout distances and snow volumes of the deposits. The model does not predict whether the avalanche is coming or not, but if it comes, the model will predict runout distances and mass of the deposits.
Mauro Fischer, Matthias Huss, Mario Kummert, and Martin Hoelzle
The Cryosphere, 10, 1279–1295, https://doi.org/10.5194/tc-10-1279-2016, https://doi.org/10.5194/tc-10-1279-2016, 2016
Short summary
Short summary
This study provides the first thorough validation of geodetic glacier mass changes derived from close-range high-resolution remote sensing techniques, and highlights the potential of terrestrial laser scanning for repeated mass balance monitoring of very small alpine glaciers. The presented methodology is promising, as laborious and potentially dangerous in situ measurements as well as the spatial inter- and extrapolation of point measurements over the entire glacier can be circumvented.
Rachel Luethi and Marcia Phillips
Geogr. Helv., 71, 121–131, https://doi.org/10.5194/gh-71-121-2016, https://doi.org/10.5194/gh-71-121-2016, 2016
Short summary
Short summary
Long-term borehole temperature monitoring in mountain permafrost environments is challenging under the hostile conditions reigning there. On the basis of data measured in the SLF borehole network we show situations where ground temperature data should be interpreted with caution. A selection of recently observed problems are discussed, and advantages and possible drawbacks of various solutions including data correction, measurement redundancy or alternate instrumentation are presented.
Rebecca Mott, Enrico Paterna, Stefan Horender, Philip Crivelli, and Michael Lehning
The Cryosphere, 10, 445–458, https://doi.org/10.5194/tc-10-445-2016, https://doi.org/10.5194/tc-10-445-2016, 2016
Short summary
Short summary
For the first time, this contribution investigates atmospheric decoupling above melting snow in a wind tunnel study. High-resolution vertical profiles of
sensible heat fluxes are measured directly over the melting snow patch.
The study shows that atmospheric decoupling is strongly increased in topographic sheltering but only for low wind velocities. Then turbulent mixing close to the surface is strongly suppressed, facilitating the formation of cold-air pooling in local depressions.
N. Wever, L. Schmid, A. Heilig, O. Eisen, C. Fierz, and M. Lehning
The Cryosphere, 9, 2271–2293, https://doi.org/10.5194/tc-9-2271-2015, https://doi.org/10.5194/tc-9-2271-2015, 2015
Short summary
Short summary
A verification of the physics based SNOWPACK model with field observations showed that typical snowpack properties like density and temperature are adequately simulated. Also two water transport schemes were verified, showing that although Richards equation improves snowpack runoff and several aspects of the internal snowpack structure, the bucket scheme appeared to have a higher agreement with the snow microstructure. The choice of water transport scheme may depend on the intended application.
P. Greenwood, M. Hoelzle, and N. J. Kuhn
Geogr. Helv., 70, 311–313, https://doi.org/10.5194/gh-70-311-2015, https://doi.org/10.5194/gh-70-311-2015, 2015
Short summary
Short summary
Editorial introducing the special issue of Geographica Helvetica: Mapping, Measuring and Modeling in Geomorphology.
W. Steinkogler, B. Sovilla, and M. Lehning
The Cryosphere, 9, 1819–1830, https://doi.org/10.5194/tc-9-1819-2015, https://doi.org/10.5194/tc-9-1819-2015, 2015
Short summary
Short summary
Infrared radiation thermography (IRT) was used to assess the surface temperature of avalanches with high spatial resolution. Thermal energy increase due to friction was mainly depending on the elevation drop of the avalanche. Warming due to entrainment was very specific to the individual avalanche and depends on the temperature of the snow along the path and the erosion depth. The warmest temperatures were located in the deposits of the dense core.
A. Gallice, B. Schaefli, M. Lehning, M. B. Parlange, and H. Huwald
Hydrol. Earth Syst. Sci., 19, 3727–3753, https://doi.org/10.5194/hess-19-3727-2015, https://doi.org/10.5194/hess-19-3727-2015, 2015
Short summary
Short summary
This study presents a new model to estimate the monthly mean stream temperature of ungauged rivers over multiple years in an Alpine country. Contrary to the other approaches developed to date, which are usually based on standard regression techniques, our model makes use of the understanding that we have about the physics controlling stream temperature. On top of its accuracy being comparable to that of the other models, it can be used to gain some knowledge about the stream temperature dynamics
E. Trujillo and M. Lehning
The Cryosphere, 9, 1249–1264, https://doi.org/10.5194/tc-9-1249-2015, https://doi.org/10.5194/tc-9-1249-2015, 2015
Short summary
Short summary
In this article, we present a methodology for the objective evaluation of the error in capturing mean snow depths from point measurements. We demonstrate, using LIDAR snow depths, how the model can be used for assisting the design of survey strategies such that the error is minimized or an estimation threshold is achieved. Furthermore, the model can be extended to other spatially distributed snow variables (e.g., SWE) whose statistical properties are comparable to those of snow depth.
L. Sold, M. Huss, A. Eichler, M. Schwikowski, and M. Hoelzle
The Cryosphere, 9, 1075–1087, https://doi.org/10.5194/tc-9-1075-2015, https://doi.org/10.5194/tc-9-1075-2015, 2015
Short summary
Short summary
This study presents a method for estimating annual accumulation rates on a temperate Alpine glacier based on the interpretation of internal reflection horizons in helicopter-borne ground-penetrating radar (GPR) data. In combination with a simple model for firn densification and refreezing of meltwater, GPR can be used not only to complement existing mass balance monitoring programmes but also to retrospectively extend newly initiated time series.
M. Fischer, M. Huss, and M. Hoelzle
The Cryosphere, 9, 525–540, https://doi.org/10.5194/tc-9-525-2015, https://doi.org/10.5194/tc-9-525-2015, 2015
J. Schwaab, M. Bavay, E. Davin, F. Hagedorn, F. Hüsler, M. Lehning, M. Schneebeli, E. Thürig, and P. Bebi
Biogeosciences, 12, 467–487, https://doi.org/10.5194/bg-12-467-2015, https://doi.org/10.5194/bg-12-467-2015, 2015
T. Grünewald, Y. Bühler, and M. Lehning
The Cryosphere, 8, 2381–2394, https://doi.org/10.5194/tc-8-2381-2014, https://doi.org/10.5194/tc-8-2381-2014, 2014
Short summary
Short summary
Elevation dependencies of snow depth are analysed based on snow depth maps obtained from airborne remote sensing. Elevation gradients are characterised by a specific shape: an increase of snow depth with elevation is followed by a distinct peak at a certain level and a decrease in the highest elevations. We attribute this shape to an increase of precipitation with altitude, which is modified by topographical-induced redistribution processes of the snow on the ground (wind, gravitation).
M. Bavay and T. Egger
Geosci. Model Dev., 7, 3135–3151, https://doi.org/10.5194/gmd-7-3135-2014, https://doi.org/10.5194/gmd-7-3135-2014, 2014
Short summary
Short summary
The open-source MeteoIO library has been designed to perform the data preprocessing required by numerical models using large meteorological data sets, with a strong emphasis on simplicity and modularity. It retrieves, filters and resamples the data if necessary as well as provides spatial interpolations and parameterizations. It presents a uniform interface to meteorological data in the models, hides the complexity of the preprocessing and guarantees a robust behaviour in case of data errors.
N. Wever, T. Jonas, C. Fierz, and M. Lehning
Hydrol. Earth Syst. Sci., 18, 4657–4669, https://doi.org/10.5194/hess-18-4657-2014, https://doi.org/10.5194/hess-18-4657-2014, 2014
Short summary
Short summary
We simulated a severe rain-on-snow event in the Swiss Alps in October 2011 with a detailed multi-layer snow cover model. We found a strong modulating effect of the incoming rainfall signal by the snow cover. Initially, water from both rainfall and snow melt was absorbed by the snowpack. But once the snowpack released the stored water, simulated outflow rates exceeded rainfall and snow melt rates. The simulations suggest that structural snowpack changes enhanced the outflow during this event.
M. Scherler, S. Schneider, M. Hoelzle, and C. Hauck
Earth Surf. Dynam., 2, 141–154, https://doi.org/10.5194/esurf-2-141-2014, https://doi.org/10.5194/esurf-2-141-2014, 2014
N. Wever, C. Fierz, C. Mitterer, H. Hirashima, and M. Lehning
The Cryosphere, 8, 257–274, https://doi.org/10.5194/tc-8-257-2014, https://doi.org/10.5194/tc-8-257-2014, 2014
S. Schneider, S. Daengeli, C. Hauck, and M. Hoelzle
Geogr. Helv., 68, 265–280, https://doi.org/10.5194/gh-68-265-2013, https://doi.org/10.5194/gh-68-265-2013, 2013
M. Huss, A. Voinesco, and M. Hoelzle
Geogr. Helv., 68, 227–237, https://doi.org/10.5194/gh-68-227-2013, https://doi.org/10.5194/gh-68-227-2013, 2013
M. Hoelzle and E. Reynard
Geogr. Helv., 68, 225–226, https://doi.org/10.5194/gh-68-225-2013, https://doi.org/10.5194/gh-68-225-2013, 2013
T. Grünewald, J. Stötter, J. W. Pomeroy, R. Dadic, I. Moreno Baños, J. Marturià, M. Spross, C. Hopkinson, P. Burlando, and M. Lehning
Hydrol. Earth Syst. Sci., 17, 3005–3021, https://doi.org/10.5194/hess-17-3005-2013, https://doi.org/10.5194/hess-17-3005-2013, 2013
C. D. Groot Zwaaftink, A. Cagnati, A. Crepaz, C. Fierz, G. Macelloni, M. Valt, and M. Lehning
The Cryosphere, 7, 333–347, https://doi.org/10.5194/tc-7-333-2013, https://doi.org/10.5194/tc-7-333-2013, 2013
Related subject area
Seasonal Snow
Characterization of non-Gaussianity in the snow distributions of various landscapes
A simple snow temperature index model exposes discrepancies between reanalysis snow water equivalent products
Which global reanalysis dataset has better representativeness in snow cover on the Tibetan Plateau?
Snow depth sensitivity to mean temperature, precipitation, and elevation in the Austrian and Swiss Alps
From snow accumulation to snow depth distributions by quantifying meteoric ice fractions in the Weddell Sea
Snow depth in high-resolution regional climate model simulations over southern Germany – suitable for extremes and impact-related research?
Snow water equivalent retrieval over Idaho – Part 2: Using L-band UAVSAR repeat-pass interferometry
Variability and drivers of winter near-surface temperatures over boreal and tundra landscapes
Benchmarking of SWE products based on outcomes of the SnowPEx+ Intercomparison Project
Use of multiple reference data sources to cross validate gridded snow water equivalent products over North America
Spatiotemporal snow water storage uncertainty in the midlatitude American Cordillera
Evaluation of snow cover properties in ERA5 and ERA5-Land with several satellite-based datasets in the Northern Hemisphere in spring 1982–2018
Multi-decadal analysis of past winter temperature, precipitation and snow cover data in the European Alps from reanalyses, climate models and observational datasets
Spatially continuous snow depth mapping by aeroplane photogrammetry for annual peak of winter from 2017 to 2021 in open areas
Change in the potential snowfall phenology: past, present, and future in the Chinese Tianshan mountainous region, Central Asia
The benefits of homogenising snow depth series – Impacts on decadal trends and extremes for Switzerland
Assessing the seasonal evolution of snow depth spatial variability and scaling in complex mountain terrain
Impact of measured and simulated tundra snowpack properties on heat transfer
Homogeneity assessment of Swiss snow depth series: comparison of break detection capabilities of (semi-)automatic homogenization methods
Propagating information from snow observations with CrocO ensemble data assimilation system: a 10-years case study over a snow depth observation network
Evaluation of Northern Hemisphere snow water equivalent in CMIP6 models during 1982–2014
Past changes in natural and managed snow reliability of French Alps ski resorts from 1961 to 2019
Multilayer observation and estimation of the snowpack cold content in a humid boreal coniferous forest of eastern Canada
Spatiotemporal distribution of seasonal snow water equivalent in High Mountain Asia from an 18-year Landsat–MODIS era snow reanalysis dataset
Recent changes in pan-Arctic sea ice, lake ice, and snow-on/off timing
Local-scale variability of seasonal mean and extreme values of in situ snow depth and snowfall measurements
Observed snow depth trends in the European Alps: 1971 to 2019
Snow Ensemble Uncertainty Project (SEUP): quantification of snow water equivalent uncertainty across North America via ensemble land surface modeling
Quantification of the radiative impact of light-absorbing particles during two contrasted snow seasons at Col du Lautaret (2058 m a.s.l., French Alps)
Local-scale variability of snow density on Arctic sea ice
Snow depth estimation and historical data reconstruction over China based on a random forest machine learning approach
Evaluation of long-term Northern Hemisphere snow water equivalent products
Towards a webcam-based snow cover monitoring network: methodology and evaluation
Simulated single-layer forest canopies delay Northern Hemisphere snowmelt
Spatiotemporal variability and decadal trends of snowmelt processes on Antarctic sea ice observed by satellite scatterometers
Converting snow depth to snow water equivalent using climatological variables
Avalanches and micrometeorology driving mass and energy balance of the lowest perennial ice field of the Alps: a case study
The optical characteristics and sources of chromophoric dissolved organic matter (CDOM) in seasonal snow of northwestern China
Brief Communication: Early season snowpack loss and implications for oversnow vehicle recreation travel planning
Multi-component ensembles of future meteorological and natural snow conditions for 1500 m altitude in the Chartreuse mountain range, Northern French Alps
Canadian snow and sea ice: assessment of snow, sea ice, and related climate processes in Canada's Earth system model and climate-prediction system
Canadian snow and sea ice: historical trends and projections
Improving gridded snow water equivalent products in British Columbia, Canada: multi-source data fusion by neural network models
Black carbon and mineral dust in snow cover on the Tibetan Plateau
Snow farming: conserving snow over the summer season
Ensemble-based assimilation of fractional snow-covered area satellite retrievals to estimate the snow distribution at Arctic sites
Spatiotemporal variability of snow depth across the Eurasian continent from 1966 to 2012
Measuring snow water equivalent from common-offset GPR records through migration velocity analysis
Snow water equivalent in the Alps as seen by gridded data sets, CMIP5 and CORDEX climate models
Properties of black carbon and other insoluble light-absorbing particles in seasonal snow of northwestern China
Noriaki Ohara, Andrew D. Parsekian, Benjamin M. Jones, Rodrigo C. Rangel, Kenneth M. Hinkel, and Rui A. P. Perdigão
The Cryosphere, 18, 5139–5152, https://doi.org/10.5194/tc-18-5139-2024, https://doi.org/10.5194/tc-18-5139-2024, 2024
Short summary
Short summary
Snow distribution characterization is essential for accurate snow water estimation for water resource prediction from existing in situ observations and remote-sensing data at a finite spatial resolution. Four different observed snow distribution datasets were analyzed for Gaussianity. We found that non-Gaussianity of snow distribution is a signature of the wind redistribution effect. Generally, seasonal snowpack can be approximated well by a Gaussian distribution for a fully snow-covered area.
Aleksandra Elias Chereque, Paul J. Kushner, Lawrence Mudryk, Chris Derksen, and Colleen Mortimer
The Cryosphere, 18, 4955–4969, https://doi.org/10.5194/tc-18-4955-2024, https://doi.org/10.5194/tc-18-4955-2024, 2024
Short summary
Short summary
We look at three commonly used snow depth datasets that are produced through a combination of snow modelling and historical measurements (reanalysis). When compared with each other, these datasets have differences that arise for various reasons. We show that a simple snow model can be used to examine these inconsistencies and highlight issues. This method indicates that one of the complex datasets should be excluded from further studies.
Shirui Yan, Yang Chen, Yaliang Hou, Kexin Liu, Xuejing Li, Yuxuan Xing, Dongyou Wu, Jiecan Cui, Yue Zhou, Wei Pu, and Xin Wang
The Cryosphere, 18, 4089–4109, https://doi.org/10.5194/tc-18-4089-2024, https://doi.org/10.5194/tc-18-4089-2024, 2024
Short summary
Short summary
The snow cover over the Tibetan Plateau (TP) plays a role in climate and hydrological systems, yet there are uncertainties in snow cover fraction (SCF) estimations within reanalysis datasets. This study utilized the Snow Property Inversion from Remote Sensing (SPIReS) SCF data to assess the accuracy of eight widely used reanalysis SCF datasets over the TP. Factors contributing to uncertainties were analyzed, and a combined averaging method was employed to provide optimized SCF simulations.
Matthew Switanek, Gernot Resch, Andreas Gobiet, Daniel Günther, Christoph Marty, and Wolfgang Schöner
EGUsphere, https://doi.org/10.5194/egusphere-2024-1172, https://doi.org/10.5194/egusphere-2024-1172, 2024
Short summary
Short summary
Snow depth plays an important role in water resources, mountain tourism, and hazard management across the European Alps. Our study uses station-based historical observations to quantify how changes in temperature and precipitation affect average seasonal snow depth. We find that the relationship between these variables has been surprisingly robust over the last 120 years. This allows us to more accurately estimate how future climate will affect seasonal snow depth in different elevation zones.
Stefanie Arndt, Nina Maaß, Leonard Rossmann, and Marcel Nicolaus
The Cryosphere, 18, 2001–2015, https://doi.org/10.5194/tc-18-2001-2024, https://doi.org/10.5194/tc-18-2001-2024, 2024
Short summary
Short summary
Antarctic sea ice maintains year-round snow cover, crucial for its energy and mass budgets. Despite its significance, snow depth remains poorly understood. Over the last decades, Snow Buoys have been deployed extensively on the sea ice to measure snow accumulation but not actual depth due to snow transformation into meteoric ice. Therefore, in this study we utilize sea ice and snow models to estimate meteoric ice fractions in order to calculate actual snow depth in the Weddell Sea.
Benjamin Poschlod and Anne Sophie Daloz
The Cryosphere, 18, 1959–1981, https://doi.org/10.5194/tc-18-1959-2024, https://doi.org/10.5194/tc-18-1959-2024, 2024
Short summary
Short summary
Information about snow depth is important within climate research but also many other sectors, such as tourism, mobility, civil engineering, and ecology. Climate models often feature a spatial resolution which is too coarse to investigate snow depth. Here, we analyse high-resolution simulations and identify added value compared to a coarser-resolution state-of-the-art product. Also, daily snow depth extremes are well reproduced by two models.
Zachary Hoppinen, Shadi Oveisgharan, Hans-Peter Marshall, Ross Mower, Kelly Elder, and Carrie Vuyovich
The Cryosphere, 18, 575–592, https://doi.org/10.5194/tc-18-575-2024, https://doi.org/10.5194/tc-18-575-2024, 2024
Short summary
Short summary
We used changes in radar echo travel time from multiple airborne flights to estimate changes in snow depths across Idaho for two winters. We compared our radar-derived retrievals to snow pits, weather stations, and a 100 m resolution numerical snow model. We had a strong Pearson correlation and root mean squared error of 10 cm relative to in situ measurements. Our retrievals also correlated well with our model, especially in regions of dry snow and low tree coverage.
Vilna Tyystjärvi, Pekka Niittynen, Julia Kemppinen, Miska Luoto, Tuuli Rissanen, and Juha Aalto
The Cryosphere, 18, 403–423, https://doi.org/10.5194/tc-18-403-2024, https://doi.org/10.5194/tc-18-403-2024, 2024
Short summary
Short summary
At high latitudes, winter ground surface temperatures are strongly controlled by seasonal snow cover and its spatial variation. Here, we measured surface temperatures and snow cover duration in 441 study sites in tundra and boreal regions. Our results show large variations in how much surface temperatures in winter vary depending on the landscape and its impact on snow cover. These results emphasise the importance of understanding microclimates and their drivers under changing winter conditions.
Lawrence Mudryk, Colleen Mortimer, Chris Derksen, Aleksandra Elias Chereque, and Paul Kushner
EGUsphere, https://doi.org/10.5194/egusphere-2023-3014, https://doi.org/10.5194/egusphere-2023-3014, 2024
Short summary
Short summary
We evaluate and rank 23 products that estimate historical snow amounts. The evaluation uses new a set of ground measurements with improved spatial coverage enabling evaluation across both mountain and non-mountain regions. Performance measures vary tremendously across the products: while most perform reasonably in non-mountain regions, accurate representation of snow amounts in mountain regions and of historical trends is much more variable.
Colleen Mortimer, Lawrence Mudryk, Eunsang Cho, Chris Derksen, Mike Brady, and Carrie Vuyvich
EGUsphere, https://doi.org/10.5194/egusphere-2023-3013, https://doi.org/10.5194/egusphere-2023-3013, 2024
Short summary
Short summary
Ground measurements of snow water equivalent (SWE) are vital for understanding the accuracy of large-scale estimates from satellites and climate models. We compare two different types of measurements – snow courses and airborne gamma SWE estimates – and analyse how measurement type impacts the accuracy assessment of gridded SWE products. We use this analysis produce a combined reference SWE dataset for North America, applicable for future gridded SWE product evaluations and other applications.
Yiwen Fang, Yufei Liu, Dongyue Li, Haorui Sun, and Steven A. Margulis
The Cryosphere, 17, 5175–5195, https://doi.org/10.5194/tc-17-5175-2023, https://doi.org/10.5194/tc-17-5175-2023, 2023
Short summary
Short summary
Using newly developed snow reanalysis datasets as references, snow water storage is at high uncertainty among commonly used global products in the Andes and low-resolution products in the western United States, where snow is the key element of water resources. In addition to precipitation, elevation differences and model mechanism variances drive snow uncertainty. This work provides insights for research applying these products and generating future products in areas with limited in situ data.
Kerttu Kouki, Kari Luojus, and Aku Riihelä
The Cryosphere, 17, 5007–5026, https://doi.org/10.5194/tc-17-5007-2023, https://doi.org/10.5194/tc-17-5007-2023, 2023
Short summary
Short summary
We evaluated snow cover properties in state-of-the-art reanalyses (ERA5 and ERA5-Land) with satellite-based datasets. Both ERA5 and ERA5-Land overestimate snow mass, whereas albedo estimates are more consistent between the datasets. Snow cover extent (SCE) is accurately described in ERA5-Land, while ERA5 shows larger SCE than the satellite-based datasets. The trends in snow mass, SCE, and albedo are mostly negative in 1982–2018, and the negative trends become more apparent when spring advances.
Diego Monteiro and Samuel Morin
The Cryosphere, 17, 3617–3660, https://doi.org/10.5194/tc-17-3617-2023, https://doi.org/10.5194/tc-17-3617-2023, 2023
Short summary
Short summary
Beyond directly using in situ observations, often sparsely available in mountain regions, climate model simulations and so-called reanalyses are increasingly used for climate change impact studies. Here we evaluate such datasets in the European Alps from 1950 to 2020, with a focus on snow cover information and its main drivers: air temperature and precipitation. In terms of variability and trends, we identify several limitations and provide recommendations for future use of these datasets.
Leon J. Bührle, Mauro Marty, Lucie A. Eberhard, Andreas Stoffel, Elisabeth D. Hafner, and Yves Bühler
The Cryosphere, 17, 3383–3408, https://doi.org/10.5194/tc-17-3383-2023, https://doi.org/10.5194/tc-17-3383-2023, 2023
Short summary
Short summary
Information on the snow depth distribution is crucial for numerous applications in high-mountain regions. However, only specific measurements can accurately map the present variability of snow depths within complex terrain. In this study, we show the reliable processing of images from aeroplane to large (> 100 km2) detailed and accurate snow depth maps around Davos (CH). We use these maps to describe the existing snow depth distribution, other special features and potential applications.
Xuemei Li, Xinyu Liu, Kaixin Zhao, Xu Zhang, and Lanhai Li
The Cryosphere, 17, 2437–2453, https://doi.org/10.5194/tc-17-2437-2023, https://doi.org/10.5194/tc-17-2437-2023, 2023
Short summary
Short summary
Quantifying change in the potential snowfall phenology (PSP) is an important area of research for understanding regional climate change past, present, and future. However, few studies have focused on the PSP and its change in alpine mountainous regions. We proposed three innovative indicators to characterize the PSP and its spatial–temporal variation. Our study provides a novel approach to understanding PSP in alpine mountainous regions and can be easily extended to other snow-dominated regions.
Moritz Buchmann, Gernot Resch, Michael Begert, Stefan Brönnimann, Barbara Chimani, Wolfgang Schöner, and Christoph Marty
The Cryosphere, 17, 653–671, https://doi.org/10.5194/tc-17-653-2023, https://doi.org/10.5194/tc-17-653-2023, 2023
Short summary
Short summary
Our current knowledge of spatial and temporal snow depth trends is based almost exclusively on time series of non-homogenised observational data. However, like other long-term series from observations, they are susceptible to inhomogeneities that can affect the trends and even change the sign. To assess the relevance of homogenisation for daily snow depths, we investigated its impact on trends and changes in extreme values of snow indices between 1961 and 2021 in the Swiss observation network.
Zachary S. Miller, Erich H. Peitzsch, Eric A. Sproles, Karl W. Birkeland, and Ross T. Palomaki
The Cryosphere, 16, 4907–4930, https://doi.org/10.5194/tc-16-4907-2022, https://doi.org/10.5194/tc-16-4907-2022, 2022
Short summary
Short summary
Snow depth varies across steep, complex mountain landscapes due to interactions between dynamic natural processes. Our study of a winter time series of high-resolution snow depth maps found that spatial resolutions greater than 0.5 m do not capture the complete patterns of snow depth spatial variability at a couloir study site in the Bridger Range of Montana, USA. The results of this research have the potential to reduce uncertainty associated with snowpack and snow water resource analysis.
Victoria R. Dutch, Nick Rutter, Leanne Wake, Melody Sandells, Chris Derksen, Branden Walker, Gabriel Hould Gosselin, Oliver Sonnentag, Richard Essery, Richard Kelly, Phillip Marsh, Joshua King, and Julia Boike
The Cryosphere, 16, 4201–4222, https://doi.org/10.5194/tc-16-4201-2022, https://doi.org/10.5194/tc-16-4201-2022, 2022
Short summary
Short summary
Measurements of the properties of the snow and soil were compared to simulations of the Community Land Model to see how well the model represents snow insulation. Simulations underestimated snow thermal conductivity and wintertime soil temperatures. We test two approaches to reduce the transfer of heat through the snowpack and bring simulated soil temperatures closer to measurements, with an alternative parameterisation of snow thermal conductivity being more appropriate.
Moritz Buchmann, John Coll, Johannes Aschauer, Michael Begert, Stefan Brönnimann, Barbara Chimani, Gernot Resch, Wolfgang Schöner, and Christoph Marty
The Cryosphere, 16, 2147–2161, https://doi.org/10.5194/tc-16-2147-2022, https://doi.org/10.5194/tc-16-2147-2022, 2022
Short summary
Short summary
Knowledge about inhomogeneities in a data set is important for any subsequent climatological analysis. We ran three well-established homogenization methods and compared the identified break points. By only treating breaks as valid when detected by at least two out of three methods, we enhanced the robustness of our results. We found 45 breaks within 42 of 184 investigated series; of these 70 % could be explained by events recorded in the station history.
Bertrand Cluzet, Matthieu Lafaysse, César Deschamps-Berger, Matthieu Vernay, and Marie Dumont
The Cryosphere, 16, 1281–1298, https://doi.org/10.5194/tc-16-1281-2022, https://doi.org/10.5194/tc-16-1281-2022, 2022
Short summary
Short summary
The mountainous snow cover is highly variable at all temporal and spatial scales. Snow cover models suffer from large errors, while snowpack observations are sparse. Data assimilation combines them into a better estimate of the snow cover. A major challenge is to propagate information from observed into unobserved areas. This paper presents a spatialized version of the particle filter, in which information from in situ snow depth observations is successfully used to constrain nearby simulations.
Kerttu Kouki, Petri Räisänen, Kari Luojus, Anna Luomaranta, and Aku Riihelä
The Cryosphere, 16, 1007–1030, https://doi.org/10.5194/tc-16-1007-2022, https://doi.org/10.5194/tc-16-1007-2022, 2022
Short summary
Short summary
We analyze state-of-the-art climate models’ ability to describe snow mass and whether biases in modeled temperature or precipitation can explain the discrepancies in snow mass. In winter, biases in precipitation are the main factor affecting snow mass, while in spring, biases in temperature becomes more important, which is an expected result. However, temperature or precipitation cannot explain all snow mass discrepancies. Other factors, such as models’ structural errors, are also significant.
Lucas Berard-Chenu, Hugues François, Emmanuelle George, and Samuel Morin
The Cryosphere, 16, 863–881, https://doi.org/10.5194/tc-16-863-2022, https://doi.org/10.5194/tc-16-863-2022, 2022
Short summary
Short summary
This study investigates the past snow reliability (1961–2019) of 16 ski resorts in the French Alps using state-of-the-art snowpack modelling. We used snowmaking investment figures to infer the evolution of snowmaking coverage at the individual ski resort level. Snowmaking improved snow reliability for the core of the winter season for the highest-elevation ski resorts. However it did not counterbalance the decreasing trend in snow cover reliability for lower-elevation ski resorts and in spring.
Achut Parajuli, Daniel F. Nadeau, François Anctil, and Marco Alves
The Cryosphere, 15, 5371–5386, https://doi.org/10.5194/tc-15-5371-2021, https://doi.org/10.5194/tc-15-5371-2021, 2021
Short summary
Short summary
Cold content is the energy required to attain an isothermal (0 °C) state and resulting in the snow surface melt. This study focuses on determining the multi-layer cold content (30 min time steps) relying on field measurements, snow temperature profile, and empirical formulation in four distinct forest sites of Montmorency Forest, eastern Canada. We present novel research where the effect of forest structure, local topography, and meteorological conditions on cold content variability is explored.
Yufei Liu, Yiwen Fang, and Steven A. Margulis
The Cryosphere, 15, 5261–5280, https://doi.org/10.5194/tc-15-5261-2021, https://doi.org/10.5194/tc-15-5261-2021, 2021
Short summary
Short summary
We examined the spatiotemporal distribution of stored water in the seasonal snowpack over High Mountain Asia, based on a new snow reanalysis dataset. The dataset was derived utilizing satellite-observed snow information, which spans across 18 water years, at a high spatial (~ 500 m) and temporal (daily) resolution. Snow mass and snow storage distribution over space and time are analyzed in this paper, which brings new insights into understanding the snowpack variability over this region.
Alicia A. Dauginis and Laura C. Brown
The Cryosphere, 15, 4781–4805, https://doi.org/10.5194/tc-15-4781-2021, https://doi.org/10.5194/tc-15-4781-2021, 2021
Short summary
Short summary
This work examines changes in the timing (on/off dates) of Arctic snow, lake ice, and sea ice to investigate how they have responded to recent climate change and determine if they are responding similarly. We looked at pan-Arctic trends since 1997 and regional trends since 2004 using (mainly) satellite data. Strong regional variability was shown in the snow and ice trends, which highlights the need for a detailed understanding of the regional response to ongoing changes in the Arctic climate.
Moritz Buchmann, Michael Begert, Stefan Brönnimann, and Christoph Marty
The Cryosphere, 15, 4625–4636, https://doi.org/10.5194/tc-15-4625-2021, https://doi.org/10.5194/tc-15-4625-2021, 2021
Short summary
Short summary
We investigated the impacts of local-scale variations by analysing snow climate indicators derived from parallel snow measurements. We found the largest relative inter-pair differences for all indicators in spring and the smallest in winter. The findings serve as an important basis for our understanding of uncertainties of commonly used snow indicators and provide, in combination with break-detection methods, the groundwork in view of any homogenization efforts regarding snow time series.
Michael Matiu, Alice Crespi, Giacomo Bertoldi, Carlo Maria Carmagnola, Christoph Marty, Samuel Morin, Wolfgang Schöner, Daniele Cat Berro, Gabriele Chiogna, Ludovica De Gregorio, Sven Kotlarski, Bruno Majone, Gernot Resch, Silvia Terzago, Mauro Valt, Walter Beozzo, Paola Cianfarra, Isabelle Gouttevin, Giorgia Marcolini, Claudia Notarnicola, Marcello Petitta, Simon C. Scherrer, Ulrich Strasser, Michael Winkler, Marc Zebisch, Andrea Cicogna, Roberto Cremonini, Andrea Debernardi, Mattia Faletto, Mauro Gaddo, Lorenzo Giovannini, Luca Mercalli, Jean-Michel Soubeyroux, Andrea Sušnik, Alberto Trenti, Stefano Urbani, and Viktor Weilguni
The Cryosphere, 15, 1343–1382, https://doi.org/10.5194/tc-15-1343-2021, https://doi.org/10.5194/tc-15-1343-2021, 2021
Short summary
Short summary
The first Alpine-wide assessment of station snow depth has been enabled by a collaborative effort of the research community which involves more than 30 partners, 6 countries, and more than 2000 stations. It shows how snow in the European Alps matches the climatic zones and gives a robust estimate of observed changes: stronger decreases in the snow season at low elevations and in spring at all elevations, however, with considerable regional differences.
Rhae Sung Kim, Sujay Kumar, Carrie Vuyovich, Paul Houser, Jessica Lundquist, Lawrence Mudryk, Michael Durand, Ana Barros, Edward J. Kim, Barton A. Forman, Ethan D. Gutmann, Melissa L. Wrzesien, Camille Garnaud, Melody Sandells, Hans-Peter Marshall, Nicoleta Cristea, Justin M. Pflug, Jeremy Johnston, Yueqian Cao, David Mocko, and Shugong Wang
The Cryosphere, 15, 771–791, https://doi.org/10.5194/tc-15-771-2021, https://doi.org/10.5194/tc-15-771-2021, 2021
Short summary
Short summary
High SWE uncertainty is observed in mountainous and forested regions, highlighting the need for high-resolution snow observations in these regions. Substantial uncertainty in snow water storage in Tundra regions and the dominance of water storage in these regions points to the need for high-accuracy snow estimation. Finally, snow measurements during the melt season are most needed at high latitudes, whereas observations at near peak snow accumulations are most beneficial over the midlatitudes.
François Tuzet, Marie Dumont, Ghislain Picard, Maxim Lamare, Didier Voisin, Pierre Nabat, Mathieu Lafaysse, Fanny Larue, Jesus Revuelto, and Laurent Arnaud
The Cryosphere, 14, 4553–4579, https://doi.org/10.5194/tc-14-4553-2020, https://doi.org/10.5194/tc-14-4553-2020, 2020
Short summary
Short summary
This study presents a field dataset collected over 30 d from two snow seasons at a Col du Lautaret site (French Alps). The dataset compares different measurements or estimates of light-absorbing particle (LAP) concentrations in snow, highlighting a gap in the current understanding of the measurement of these quantities. An ensemble snowpack model is then evaluated for this dataset estimating that LAPs shorten each snow season by around 10 d despite contrasting meteorological conditions.
Joshua King, Stephen Howell, Mike Brady, Peter Toose, Chris Derksen, Christian Haas, and Justin Beckers
The Cryosphere, 14, 4323–4339, https://doi.org/10.5194/tc-14-4323-2020, https://doi.org/10.5194/tc-14-4323-2020, 2020
Short summary
Short summary
Physical measurements of snow on sea ice are sparse, making it difficulty to evaluate satellite estimates or model representations. Here, we introduce new measurements of snow properties on sea ice to better understand variability at distances less than 200 m. Our work shows that similarities in the snow structure are found at longer distances on younger ice than older ice.
Jianwei Yang, Lingmei Jiang, Kari Luojus, Jinmei Pan, Juha Lemmetyinen, Matias Takala, and Shengli Wu
The Cryosphere, 14, 1763–1778, https://doi.org/10.5194/tc-14-1763-2020, https://doi.org/10.5194/tc-14-1763-2020, 2020
Short summary
Short summary
There are many challenges for accurate snow depth estimation using passive microwave data. Machine learning (ML) techniques are deemed to be powerful tools for establishing nonlinear relations between independent variables and a given target variable. In this study, we investigate the potential capability of the random forest (RF) model on snow depth estimation at temporal and spatial scales. The result indicates that the fitted RF algorithms perform better on temporal than spatial scales.
Colleen Mortimer, Lawrence Mudryk, Chris Derksen, Kari Luojus, Ross Brown, Richard Kelly, and Marco Tedesco
The Cryosphere, 14, 1579–1594, https://doi.org/10.5194/tc-14-1579-2020, https://doi.org/10.5194/tc-14-1579-2020, 2020
Short summary
Short summary
Existing stand-alone passive microwave SWE products have markedly different climatological SWE patterns compared to reanalysis-based datasets. The AMSR-E SWE has low spatial and temporal correlations with the four reanalysis-based products evaluated and GlobSnow and perform poorly in comparisons with snow transect data from Finland, Russia, and Canada. There is better agreement with in situ data when multiple SWE products, excluding the stand-alone passive microwave SWE products, are combined.
Céline Portenier, Fabia Hüsler, Stefan Härer, and Stefan Wunderle
The Cryosphere, 14, 1409–1423, https://doi.org/10.5194/tc-14-1409-2020, https://doi.org/10.5194/tc-14-1409-2020, 2020
Short summary
Short summary
We present a method to derive snow cover maps from freely available webcam images in the Swiss Alps. With marginal manual user input, we can transform a webcam image into a georeferenced map and therewith perform snow cover analyses with a high spatiotemporal resolution over a large area. Our evaluation has shown that webcams could not only serve as a reference for improved validation of satellite-based approaches, but also complement satellite-based snow cover retrieval.
Markus Todt, Nick Rutter, Christopher G. Fletcher, and Leanne M. Wake
The Cryosphere, 13, 3077–3091, https://doi.org/10.5194/tc-13-3077-2019, https://doi.org/10.5194/tc-13-3077-2019, 2019
Short summary
Short summary
Vegetation is often represented by a single layer in global land models. Studies have found deficient simulation of thermal radiation beneath forest canopies when represented by single-layer vegetation. This study corrects thermal radiation in forests for a global land model using single-layer vegetation in order to assess the effect of deficient thermal radiation on snow cover and snowmelt. Results indicate that single-layer vegetation causes snow in forests to be too cold and melt too late.
Stefanie Arndt and Christian Haas
The Cryosphere, 13, 1943–1958, https://doi.org/10.5194/tc-13-1943-2019, https://doi.org/10.5194/tc-13-1943-2019, 2019
David F. Hill, Elizabeth A. Burakowski, Ryan L. Crumley, Julia Keon, J. Michelle Hu, Anthony A. Arendt, Katreen Wikstrom Jones, and Gabriel J. Wolken
The Cryosphere, 13, 1767–1784, https://doi.org/10.5194/tc-13-1767-2019, https://doi.org/10.5194/tc-13-1767-2019, 2019
Short summary
Short summary
We present a new statistical model for converting snow depths to water equivalent. The only variables required are snow depth, day of year, and location. We use the location to look up climatological parameters such as mean winter precipitation and mean temperature difference (difference between hottest month and coldest month). The model is simple by design so that it can be applied to depth measurements anywhere, anytime. The model is shown to perform better than other widely used approaches.
Rebecca Mott, Andreas Wolf, Maximilian Kehl, Harald Kunstmann, Michael Warscher, and Thomas Grünewald
The Cryosphere, 13, 1247–1265, https://doi.org/10.5194/tc-13-1247-2019, https://doi.org/10.5194/tc-13-1247-2019, 2019
Short summary
Short summary
The mass balance of very small glaciers is often governed by anomalous snow accumulation, winter precipitation being multiplied by snow redistribution processes, or by suppressed snow ablation driven by micrometeorological effects lowering net radiation and turbulent heat exchange. In this study we discuss the relative contribution of snow accumulation (avalanches) versus micrometeorology (katabatic flow) on the mass balance of the lowest perennial ice field of the Alps, the Ice Chapel.
Yue Zhou, Hui Wen, Jun Liu, Wei Pu, Qingcai Chen, and Xin Wang
The Cryosphere, 13, 157–175, https://doi.org/10.5194/tc-13-157-2019, https://doi.org/10.5194/tc-13-157-2019, 2019
Short summary
Short summary
We first investigated the optical characteristics and potential sources of chromophoric dissolved organic matter (CDOM) in seasonal snow over northwestern China. The abundance of CDOM showed regional variation. At some sites strongly influenced by local soil, the absorption of CDOM cannot be neglected compared to black carbon. We found two humic-like and one protein-like fluorophores in snow. The major sources of snow CDOM were soil, biomass burning, and anthropogenic pollution.
Benjamin J. Hatchett and Hilary G. Eisen
The Cryosphere, 13, 21–28, https://doi.org/10.5194/tc-13-21-2019, https://doi.org/10.5194/tc-13-21-2019, 2019
Short summary
Short summary
We examine the timing of early season snowpack relevant to oversnow vehicle (OSV) recreation over the past 3 decades in the Lake Tahoe region (USA). Data from two independent data sources suggest that the timing of achieving sufficient snowpack has shifted later by 2 weeks. Increasing rainfall and more dry days play a role in the later onset. Adaptation strategies are provided for winter travel management planning to address negative impacts of loss of early season snowpack for OSV usage.
Deborah Verfaillie, Matthieu Lafaysse, Michel Déqué, Nicolas Eckert, Yves Lejeune, and Samuel Morin
The Cryosphere, 12, 1249–1271, https://doi.org/10.5194/tc-12-1249-2018, https://doi.org/10.5194/tc-12-1249-2018, 2018
Short summary
Short summary
This article addresses local changes of seasonal snow and its meteorological drivers, at 1500 m altitude in the Chartreuse mountain range in the Northern French Alps, for the period 1960–2100. We use an ensemble of adjusted RCM outputs consistent with IPCC AR5 GCM outputs (RCPs 2.6, 4.5 and 8.5) and the snowpack model Crocus. Beyond scenario-based approach, global temperature levels on the order of 1.5 °C and 2 °C above preindustrial levels correspond to 25 and 32% reduction of mean snow depth.
Paul J. Kushner, Lawrence R. Mudryk, William Merryfield, Jaison T. Ambadan, Aaron Berg, Adéline Bichet, Ross Brown, Chris Derksen, Stephen J. Déry, Arlan Dirkson, Greg Flato, Christopher G. Fletcher, John C. Fyfe, Nathan Gillett, Christian Haas, Stephen Howell, Frédéric Laliberté, Kelly McCusker, Michael Sigmond, Reinel Sospedra-Alfonso, Neil F. Tandon, Chad Thackeray, Bruno Tremblay, and Francis W. Zwiers
The Cryosphere, 12, 1137–1156, https://doi.org/10.5194/tc-12-1137-2018, https://doi.org/10.5194/tc-12-1137-2018, 2018
Short summary
Short summary
Here, the Canadian research network CanSISE uses state-of-the-art observations of snow and sea ice to assess how Canada's climate model and climate prediction systems capture variability in snow, sea ice, and related climate parameters. We find that the system performs well, accounting for observational uncertainty (especially for snow), model uncertainty, and chaotic climate variability. Even for variables like sea ice, where improvement is needed, useful prediction tools can be developed.
Lawrence R. Mudryk, Chris Derksen, Stephen Howell, Fred Laliberté, Chad Thackeray, Reinel Sospedra-Alfonso, Vincent Vionnet, Paul J. Kushner, and Ross Brown
The Cryosphere, 12, 1157–1176, https://doi.org/10.5194/tc-12-1157-2018, https://doi.org/10.5194/tc-12-1157-2018, 2018
Short summary
Short summary
This paper presents changes in both snow and sea ice that have occurred over Canada during the recent past and shows climate model estimates for future changes expected to occur by the year 2050. The historical changes of snow and sea ice are generally coherent and consistent with the regional history of temperature and precipitation changes. It is expected that snow and sea ice will continue to decrease in the future, declining by an additional 15–30 % from present day values by the year 2050.
Andrew M. Snauffer, William W. Hsieh, Alex J. Cannon, and Markus A. Schnorbus
The Cryosphere, 12, 891–905, https://doi.org/10.5194/tc-12-891-2018, https://doi.org/10.5194/tc-12-891-2018, 2018
Short summary
Short summary
Estimating winter snowpack throughout British Columbia is challenging due to the complex terrain, thick forests, and high snow accumulations present. This paper describes a way to make better snow estimates by combining publicly available data using machine learning, a branch of artificial intelligence research. These improved estimates will help water resources managers better plan for changes in rivers and lakes fed by spring snowmelt and will aid other research that supports such planning.
Yulan Zhang, Shichang Kang, Michael Sprenger, Zhiyuan Cong, Tanguang Gao, Chaoliu Li, Shu Tao, Xiaofei Li, Xinyue Zhong, Min Xu, Wenjun Meng, Bigyan Neupane, Xiang Qin, and Mika Sillanpää
The Cryosphere, 12, 413–431, https://doi.org/10.5194/tc-12-413-2018, https://doi.org/10.5194/tc-12-413-2018, 2018
Short summary
Short summary
Light-absorbing impurities deposited on snow can reduce surface albedo and contribute to the near-worldwide melting of snowpack and ice. This study focused on the black carbon and mineral dust in snow cover on the Tibetan Plateau. We discussed their concentrations, distributions, possible sources, and albedo reduction and radiative forcing. Findings indicated that the impacts of black carbon and mineral dust need to be properly accounted for in future regional climate projections.
Thomas Grünewald, Fabian Wolfsperger, and Michael Lehning
The Cryosphere, 12, 385–400, https://doi.org/10.5194/tc-12-385-2018, https://doi.org/10.5194/tc-12-385-2018, 2018
Short summary
Short summary
Snow farming is the conservation of snow during summer. Large snow piles are covered with a sawdust insulation layer, reducing melt and guaranteeing a specific amount of available snow in autumn, independent of the weather conditions. Snow volume changes in two heaps were monitored, showing that about a third of the snow was lost. Model simulations confirmed the large effect of the insulation on energy balance and melt. The model can now be used as a tool to examine future snow-farming projects.
Kristoffer Aalstad, Sebastian Westermann, Thomas Vikhamar Schuler, Julia Boike, and Laurent Bertino
The Cryosphere, 12, 247–270, https://doi.org/10.5194/tc-12-247-2018, https://doi.org/10.5194/tc-12-247-2018, 2018
Short summary
Short summary
We demonstrate how snow cover data from satellites can be used to constrain estimates of snow distributions at sites in the Arctic. In this effort, we make use of data assimilation to combine the information contained in the snow cover data with a simple snow model. By comparing our snow distribution estimates to independent observations, we find that this method performs favorably. Being modular, this method could be applied to other areas as a component of a larger reanalysis system.
Xinyue Zhong, Tingjun Zhang, Shichang Kang, Kang Wang, Lei Zheng, Yuantao Hu, and Huijuan Wang
The Cryosphere, 12, 227–245, https://doi.org/10.5194/tc-12-227-2018, https://doi.org/10.5194/tc-12-227-2018, 2018
James St. Clair and W. Steven Holbrook
The Cryosphere, 11, 2997–3009, https://doi.org/10.5194/tc-11-2997-2017, https://doi.org/10.5194/tc-11-2997-2017, 2017
Short summary
Short summary
We investigate the performance of a semiautomated algorithm for measuring snow water equivalent (SWE) from common-offset ground-penetrating radar (GPR) data. GPR-derived SWE estimates are similar to manual measurements, indicating that the method is reliable. Our results will hopefully make GPR a more attractive tool for monitoring SWE in mountain watersheds.
Silvia Terzago, Jost von Hardenberg, Elisa Palazzi, and Antonello Provenzale
The Cryosphere, 11, 1625–1645, https://doi.org/10.5194/tc-11-1625-2017, https://doi.org/10.5194/tc-11-1625-2017, 2017
Short summary
Short summary
The estimate of the current and future conditions of snow resources in mountain areas depends on the availability of reliable fine-resolution data sets and of climate models capable of properly representing snow processes and snow–climate interactions. This work considers the snow water equivalent data sets from remote sensing, reanalyses, regional and global climate models available for the Alps and explores their ability to provide a coherent view of the snowpack features and its changes.
Wei Pu, Xin Wang, Hailun Wei, Yue Zhou, Jinsen Shi, Zhiyuan Hu, Hongchun Jin, and Quanliang Chen
The Cryosphere, 11, 1213–1233, https://doi.org/10.5194/tc-11-1213-2017, https://doi.org/10.5194/tc-11-1213-2017, 2017
Short summary
Short summary
We conducted a large field campaign to collect snow samples in Xinjiang. We measured insoluble light-absorbing particles with estimated black carbon concentrations of 10–150 ngg-1. We found a probable shift in emission sources with the progression of winter and dominated contributions of BC and OC to light absorption. A PMF model indicated an optimal three-factor/source solution that included industrial pollution, biomass burning, and soil dust.
Cited articles
Allen, S. and Huggel, C.: Extremely warm temperatures as a potential cause of recent high mountain rockfall, Global Planet. Change, 107, 59–69, https://doi.org/10.1016/j.gloplacha.2013.04.007, 2013.
Armstrong, R. L. and Brun, E. (Eds.): Snow and Climate: Physical Processes, Surface Energy Exchange and Modeling, Cambridge University Press, Cambridge, 256 pp., 2008.
Bavay, M. and Egger, T.: MeteoIO 2.4.2: a preprocessing library for meteorological data, Geosci. Model Dev., 7, 3135–3151, https://doi.org/10.5194/gmd-7-3135-2014, 2014.
Bernhard, L., Sutter, F., Haeberli, W., and Keller, F.: Processes of Snow/Permafrost-Interactions at a High-Mountain Site, Murtèl/Corvatsch, Eastern Swiss Alps, in: Proceedings of the 7th International Conference on Permafrost, edited by: Lewkowicz, A. G. and Allard, M., Collection Nordicana, 55, Université Laval, Yellwoknife, Canada, 35–41, 1998.
Bernhardt, M. and Schulz, K.: SnowSlide: A simple routine for calculating gravitational snow transport, Geophys. Res. Lett., 37, L11502, https://doi.org/10.1029/2010GL043086, 2010.
Blöschl, G. and Kirnbauer, R.: An analysis of snow cover patterns in a small alpine catchment, Hydrol. Process., 6, 99–109, https://doi.org/10.1002/hyp.3360060109, 1992.
Boeckli, L., Brenning, A., Gruber, S., and Noetzli, J.: A statistical approach to modelling permafrost distribution in the European Alps or similar mountain ranges, The Cryosphere, 6, 125–140, https://doi.org/10.5194/tc-6-125-2012, 2012a.
Boeckli, L., Brenning, A., Gruber, S., and Noetzli, J.: Permafrost distribution in the European Alps: calculation and evaluation of an index map and summary statistics, The Cryosphere, 6, 807–820, https://doi.org/10.5194/tc-6-807-2012, 2012b.
Bommer, C., Phillips, M., and Arenson, L. U.: Practical recommendations for planning, constructing and maintaining infrastructure in mountain permafrost, Permafrost Periglac., 21, 97–104, https://doi.org/10.1002/ppp679, 2010.
Cermák, V. and Rybach, L.: Thermal conductivity and specific heat of minerals and rocks, in: Landolt-Börnstein Zahlenwerte und Funktionen aus Naturwissenschaften und Technik, Neue Serie, Physikalische Eigenschaften der Gesteine, edited by: Angeneister, G., Springer, Berlin, 305–343, 1982.
Deline, P., Gruber, S., Delaloye, R., Fischer, L., Geertsema, M., Giardina, M., Hasler, A., Kirkbride, M., Krautblatter, M., Magnin, F., McColl, S., Ravanel, L., and Schoeneich, P.: Ice Loss and Slope Stability in High-Mountain Regions, Snow and Ice-Related Hazards, Risks, and Disasters, Elsevier, 521–561, https://doi.org/10.1016/B978-0-12-394849-6.00015-9, 2015.
Fiddes, J., Endrizzi, S., and Gruber, S.: Large-area land surface simulations in heterogeneous terrain driven by global data sets: application to mountain permafrost, The Cryosphere, 9, 411–426, https://doi.org/10.5194/tc-9-411-2015, 2015.
Fischer, L., Purves, R. S., Huggel, C., Noetzli, J., and Haeberli, W.: On the influence of topographic, geological and cryospheric factors on rock avalanches and rockfalls in high-mountain areas, Nat. Hazards Earth Syst. Sci., 12, 241–254, https://doi.org/10.5194/nhess-12-241-2012, 2012.
Gruber, S.: A mass-conserving fast algorithm to parameterize gravitational transport and deposition using digital elevation models, Water Resour. Res., 43, W06412, https://doi.org/10.1029/2006WR004868, 2007.
Gruber, S. and Haeberli, W.: Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change, J. Geophys. Res., 112, F02S18, https://doi.org/10.1029/2006JF000547, 2007.
Gruber, S., Hoelzle, M., and Haeberli, W.: Rock-wall Temperatures in the Alps: Modelling their Topographic Distribution and Regional Differences, Permafrost Periglac., 15, 299–307, https://doi.org/10.1002/ppp.501, 2004a.
Gruber, S., Hoelzle, M., and Haeberli, W.: Permafrost thaw and destabilization of Alpine rock walls in the hot summer of 2003, Geophys. Res. Lett., 31, L13504, https://doi.org/10.1029/2004GL020051, 2004b.
Gruber Schmid, U. and Sardemann, S.: High-frequency avalanches: release area characteristics and run-out distances, Cold Reg. Sci. Technol., 37, 439–451, https://doi.org/10.1016/S0165-232X(03)00083-1, 2003.
Gubler, S., Fiddes, J., Keller, M., and Gruber, S.: Scale-dependent measurement and analysis of ground surface temperature variability in alpine terrain, The Cryosphere, 5, 431–443, https://doi.org/10.5194/tc-5-431-2011, 2011.
Gupta, H. V., Beven, K., and Wagener, T.: Model calibration and uncertainty estimation, in: Encyclopedia of Hydrological Sciences, edited by: Anderson, M. G., John Wiley & Sons, Ltd., 305–343, https://doi.org/10.1002/0470848944.hsa138, 2005.
Haberkorn, A., Hoelzle, M., Phillips, M., and Kenner, R.: Snow as driving factor of rock surface temperatures in steep rough rock walls, Cold Reg. Sci. Technol., 118, 64–75, https://doi.org/10.1016/j.coldregions.2015.06.013, 2015a.
Haberkorn, A., Phillips, M., Kenner, R., Rhyner, H., Bavay, M., Galos, S. P., and Hoelzle, M.: Thermal Regime of Rock and its Relation to Snow Cover in Steep Alpine Rock Walls: Gemsstock, Central Swiss Alps, Geogr. Ann. A, 97, 579–597, https://doi.org/10.1111/geoa.12101, 2015b.
Hanson, S. and Hoelzle, M.: The Thermal Regime of the Active Layer at the Murtèl Rock Glacier Based on Data from 2002, Permafrost Periglac., 15, 273–282, https://doi.org/10.1002/ppp.499, 2004.
Hasler, A., Gruber, S., and Haeberli, W.: Temperature variability and offset in steep alpine rock and ice faces, The Cryosphere, 5, 977–988, https://doi.org/10.5194/tc-5-977-2011, 2011.
Helbig, N., Löwe, H., and Lehning, M.: Radiosity Approach for the Shortwave Surface Radiation Balance in Complex Terrain, J. Atmos. Sci., 66, 2900–2912, https://doi.org/10.1175/2009JAS2940.1, 2009.
Hoelzle, M., Mittaz, C., Etzelmüller, B., and Haeberli, W.: Surface Energy Fluxes and Distribution Models of Permafrost in European Mountain Areas: an Overview of Current Developments, Permafrost Periglac., 12, 53–68, https://doi.org/10.1002/ppp.385, 2001.
Imhof, M., Pierrehumbert, G., Haeberli, W., and Kienholz, H.: Permafrost Investigation in the Schilthorn Massif, Bernese Alps, Switzerland, Permafrost Periglac.., 11, 189–206, https://doi.org/10.1002/1099-1530(200007/09)11:3<189::AID-PPP348>3.0.CO;2-N, 2000.
Keller, F. and Gubler, H.: Interaction between snow cover and high mountain permafrost, Murtèl-Corvatsch, Swiss Alps, in: Proceedings of the 6th International Conference on Permafrost, edited by: Guodong, C., South China University, Technology Press, 332–337, 1993.
Kohl, T.: Transient thermal effects below complex topographies, Tectonophysics, 306, 311–324, https://doi.org/10.1016/S0040-1951(99)00063-3, 1999.
Krautblatter, M., Funk, D., and Günzel, F. K.: Why permafrost rocks become unstable: a rock-ice-mechanical model in time and space, Earth Surf. Proc. Land., 38, 876–887, https://doi.org/10.1002/esp.3374, 2013.
Kuonen, P., Bavay, M., and Lehning, M.: Advanced ICTs for Disaster Management and Threat Detection: Collaborative and Distributed Frameworks, chapter POP-C+ + and Alpine3D: Petition for a New HPC Approach, IGI Global, https://doi.org/10.4018/978-1-61520-987-3.ch015, 2010.
Lehning, M., Bartelt, P., Brown, B., Russi, T., Stöckli, U., and Zimmerli, M.: SNOWPACK model calculations for avalanche warning based upon a new network of weather and snow stations, Cold Reg. Sci. Technol., 30, 145–157, https://doi.org/10.1016/S0165-232X(99)00022-1, 1999.
Lehning, M., Bartelt, P., Brown, B., and Fierz, C.: A physical SNOWPACK model for the Swiss avalanche warning Part III: meteorological forcing, thin layer formation and evaluation, Cold Reg. Sci. Technol., 35, 169–184, https://doi.org/10.1016/S0165-232X(02)00072-1, 2002a.
Lehning, M., Bartelt, P., Brown, B., Fierz, C., and Satyawali, P.: A physical SNOWPACK model for the Swiss avalanche warning Part II: Snow microstructure, Cold Reg. Sci. Technol., 35, 147–167, https://doi.org/10.1016/S0165-232X(02)00073-3, 2002b.
Lehning, M., Völksch, I., Gustafsson, D., Nguyen, T. A., Stähli, M., and Zappa, M.: ALPINE3D: a detailed model of mountain surface processes and its application to snow hydrology, Hydrol. Process., 20, 2011–2128, https://doi.org/10.1002/hyp.6204, 2006.
Lehning, M., Löwe, H., Ryser, M., and Raderschall, N.: Inhomogeneous precipitation distribution and snow transport in steep terrain, Water Resour. Res., 44, W07404, https://doi.org/10.1029/2007WR006545, 2008.
Luetschg, M., Bartelt, P., Lehning, M., Stoeckli, V., and Haeberli, W.: Numerical simulation of the interaction processes between snow cover and alpine permafrost, in: Proceedings of the 8th International Conference on Permafrost, edited by: Phillips, M., Springman, S., and Arenson, L., Swets & Zeitlinger, Lisse, 697–702, 2003.
Luetschg, M., Lehning, M., and Haeberli, W.: A sensitivity study of factors influencing warm/thin permafrost in the Swiss Alps, J. Glaciol., 54, 696–704, https://doi.org/10.3189/002214308786570881, 2008.
Magnin, F., Deline, P., Ravanel, L., Noetzli, J., and Pogliotti, P.: Thermal characteristics of permafrost in the steep alpine rock walls of the Aiguille du Midi (Mont Blanc Massif, 3842 m a.s.l), The Cryosphere, 9, 109–121, https://doi.org/10.5194/tc-9-109-2015, 2015.
Marmy, A., Salzmann, N., Scherler, M., and Hauck, C.: Permafrost model sensitivity to seasonal climatic changes and extreme events in mountainous regions, Environ. Res. Lett., 8, 035048, https://doi.org/10.1088/1748-9326/8/3/035048, 2013.
Maxim Integrated: DS1922L/DS1922T iButton Temperature Loggers with 8KB Data-Log Memory, Maxim Integrated Products, San Jose, 52 pp., 2013.
Mott, R. and Lehning, M.: Meteorological Modeling of Very High-Resolution Wind Fields and Snow Deposition for Mountains, J. Hydrometeorol., 11, 934–949, https://doi.org/10.1175/2010JHM1216.1, 2010.
Mott, R., Egli, L., Grünewald, T., Dawes, N., Manes, C., Bavay, M., and Lehning, M.: Micrometeorological processes driving snow ablation in an Alpine catchment, The Cryosphere, 5, 1083–1098, https://doi.org/10.5194/tc-5-1083-2011, 2011.
Myhra, K. S., Westermann, S., and Etzelmüller, B.: Modelled Distribution and Temporal Evolution of Permafrost in Steep Rock Walls Along a Latitudinal Transect in Norway by CryoGrid 2D, Permafrost Periglac., 28, 172–182, https://doi.org/10.1002/ppp.1884, 2015.
Noetzli, J. and Gruber, S.: Transient thermal effects in Alpine permafrost, The Cryosphere, 3, 85–99, https://doi.org/10.5194/tc-3-85-2009, 2009.
Noetzli, J., Gruber, S., Kohl, T., Salzmann, N., and Haeberli, W.: Three-dimensional distribution and evolution of permafrost temperatures in idealized high-mountain topography, J. Geophys. Res., 112, F02S13, https://doi.org/10.1029/2006JF000545, 2007.
PERMOS: Permafrost in Switzerland 2008/2009 and 2009/2010, Glaciological Report (Permafrost) No. 10/11 of the Cryospheric Commission of the Swiss Academy of Sciences, edited by: Noetzli, J., 80 pp., 2013.
Phillips, M., Haberkorn, A., Draebing, D., Krautblatter, M., Rhyner, H., and Kenner, R.: Seasonally intermittent water flow through deep fractures in an Alpine Rock Ridge: Gemsstock, Central Swiss Alps, Cold Reg. Sci. Technol., 125, 117–127, https://doi.org/10.1016/j.coldregions.2016.02.010, 2016a.
Phillips, M., Wolter, A., Lüthi, R., Amann, F., Kenner, R., and Bühler, Y.: Rock slope failure in a recently deglaciated permafrost rock wall at Piz Kesch (Eastern Swiss Alps), February 2014, Earth Surf. Proc. Land, https://doi.org/10.1002/esp.3992, online first, 2016b.
Pogliotti, P.: Influence of Snow Cover on MAGST over Complex Morphologies in Mountain Permafrost Regions, PhD thesis, University of Torino, Torino, Italy, 79 pp., 2011.
Ravanel, L. and Deline, P.: Climate influence on rock falls in high-Alpine steep rock walls: The north side of the Aiguilles de Chamonix (Mont Blanc Massif) since the end of the “Little Ice Age”, Holocene, 21, 357–365, https://doi.org/10.1177/0959683610374887, 2011.
Ravanel, L., Allignol, F., Deline, P., Gruber, S., and Ravello, M.: Rock falls in the Mont Blanc Massif in 2007 and 2008, Recent Landslides, 7, 493–501, https://doi.org/10.1007/s10346-010-0206-z, 2010.
Ravanel, L., Deline, P., Lambiel, C., and Vincent, C.: Instability of a High Alpine Rock Ridge: the Lower Arete Des Cosmiques, Mont Blanc Massif, France, Geogr. Ann. A, 95, 51–66, https://doi.org/10.1111/geoa.12000, 2013.
Riseborough, D., Shiklomanov, N., Etzelmüller, B., Gruber, S., and Marchenko, S.: Recent Advances in Permafrost Modelling, Permafrost Periglac., 19, 137–156, https://doi.org/10.1002/ppp.615, 2008.
Sass, O. and Oberlechner, M.: Is climate change causing increased rockfall frequency in Austria?, Nat. Hazards Earth Syst. Sci., 12, 3209–3216, https://doi.org/10.5194/nhess-12-3209-2012, 2012.
Schlögl, S., Marty, C., Bavay, M., and Lehning, M.: Sensitivity of Alpine3D modeled snow cover to modifications in DEM resolution, station coverage and meteorological input quantities, Environ. Modell. Softw., 83, 387–396, https://doi.org/10.1016/j.envsoft.2016.02.017, 2016.
Sommer, C. G., Lehning, M., and Mott, R.: Snow in a very steep rock face: accumulation and redistribution during and after a snowfall event, Front. Earth Sci., 3, 73, https://doi.org/10.3389/feart.2015.00073, 2015.
Stocker-Mittaz, C., Hoelzle, M., and Haeberli, W.: Modelling Alpine Permafrost Distribution Based on Energy-Balance Data: a First Step, Permafrost Periglac., 13, 271–282, https://doi.org/10.1002/ppp.426, 2002.
Vögeli, C., Lehning, M., Wever, N., and Bavay, M.: Scaling precipitation input to spatially distributed hydrological models by measured snow distribution, Front. Earth Sci., 4, 108, https://doi.org/10.3389/feart.2016.00108, 2016.
Wever, N., Fierz, C., Mitterer, C., Hirashima, H., and Lehning, M.: Solving Richards Equation for snow improves snowpack meltwater runoff estimations in detailed multi-layer snowpack model, The Cryosphere, 8, 257–274, https://doi.org/10.5194/tc-8-257-2014, 2014.
Wever, N., Schmid, L., Heilig, A., Eisen, O., Fierz, C., and Lehning, M.: Verification of the multi-layer SNOWPACK model with different water transport schemes, The Cryosphere, 9, 2271–2293, https://doi.org/10.5194/tc-9-2271-2015, 2015.
Winstral, A., Elder, K., and Davis, R. E.: Spatial Snow Modeling of Wind-Redistributed Snow Using Terrain-Based Parameters, J. Hydrometeorol., 3, 524–538, https://doi.org/10.1175/1525-7541(2002)003< 0524:SSMOWR>2.0.CO;2, 2002.
Wirz, V., Schirmer, M., Gruber, S., and Lehning, M.: Spatio-temporal measurements and analysis of snow depth in a rock face, The Cryosphere, 5, 893–905, https://doi.org/10.5194/tc-5-893-2011, 2011.
Zhang, T.: Influence of the seasonal snow cover on the ground thermal regime: An overview, Rev. Geophys., 43, RG4002, https://doi.org/10.1029/2004RG000157, 2005.
Short summary
The effects of permafrost degradation on rock slope stability in the Alps affect people and infrastructure. Modelling the evolution of permafrost is therefore of great importance. However, the snow cover has generally not been taken into account in model studies of steep, rugged rock walls. Thus, we present a distributed model study on the influence of the snow cover on rock temperatures. The promising results are discussed against detailed rock temperature measurements and snow depth data.
The effects of permafrost degradation on rock slope stability in the Alps affect people and...
Special issue