Articles | Volume 8, issue 2
https://doi.org/10.5194/tc-8-801-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/tc-8-801-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Drifting snow measurements on the Greenland Ice Sheet and their application for model evaluation
J. T. M. Lenaerts
Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, the Netherlands
C. J. P. P. Smeets
Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, the Netherlands
K. Nishimura
Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan
M. Eijkelboom
Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, the Netherlands
W. Boot
Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, the Netherlands
M. R. van den Broeke
Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, the Netherlands
W. J. van de Berg
Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, the Netherlands
Related authors
Rajashree Tri Datta, Adam Herrington, Jan T. M. Lenaerts, David P. Schneider, Luke Trusel, Ziqi Yin, and Devon Dunmire
The Cryosphere, 17, 3847–3866, https://doi.org/10.5194/tc-17-3847-2023, https://doi.org/10.5194/tc-17-3847-2023, 2023
Short summary
Short summary
Precipitation over Antarctica is one of the greatest sources of uncertainty in sea level rise estimates. Earth system models (ESMs) are a valuable tool for these estimates but typically run at coarse spatial resolutions. Here, we present an evaluation of the variable-resolution CESM2 (VR-CESM2) for the first time with a grid designed for enhanced spatial resolution over Antarctica to achieve the high resolution of regional climate models while preserving the two-way interactions of ESMs.
Andrew O. Hoffman, Michelle Maclennan, Jan Lenaerts, Kristine M. Larson, and Knut Chrsitianson
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-114, https://doi.org/10.5194/tc-2023-114, 2023
Revised manuscript under review for TC
Short summary
Short summary
Traditionally, glaciologists have used GNSS to measure the surface elevation, and velocity of glaciers to understand processes associated with ice flow. Using the interference of GNSS signals that bounce off of the ice sheet surface, we measure the surface height change of several receivers in the Amundsen Sea Embayment. From surface height change, we infer accumulation records and use these records to understand the drivers of extreme precipitation on Thwaites Glacier.
Eric Keenan, Nander Wever, Jan T. M. Lenaerts, and Brooke Medley
Geosci. Model Dev., 16, 3203–3219, https://doi.org/10.5194/gmd-16-3203-2023, https://doi.org/10.5194/gmd-16-3203-2023, 2023
Short summary
Short summary
Ice sheets gain mass via snowfall. However, snowfall is redistributed by the wind, resulting in accumulation differences of up to a factor of 5 over distances as short as 5 km. These differences complicate estimates of ice sheet contribution to sea level rise. For this reason, we have developed a new model for estimating wind-driven snow redistribution on ice sheets. We show that, over Pine Island Glacier in West Antarctica, the model improves estimates of snow accumulation variability.
Megan Thompson-Munson, Nander Wever, C. Max Stevens, Jan T. M. Lenaerts, and Brooke Medley
The Cryosphere, 17, 2185–2209, https://doi.org/10.5194/tc-17-2185-2023, https://doi.org/10.5194/tc-17-2185-2023, 2023
Short summary
Short summary
To better understand the Greenland Ice Sheet’s firn layer and its ability to buffer sea level rise by storing meltwater, we analyze firn density observations and output from two firn models. We find that both models, one physics-based and one semi-empirical, simulate realistic density and firn air content when compared to observations. The models differ in their representation of firn air content, highlighting the uncertainty in physical processes and the paucity of deep-firn measurements.
Michelle L. Maclennan, Jan T. M. Lenaerts, Christine A. Shields, Andrew O. Hoffman, Nander Wever, Megan Thompson-Munson, Andrew C. Winters, Erin C. Pettit, Theodore A. Scambos, and Jonathan D. Wille
The Cryosphere, 17, 865–881, https://doi.org/10.5194/tc-17-865-2023, https://doi.org/10.5194/tc-17-865-2023, 2023
Short summary
Short summary
Atmospheric rivers are air masses that transport large amounts of moisture and heat towards the poles. Here, we use a combination of weather observations and models to quantify the amount of snowfall caused by atmospheric rivers in West Antarctica which is about 10 % of the total snowfall each year. We then examine a unique event that occurred in early February 2020, when three atmospheric rivers made landfall over West Antarctica in rapid succession, leading to heavy snowfall and surface melt.
Devon Dunmire, Jan T. M. Lenaerts, Rajashree Tri Datta, and Tessa Gorte
The Cryosphere, 16, 4163–4184, https://doi.org/10.5194/tc-16-4163-2022, https://doi.org/10.5194/tc-16-4163-2022, 2022
Short summary
Short summary
Earth system models (ESMs) are used to model the climate system and the interactions of its components (atmosphere, ocean, etc.) both historically and into the future under different assumptions of human activity. The representation of Antarctica in ESMs is important because it can inform projections of the ice sheet's contribution to sea level rise. Here, we compare output of Antarctica's surface climate from an ESM with observations to understand strengths and weaknesses within the model.
Karen E. Alley, Christian T. Wild, Adrian Luckman, Ted A. Scambos, Martin Truffer, Erin C. Pettit, Atsuhiro Muto, Bruce Wallin, Marin Klinger, Tyler Sutterley, Sarah F. Child, Cyrus Hulen, Jan T. M. Lenaerts, Michelle Maclennan, Eric Keenan, and Devon Dunmire
The Cryosphere, 15, 5187–5203, https://doi.org/10.5194/tc-15-5187-2021, https://doi.org/10.5194/tc-15-5187-2021, 2021
Short summary
Short summary
We present a 20-year, satellite-based record of velocity and thickness change on the Thwaites Eastern Ice Shelf (TEIS), the largest remaining floating extension of Thwaites Glacier (TG). TG holds the single greatest control on sea-level rise over the next few centuries, so it is important to understand changes on the TEIS, which controls much of TG's flow into the ocean. Our results suggest that the TEIS is progressively destabilizing and is likely to disintegrate over the next few decades.
Madison L. Ghiz, Ryan C. Scott, Andrew M. Vogelmann, Jan T. M. Lenaerts, Matthew Lazzara, and Dan Lubin
The Cryosphere, 15, 3459–3494, https://doi.org/10.5194/tc-15-3459-2021, https://doi.org/10.5194/tc-15-3459-2021, 2021
Short summary
Short summary
We investigate how melt occurs over the vulnerable ice shelves of West Antarctica and determine that the three primary mechanisms can be evaluated using archived numerical weather prediction model data and satellite imagery. We find examples of each mechanism: thermal blanketing by a warm atmosphere, radiative heating by thin clouds, and downslope winds. Our results signify the potential to make a multi-decadal assessment of atmospheric stress on West Antarctic ice shelves in a warming climate.
Devon Dunmire, Alison F. Banwell, Nander Wever, Jan T. M. Lenaerts, and Rajashree Tri Datta
The Cryosphere, 15, 2983–3005, https://doi.org/10.5194/tc-15-2983-2021, https://doi.org/10.5194/tc-15-2983-2021, 2021
Short summary
Short summary
Here, we automatically detect buried lakes (meltwater lakes buried below layers of snow) across the Greenland Ice Sheet, providing insight into a poorly studied meltwater feature. For 2018 and 2019, we compare areal extent of buried lakes. We find greater buried lake extent in 2019, especially in northern Greenland, which we attribute to late-summer surface melt and high autumn temperatures. We also provide evidence that buried lakes form via different processes across Greenland.
Eric Keenan, Nander Wever, Marissa Dattler, Jan T. M. Lenaerts, Brooke Medley, Peter Kuipers Munneke, and Carleen Reijmer
The Cryosphere, 15, 1065–1085, https://doi.org/10.5194/tc-15-1065-2021, https://doi.org/10.5194/tc-15-1065-2021, 2021
Short summary
Short summary
Snow density is required to convert observed changes in ice sheet volume into mass, which ultimately drives ice sheet contribution to sea level rise. However, snow properties respond dynamically to wind-driven redistribution. Here we include a new wind-driven snow density scheme into an existing snow model. Our results demonstrate an improved representation of snow density when compared to observations and can therefore be used to improve retrievals of ice sheet mass balance.
Tessa Gorte, Jan T. M. Lenaerts, and Brooke Medley
The Cryosphere, 14, 4719–4733, https://doi.org/10.5194/tc-14-4719-2020, https://doi.org/10.5194/tc-14-4719-2020, 2020
Short summary
Short summary
In this paper, we analyze several spatial and temporal criteria to assess the ability of models in the CMIP5 and CMIP6 frameworks to recreate past Antarctic surface mass balance. We then compared a subset of the top performing models to all remaining models to refine future surface mass balance predictions under different forcing scenarios. We found that the top performing models predict lower surface mass balance by 2100, indicating less buffering than otherwise expected of sea level rise.
Marie G. P. Cavitte, Quentin Dalaiden, Hugues Goosse, Jan T. M. Lenaerts, and Elizabeth R. Thomas
The Cryosphere, 14, 4083–4102, https://doi.org/10.5194/tc-14-4083-2020, https://doi.org/10.5194/tc-14-4083-2020, 2020
Short summary
Short summary
Surface mass balance (SMB) and surface air temperature (SAT) are correlated at the regional scale for most of Antarctica, SMB and δ18O. Areas with low/no correlation are where wind processes (foehn, katabatic wind warming, and erosion) are sufficiently active to overwhelm the synoptic-scale snow accumulation. Measured in ice cores, the link between SMB, SAT, and δ18O is much weaker. Random noise can be removed by core record averaging but local processes perturb the correlation systematically.
Xavier Fettweis, Stefan Hofer, Uta Krebs-Kanzow, Charles Amory, Teruo Aoki, Constantijn J. Berends, Andreas Born, Jason E. Box, Alison Delhasse, Koji Fujita, Paul Gierz, Heiko Goelzer, Edward Hanna, Akihiro Hashimoto, Philippe Huybrechts, Marie-Luise Kapsch, Michalea D. King, Christoph Kittel, Charlotte Lang, Peter L. Langen, Jan T. M. Lenaerts, Glen E. Liston, Gerrit Lohmann, Sebastian H. Mernild, Uwe Mikolajewicz, Kameswarrao Modali, Ruth H. Mottram, Masashi Niwano, Brice Noël, Jonathan C. Ryan, Amy Smith, Jan Streffing, Marco Tedesco, Willem Jan van de Berg, Michiel van den Broeke, Roderik S. W. van de Wal, Leo van Kampenhout, David Wilton, Bert Wouters, Florian Ziemen, and Tobias Zolles
The Cryosphere, 14, 3935–3958, https://doi.org/10.5194/tc-14-3935-2020, https://doi.org/10.5194/tc-14-3935-2020, 2020
Short summary
Short summary
We evaluated simulated Greenland Ice Sheet surface mass balance from 5 kinds of models. While the most complex (but expensive to compute) models remain the best, the faster/simpler models also compare reliably with observations and have biases of the same order as the regional models. Discrepancies in the trend over 2000–2012, however, suggest that large uncertainties remain in the modelled future SMB changes as they are highly impacted by the meltwater runoff biases over the current climate.
Thore Kausch, Stef Lhermitte, Jan T. M. Lenaerts, Nander Wever, Mana Inoue, Frank Pattyn, Sainan Sun, Sarah Wauthy, Jean-Louis Tison, and Willem Jan van de Berg
The Cryosphere, 14, 3367–3380, https://doi.org/10.5194/tc-14-3367-2020, https://doi.org/10.5194/tc-14-3367-2020, 2020
Short summary
Short summary
Ice rises are elevated parts of the otherwise flat ice shelf. Here we study the impact of an Antarctic ice rise on the surrounding snow accumulation by combining field data and modeling. Our results show a clear difference in average yearly snow accumulation between the windward side, the leeward side and the peak of the ice rise due to differences in snowfall and wind erosion. This is relevant for the interpretation of ice core records, which are often drilled on the peak of an ice rise.
Jan T. M. Lenaerts, M. Drew Camron, Christopher R. Wyburn-Powell, and Jennifer E. Kay
The Cryosphere, 14, 2253–2265, https://doi.org/10.5194/tc-14-2253-2020, https://doi.org/10.5194/tc-14-2253-2020, 2020
Simone Tilmes, Douglas G. MacMartin, Jan T. M. Lenaerts, Leo van Kampenhout, Laura Muntjewerf, Lili Xia, Cheryl S. Harrison, Kristen M. Krumhardt, Michael J. Mills, Ben Kravitz, and Alan Robock
Earth Syst. Dynam., 11, 579–601, https://doi.org/10.5194/esd-11-579-2020, https://doi.org/10.5194/esd-11-579-2020, 2020
Short summary
Short summary
This paper introduces new geoengineering model experiments as part of a larger model intercomparison effort, using reflective particles to block some of the incoming solar radiation to reach surface temperature targets. Outcomes of these applications are contrasted based on a high greenhouse gas emission pathway and a pathway with strong mitigation and negative emissions after 2040. We compare quantities that matter for societal and ecosystem impacts between the different scenarios.
Brice Noël, Leonardus van Kampenhout, Willem Jan van de Berg, Jan T. M. Lenaerts, Bert Wouters, and Michiel R. van den Broeke
The Cryosphere, 14, 1425–1435, https://doi.org/10.5194/tc-14-1425-2020, https://doi.org/10.5194/tc-14-1425-2020, 2020
Short summary
Short summary
We present a reconstruction of historical (1950–2014) surface mass balance of the Greenland ice sheet using the Community Earth System Model (CESM2; ~111 km) to force a high-resolution regional climate model (RACMO2; ~11 km), which is further refined to 1 km spatial resolution. For the first time, an Earth-system-model-based product, assimilating no observations, can reconstruct realistic historical ice sheet surface mass balance as well as the mass loss acceleration that started in the 1990s.
Quentin Dalaiden, Hugues Goosse, François Klein, Jan T. M. Lenaerts, Max Holloway, Louise Sime, and Elizabeth R. Thomas
The Cryosphere, 14, 1187–1207, https://doi.org/10.5194/tc-14-1187-2020, https://doi.org/10.5194/tc-14-1187-2020, 2020
Short summary
Short summary
Large uncertainties remain in Antarctic surface temperature reconstructions over the last millennium. Here, the analysis of climate model outputs reveals that snow accumulation is a more relevant proxy for surface temperature reconstructions than δ18O. We use this finding in data assimilation experiments to compare to observed surface temperatures. We show that our continental temperature reconstruction outperforms reconstructions based on δ18O, especially for East Antarctica.
Hailong Wang, Jeremy G. Fyke, Jan T. M. Lenaerts, Jesse M. Nusbaumer, Hansi Singh, David Noone, Philip J. Rasch, and Rudong Zhang
The Cryosphere, 14, 429–444, https://doi.org/10.5194/tc-14-429-2020, https://doi.org/10.5194/tc-14-429-2020, 2020
Short summary
Short summary
Using a climate model with unique water source tagging, we found that sea-ice anomalies in the Southern Ocean and accompanying SST changes have a significant influence on Antarctic precipitation and its source attribution through their direct impact on moisture sources and indirect impact on moisture transport. This study also highlights the importance of atmospheric dynamics in affecting the thermodynamic impact of sea-ice anomalies on regional Antarctic precipitation.
Raymond Sellevold, Leonardus van Kampenhout, Jan T. M. Lenaerts, Brice Noël, William H. Lipscomb, and Miren Vizcaino
The Cryosphere, 13, 3193–3208, https://doi.org/10.5194/tc-13-3193-2019, https://doi.org/10.5194/tc-13-3193-2019, 2019
Short summary
Short summary
We evaluate a downscaling method to calculate ice sheet surface mass balance with global climate models, despite their coarse resolution. We compare it with high-resolution climate modeling. Despite absence of fine-scale simulation of individual energy and mass contributors, the method provides realistic vertical SMB gradients that can be used in forcing of ice sheet models, e.g., for sea level projections. Also, the climate model simulation is improved with the method implemented interactively.
Leonardus van Kampenhout, Alan M. Rhoades, Adam R. Herrington, Colin M. Zarzycki, Jan T. M. Lenaerts, William J. Sacks, and Michiel R. van den Broeke
The Cryosphere, 13, 1547–1564, https://doi.org/10.5194/tc-13-1547-2019, https://doi.org/10.5194/tc-13-1547-2019, 2019
Short summary
Short summary
A new tool is evaluated in which the climate and surface mass balance (SMB) of the Greenland ice sheet are resolved at 55 and 28 km resolution, while the rest of the globe is modelled at ~110 km. The local refinement of resolution leads to improved accumulation (SMB > 0) compared to observations; however ablation (SMB < 0) is deteriorated in some regions. This is attributed to changes in cloud cover and a reduced effectiveness of a model-specific vertical downscaling technique.
Alexandra Gossart, Stephen P. Palm, Niels Souverijns, Jan T. M. Lenaerts, Irina V. Gorodetskaya, Stef Lhermitte, and Nicole P. M. van Lipzig
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-25, https://doi.org/10.5194/tc-2019-25, 2019
Manuscript not accepted for further review
Short summary
Short summary
Blowing snow measurements are scarce, both in time and space over the Antarctic ice sheet. We compare here CALIPSO satellite blowing snow measurements, to ground-base remote sensing ceilometer retrievals at two coastal stations in East Antarctica. Results indicate that 95 % of the blowing snow occurs under cloudy conditions, and are missed by the satellite. In addition, difficulties arise if comparing point locations to satellite overpasses.
Cécile Agosta, Charles Amory, Christoph Kittel, Anais Orsi, Vincent Favier, Hubert Gallée, Michiel R. van den Broeke, Jan T. M. Lenaerts, Jan Melchior van Wessem, Willem Jan van de Berg, and Xavier Fettweis
The Cryosphere, 13, 281–296, https://doi.org/10.5194/tc-13-281-2019, https://doi.org/10.5194/tc-13-281-2019, 2019
Short summary
Short summary
Antarctic surface mass balance (ASMB), a component of the sea level budget, is commonly estimated through modelling as observations are scarce. The polar-oriented regional climate model MAR performs well in simulating the observed ASMB. MAR and RACMO2 share common biases we relate to drifting snow transport, with a 3 times larger magnitude than in previous estimates. Sublimation of precipitation in the katabatic layer modelled by MAR is of a magnitude similar to an observation-based estimate.
Jan Melchior van Wessem, Willem Jan van de Berg, Brice P. Y. Noël, Erik van Meijgaard, Charles Amory, Gerit Birnbaum, Constantijn L. Jakobs, Konstantin Krüger, Jan T. M. Lenaerts, Stef Lhermitte, Stefan R. M. Ligtenberg, Brooke Medley, Carleen H. Reijmer, Kristof van Tricht, Luke D. Trusel, Lambertus H. van Ulft, Bert Wouters, Jan Wuite, and Michiel R. van den Broeke
The Cryosphere, 12, 1479–1498, https://doi.org/10.5194/tc-12-1479-2018, https://doi.org/10.5194/tc-12-1479-2018, 2018
Short summary
Short summary
We present a detailed evaluation of the latest version of the regional atmospheric climate model RACMO2.3p2 (1979-2016) over the Antarctic ice sheet. The model successfully reproduces the present-day climate and surface mass balance (SMB) when compared with an extensive set of observations and improves on previous estimates of the Antarctic climate and SMB.
This study shows that the latest version of RACMO2 can be used for high-resolution future projections over the AIS.
Brice Noël, Willem Jan van de Berg, J. Melchior van Wessem, Erik van Meijgaard, Dirk van As, Jan T. M. Lenaerts, Stef Lhermitte, Peter Kuipers Munneke, C. J. P. Paul Smeets, Lambertus H. van Ulft, Roderik S. W. van de Wal, and Michiel R. van den Broeke
The Cryosphere, 12, 811–831, https://doi.org/10.5194/tc-12-811-2018, https://doi.org/10.5194/tc-12-811-2018, 2018
Short summary
Short summary
We present a detailed evaluation of the latest version of the regional climate model RACMO2.3p2 at 11 km resolution (1958–2016) over the Greenland ice sheet (GrIS). The model successfully reproduces the present-day climate and surface mass balance, i.e. snowfall minus meltwater run-off, of the GrIS compared to in situ observations. Since run-off from marginal narrow glaciers is poorly resolved at 11 km, further statistical downscaling to 1 km resolution is required for mass balance studies.
Alexandra Gossart, Niels Souverijns, Irina V. Gorodetskaya, Stef Lhermitte, Jan T. M. Lenaerts, Jan H. Schween, Alexander Mangold, Quentin Laffineur, and Nicole P. M. van Lipzig
The Cryosphere, 11, 2755–2772, https://doi.org/10.5194/tc-11-2755-2017, https://doi.org/10.5194/tc-11-2755-2017, 2017
Short summary
Short summary
Blowing snow plays an important role on local surface mass balance of Antarctica. We present here the blowing snow detection algorithm, to retrieve blowing snow occurrence from the attenuated backscatter signal of ceilometers set up at two station. There is a good correspondence in detection of heavy blowing snow by the algorithm and the visual observations performed at Neumayer station. Moreover, most of the blowing snow occurs during events bringing precipitation from the coast inland.
Jeremy Fyke, Jan T. M. Lenaerts, and Hailong Wang
The Cryosphere, 11, 2595–2609, https://doi.org/10.5194/tc-11-2595-2017, https://doi.org/10.5194/tc-11-2595-2017, 2017
Short summary
Short summary
In this CESM modeling study, we uncover regional relationships in snowfall across Antarctica that are corroborated by regional modeling and ice core records. These relationships are driven by variability in large-scale atmospheric moisture transport and dampen overall Antarctic snowfall variability, with implications for Antarctic-sourced sea level variability and detection of an emergent anthropogenic signal in Antarctic mass trends.
Elizabeth R. Thomas, J. Melchior van Wessem, Jason Roberts, Elisabeth Isaksson, Elisabeth Schlosser, Tyler J. Fudge, Paul Vallelonga, Brooke Medley, Jan Lenaerts, Nancy Bertler, Michiel R. van den Broeke, Daniel A. Dixon, Massimo Frezzotti, Barbara Stenni, Mark Curran, and Alexey A. Ekaykin
Clim. Past, 13, 1491–1513, https://doi.org/10.5194/cp-13-1491-2017, https://doi.org/10.5194/cp-13-1491-2017, 2017
Short summary
Short summary
Regional Antarctic snow accumulation derived from 79 ice core records is evaluated as part of the PAGES Antarctica 2k working group. Our results show that surface mass balance for the total Antarctic ice sheet has increased at a rate of 7 ± 0.13 Gt dec-1 since 1800 AD, representing a net reduction in sea level of ~ 0.02 mm dec-1 since 1800 and ~ 0.04 mm dec-1 since 1900 AD. The largest contribution is from the Antarctic Peninsula.
B. Medley, I. Joughin, B. E. Smith, S. B. Das, E. J. Steig, H. Conway, S. Gogineni, C. Lewis, A. S. Criscitiello, J. R. McConnell, M. R. van den Broeke, J. T. M. Lenaerts, D. H. Bromwich, J. P. Nicolas, and C. Leuschen
The Cryosphere, 8, 1375–1392, https://doi.org/10.5194/tc-8-1375-2014, https://doi.org/10.5194/tc-8-1375-2014, 2014
B. C. Gunter, O. Didova, R. E. M. Riva, S. R. M. Ligtenberg, J. T. M. Lenaerts, M. A. King, M. R. van den Broeke, and T. Urban
The Cryosphere, 8, 743–760, https://doi.org/10.5194/tc-8-743-2014, https://doi.org/10.5194/tc-8-743-2014, 2014
J. M. van Wessem, C. H. Reijmer, J. T. M. Lenaerts, W. J. van de Berg, M. R. van den Broeke, and E. van Meijgaard
The Cryosphere, 8, 125–135, https://doi.org/10.5194/tc-8-125-2014, https://doi.org/10.5194/tc-8-125-2014, 2014
X. Fettweis, B. Franco, M. Tedesco, J. H. van Angelen, J. T. M. Lenaerts, M. R. van den Broeke, and H. Gallée
The Cryosphere, 7, 469–489, https://doi.org/10.5194/tc-7-469-2013, https://doi.org/10.5194/tc-7-469-2013, 2013
I. M. Howat, S. de la Peña, J. H. van Angelen, J. T. M. Lenaerts, and M. R. van den Broeke
The Cryosphere, 7, 201–204, https://doi.org/10.5194/tc-7-201-2013, https://doi.org/10.5194/tc-7-201-2013, 2013
Christiaan T. van Dalum, Willem Jan van de Berg, Srinidhi N. Gadde, Maurice van Tiggelen, Tijmen van der Drift, Erik van Meijgaard, Lambertus H. van Ulft, and Michiel R. van den Broeke
The Cryosphere, 18, 4065–4088, https://doi.org/10.5194/tc-18-4065-2024, https://doi.org/10.5194/tc-18-4065-2024, 2024
Short summary
Short summary
We present a new version of the polar Regional Atmospheric Climate Model (RACMO), version 2.4p1, and show first results for Greenland, Antarctica and the Arctic. We provide an overview of all changes and investigate the impact that they have on the climate of polar regions. By comparing the results with observations and the output from the previous model version, we show that the model performs well regarding the surface mass balance of the ice sheets and near-surface climate.
Sanne B. M. Veldhuijsen, Willem Jan van de Berg, Peter Kuipers Munneke, and Michiel R. van den Broeke
The Cryosphere, 18, 1983–1999, https://doi.org/10.5194/tc-18-1983-2024, https://doi.org/10.5194/tc-18-1983-2024, 2024
Short summary
Short summary
We use the IMAU firn densification model to simulate the 21st-century evolution of Antarctic firn air content. Ice shelves on the Antarctic Peninsula and the Roi Baudouin Ice Shelf in Dronning Maud Land are particularly vulnerable to total firn air content (FAC) depletion. Our results also underline the potentially large vulnerability of low-accumulation ice shelves to firn air depletion through ice slab formation.
Baptiste Vandecrux, Robert S. Fausto, Jason E. Box, Federico Covi, Regine Hock, Åsa K. Rennermalm, Achim Heilig, Jakob Abermann, Dirk van As, Elisa Bjerre, Xavier Fettweis, Paul C. J. P. Smeets, Peter Kuipers Munneke, Michiel R. van den Broeke, Max Brils, Peter L. Langen, Ruth Mottram, and Andreas P. Ahlstrøm
The Cryosphere, 18, 609–631, https://doi.org/10.5194/tc-18-609-2024, https://doi.org/10.5194/tc-18-609-2024, 2024
Short summary
Short summary
How fast is the Greenland ice sheet warming? In this study, we compiled 4500+ temperature measurements at 10 m below the ice sheet surface (T10m) from 1912 to 2022. We trained a machine learning model on these data and reconstructed T10m for the ice sheet during 1950–2022. After a slight cooling during 1950–1985, the ice sheet warmed at a rate of 0.7 °C per decade until 2022. Climate models showed mixed results compared to our observations and underestimated the warming in key regions.
Maria T. Kappelsberger, Martin Horwath, Eric Buchta, Matthias O. Willen, Ludwig Schröder, Sanne B. M. Veldhuijsen, Peter Kuipers Munneke, and Michiel R. van den Broeke
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-140, https://doi.org/10.5194/tc-2023-140, 2023
Revised manuscript accepted for TC
Short summary
Short summary
The interannual variations in the height of the Antarctic Ice Sheet (AIS) are mainly due to natural variations in snowfall. Precise knowledge of these variations is important for the detection of any long-term climatic trends in AIS surface elevation. We present a new product that spatially resolves these height variations over the period 1992–2017. The product combines the strengths of atmospheric modeling results and satellite altimetry measurements.
Lena G. Buth, Valeria Di Biase, Peter Kuipers Munneke, Stef Lhermitte, Sanne B. M. Veldhuijsen, Sophie de Roda Husman, Michiel R. van den Broeke, and Bert Wouters
EGUsphere, https://doi.org/10.5194/egusphere-2023-2000, https://doi.org/10.5194/egusphere-2023-2000, 2023
Preprint archived
Short summary
Short summary
Liquid meltwater which is stored in air bubbles in the compacted snow near the surface of Antarctica can affect ice shelf stability. In order to detect the presence of such firn aquifers over large scales, satellite remote sensing is needed. In this paper, we present our new detection method using radar satellite data as well as the results for the whole Antarctic Peninsula. Firn aquifers are found in the north and northwest of the peninsula, in agreement with locations predicted by models.
Kouichi Nishimura, Masaki Nemoto, Yoichi Ito, Satoru Omiya, Kou Shimoyama, and Hirofumi Niiya
EGUsphere, https://doi.org/10.5194/egusphere-2023-1845, https://doi.org/10.5194/egusphere-2023-1845, 2023
Short summary
Short summary
It is crucial to consider organized structures such as turbulence sweeps and ejections when discussing the onset and development of snow transport. This study aims to systematically measure blowing and drifting snow to investigate their spatiotemporal structures. To achieve this goal, we have deployed fifteen Snow Particle Counters (SPCs) in designated test areas and are conducting measurements using an equal number of ultrasonic anemometers, providing high temporal resolution data.
Rajashree Tri Datta, Adam Herrington, Jan T. M. Lenaerts, David P. Schneider, Luke Trusel, Ziqi Yin, and Devon Dunmire
The Cryosphere, 17, 3847–3866, https://doi.org/10.5194/tc-17-3847-2023, https://doi.org/10.5194/tc-17-3847-2023, 2023
Short summary
Short summary
Precipitation over Antarctica is one of the greatest sources of uncertainty in sea level rise estimates. Earth system models (ESMs) are a valuable tool for these estimates but typically run at coarse spatial resolutions. Here, we present an evaluation of the variable-resolution CESM2 (VR-CESM2) for the first time with a grid designed for enhanced spatial resolution over Antarctica to achieve the high resolution of regional climate models while preserving the two-way interactions of ESMs.
Andrew O. Hoffman, Michelle Maclennan, Jan Lenaerts, Kristine M. Larson, and Knut Chrsitianson
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-114, https://doi.org/10.5194/tc-2023-114, 2023
Revised manuscript under review for TC
Short summary
Short summary
Traditionally, glaciologists have used GNSS to measure the surface elevation, and velocity of glaciers to understand processes associated with ice flow. Using the interference of GNSS signals that bounce off of the ice sheet surface, we measure the surface height change of several receivers in the Amundsen Sea Embayment. From surface height change, we infer accumulation records and use these records to understand the drivers of extreme precipitation on Thwaites Glacier.
Eric Keenan, Nander Wever, Jan T. M. Lenaerts, and Brooke Medley
Geosci. Model Dev., 16, 3203–3219, https://doi.org/10.5194/gmd-16-3203-2023, https://doi.org/10.5194/gmd-16-3203-2023, 2023
Short summary
Short summary
Ice sheets gain mass via snowfall. However, snowfall is redistributed by the wind, resulting in accumulation differences of up to a factor of 5 over distances as short as 5 km. These differences complicate estimates of ice sheet contribution to sea level rise. For this reason, we have developed a new model for estimating wind-driven snow redistribution on ice sheets. We show that, over Pine Island Glacier in West Antarctica, the model improves estimates of snow accumulation variability.
Megan Thompson-Munson, Nander Wever, C. Max Stevens, Jan T. M. Lenaerts, and Brooke Medley
The Cryosphere, 17, 2185–2209, https://doi.org/10.5194/tc-17-2185-2023, https://doi.org/10.5194/tc-17-2185-2023, 2023
Short summary
Short summary
To better understand the Greenland Ice Sheet’s firn layer and its ability to buffer sea level rise by storing meltwater, we analyze firn density observations and output from two firn models. We find that both models, one physics-based and one semi-empirical, simulate realistic density and firn air content when compared to observations. The models differ in their representation of firn air content, highlighting the uncertainty in physical processes and the paucity of deep-firn measurements.
Inès N. Otosaka, Andrew Shepherd, Erik R. Ivins, Nicole-Jeanne Schlegel, Charles Amory, Michiel R. van den Broeke, Martin Horwath, Ian Joughin, Michalea D. King, Gerhard Krinner, Sophie Nowicki, Anthony J. Payne, Eric Rignot, Ted Scambos, Karen M. Simon, Benjamin E. Smith, Louise S. Sørensen, Isabella Velicogna, Pippa L. Whitehouse, Geruo A, Cécile Agosta, Andreas P. Ahlstrøm, Alejandro Blazquez, William Colgan, Marcus E. Engdahl, Xavier Fettweis, Rene Forsberg, Hubert Gallée, Alex Gardner, Lin Gilbert, Noel Gourmelen, Andreas Groh, Brian C. Gunter, Christopher Harig, Veit Helm, Shfaqat Abbas Khan, Christoph Kittel, Hannes Konrad, Peter L. Langen, Benoit S. Lecavalier, Chia-Chun Liang, Bryant D. Loomis, Malcolm McMillan, Daniele Melini, Sebastian H. Mernild, Ruth Mottram, Jeremie Mouginot, Johan Nilsson, Brice Noël, Mark E. Pattle, William R. Peltier, Nadege Pie, Mònica Roca, Ingo Sasgen, Himanshu V. Save, Ki-Weon Seo, Bernd Scheuchl, Ernst J. O. Schrama, Ludwig Schröder, Sebastian B. Simonsen, Thomas Slater, Giorgio Spada, Tyler C. Sutterley, Bramha Dutt Vishwakarma, Jan Melchior van Wessem, David Wiese, Wouter van der Wal, and Bert Wouters
Earth Syst. Sci. Data, 15, 1597–1616, https://doi.org/10.5194/essd-15-1597-2023, https://doi.org/10.5194/essd-15-1597-2023, 2023
Short summary
Short summary
By measuring changes in the volume, gravitational attraction, and ice flow of Greenland and Antarctica from space, we can monitor their mass gain and loss over time. Here, we present a new record of the Earth’s polar ice sheet mass balance produced by aggregating 50 satellite-based estimates of ice sheet mass change. This new assessment shows that the ice sheets have lost (7.5 x 1012) t of ice between 1992 and 2020, contributing 21 mm to sea level rise.
Sanne B. M. Veldhuijsen, Willem Jan van de Berg, Max Brils, Peter Kuipers Munneke, and Michiel R. van den Broeke
The Cryosphere, 17, 1675–1696, https://doi.org/10.5194/tc-17-1675-2023, https://doi.org/10.5194/tc-17-1675-2023, 2023
Short summary
Short summary
Firn is the transition of snow to glacier ice and covers 99 % of the Antarctic ice sheet. Knowledge about the firn layer and its variability is important, as it impacts satellite-based estimates of ice sheet mass change. Also, firn contains pores in which nearly all of the surface melt is retained. Here, we improve a semi-empirical firn model and simulate the firn characteristics for the period 1979–2020. We evaluate the performance with field and satellite measures and test its sensitivity.
Michelle L. Maclennan, Jan T. M. Lenaerts, Christine A. Shields, Andrew O. Hoffman, Nander Wever, Megan Thompson-Munson, Andrew C. Winters, Erin C. Pettit, Theodore A. Scambos, and Jonathan D. Wille
The Cryosphere, 17, 865–881, https://doi.org/10.5194/tc-17-865-2023, https://doi.org/10.5194/tc-17-865-2023, 2023
Short summary
Short summary
Atmospheric rivers are air masses that transport large amounts of moisture and heat towards the poles. Here, we use a combination of weather observations and models to quantify the amount of snowfall caused by atmospheric rivers in West Antarctica which is about 10 % of the total snowfall each year. We then examine a unique event that occurred in early February 2020, when three atmospheric rivers made landfall over West Antarctica in rapid succession, leading to heavy snowfall and surface melt.
Marte G. Hofsteenge, Nicolas J. Cullen, Carleen H. Reijmer, Michiel van den Broeke, Marwan Katurji, and John F. Orwin
The Cryosphere, 16, 5041–5059, https://doi.org/10.5194/tc-16-5041-2022, https://doi.org/10.5194/tc-16-5041-2022, 2022
Short summary
Short summary
In the McMurdo Dry Valleys (MDV), foehn winds can impact glacial meltwater production and the fragile ecosystem that depends on it. We study these dry and warm winds at Joyce Glacier and show they are caused by a different mechanism than that found for nearby valleys, demonstrating the complex interaction of large-scale winds with the mountains in the MDV. We find that foehn winds increase sublimation of ice, increase heating from the atmosphere, and increase the occurrence and rates of melt.
Devon Dunmire, Jan T. M. Lenaerts, Rajashree Tri Datta, and Tessa Gorte
The Cryosphere, 16, 4163–4184, https://doi.org/10.5194/tc-16-4163-2022, https://doi.org/10.5194/tc-16-4163-2022, 2022
Short summary
Short summary
Earth system models (ESMs) are used to model the climate system and the interactions of its components (atmosphere, ocean, etc.) both historically and into the future under different assumptions of human activity. The representation of Antarctica in ESMs is important because it can inform projections of the ice sheet's contribution to sea level rise. Here, we compare output of Antarctica's surface climate from an ESM with observations to understand strengths and weaknesses within the model.
Lena G. Buth, Bert Wouters, Sanne B. M. Veldhuijsen, Stef Lhermitte, Peter Kuipers Munneke, and Michiel R. van den Broeke
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-127, https://doi.org/10.5194/tc-2022-127, 2022
Manuscript not accepted for further review
Short summary
Short summary
Liquid meltwater which is stored in air bubbles in the compacted snow near the surface of Antarctica can affect ice shelf stability. In order to detect the presence of such firn aquifers over large scales, satellite remote sensing is needed. In this paper, we present our new detection method using radar satellite data as well as the results for the whole Antarctic Peninsula. Firn aquifers are found in the north and northwest of the peninsula, in agreement with locations predicted by models.
Max Brils, Peter Kuipers Munneke, Willem Jan van de Berg, and Michiel van den Broeke
Geosci. Model Dev., 15, 7121–7138, https://doi.org/10.5194/gmd-15-7121-2022, https://doi.org/10.5194/gmd-15-7121-2022, 2022
Short summary
Short summary
Firn covers the Greenland ice sheet (GrIS) and can temporarily prevent mass loss. Here, we present the latest version of our firn model, IMAU-FDM, with an application to the GrIS. We improved the density of fallen snow, the firn densification rate and the firn's thermal conductivity. This leads to a higher air content and 10 m temperatures. Furthermore we investigate three case studies and find that the updated model shows greater variability and an increased sensitivity in surface elevation.
Christiaan T. van Dalum, Willem Jan van de Berg, and Michiel R. van den Broeke
The Cryosphere, 16, 1071–1089, https://doi.org/10.5194/tc-16-1071-2022, https://doi.org/10.5194/tc-16-1071-2022, 2022
Short summary
Short summary
In this study, we improve the regional climate model RACMO2 and investigate the climate of Antarctica. We have implemented a new radiative transfer and snow albedo scheme and do several sensitivity experiments. When fully tuned, the results compare well with observations and snow temperature profiles improve. Moreover, small changes in the albedo and the investigated processes can lead to a strong overestimation of melt, locally leading to runoff and a reduced surface mass balance.
Zhongyang Hu, Peter Kuipers Munneke, Stef Lhermitte, Maaike Izeboud, and Michiel van den Broeke
The Cryosphere, 15, 5639–5658, https://doi.org/10.5194/tc-15-5639-2021, https://doi.org/10.5194/tc-15-5639-2021, 2021
Short summary
Short summary
Antarctica is shrinking, and part of the mass loss is caused by higher temperatures leading to more snowmelt. We use computer models to estimate the amount of melt, but this can be inaccurate – specifically in the areas with the most melt. This is because the model cannot account for small, darker areas like rocks or darker ice. Thus, we trained a computer using artificial intelligence and satellite images that showed these darker areas. The model computed an improved estimate of melt.
Karen E. Alley, Christian T. Wild, Adrian Luckman, Ted A. Scambos, Martin Truffer, Erin C. Pettit, Atsuhiro Muto, Bruce Wallin, Marin Klinger, Tyler Sutterley, Sarah F. Child, Cyrus Hulen, Jan T. M. Lenaerts, Michelle Maclennan, Eric Keenan, and Devon Dunmire
The Cryosphere, 15, 5187–5203, https://doi.org/10.5194/tc-15-5187-2021, https://doi.org/10.5194/tc-15-5187-2021, 2021
Short summary
Short summary
We present a 20-year, satellite-based record of velocity and thickness change on the Thwaites Eastern Ice Shelf (TEIS), the largest remaining floating extension of Thwaites Glacier (TG). TG holds the single greatest control on sea-level rise over the next few centuries, so it is important to understand changes on the TEIS, which controls much of TG's flow into the ocean. Our results suggest that the TEIS is progressively destabilizing and is likely to disintegrate over the next few decades.
Kenneth D. Mankoff, Xavier Fettweis, Peter L. Langen, Martin Stendel, Kristian K. Kjeldsen, Nanna B. Karlsson, Brice Noël, Michiel R. van den Broeke, Anne Solgaard, William Colgan, Jason E. Box, Sebastian B. Simonsen, Michalea D. King, Andreas P. Ahlstrøm, Signe Bech Andersen, and Robert S. Fausto
Earth Syst. Sci. Data, 13, 5001–5025, https://doi.org/10.5194/essd-13-5001-2021, https://doi.org/10.5194/essd-13-5001-2021, 2021
Short summary
Short summary
We estimate the daily mass balance and its components (surface, marine, and basal mass balance) for the Greenland ice sheet. Our time series begins in 1840 and has annual resolution through 1985 and then daily from 1986 through next week. Results are operational (updated daily) and provided for the entire ice sheet or by commonly used regions or sectors. This is the first input–output mass balance estimate to include the basal mass balance.
Madison L. Ghiz, Ryan C. Scott, Andrew M. Vogelmann, Jan T. M. Lenaerts, Matthew Lazzara, and Dan Lubin
The Cryosphere, 15, 3459–3494, https://doi.org/10.5194/tc-15-3459-2021, https://doi.org/10.5194/tc-15-3459-2021, 2021
Short summary
Short summary
We investigate how melt occurs over the vulnerable ice shelves of West Antarctica and determine that the three primary mechanisms can be evaluated using archived numerical weather prediction model data and satellite imagery. We find examples of each mechanism: thermal blanketing by a warm atmosphere, radiative heating by thin clouds, and downslope winds. Our results signify the potential to make a multi-decadal assessment of atmospheric stress on West Antarctic ice shelves in a warming climate.
Devon Dunmire, Alison F. Banwell, Nander Wever, Jan T. M. Lenaerts, and Rajashree Tri Datta
The Cryosphere, 15, 2983–3005, https://doi.org/10.5194/tc-15-2983-2021, https://doi.org/10.5194/tc-15-2983-2021, 2021
Short summary
Short summary
Here, we automatically detect buried lakes (meltwater lakes buried below layers of snow) across the Greenland Ice Sheet, providing insight into a poorly studied meltwater feature. For 2018 and 2019, we compare areal extent of buried lakes. We find greater buried lake extent in 2019, especially in northern Greenland, which we attribute to late-summer surface melt and high autumn temperatures. We also provide evidence that buried lakes form via different processes across Greenland.
Maurice van Tiggelen, Paul C. J. P. Smeets, Carleen H. Reijmer, Bert Wouters, Jakob F. Steiner, Emile J. Nieuwstraten, Walter W. Immerzeel, and Michiel R. van den Broeke
The Cryosphere, 15, 2601–2621, https://doi.org/10.5194/tc-15-2601-2021, https://doi.org/10.5194/tc-15-2601-2021, 2021
Short summary
Short summary
We developed a method to estimate the aerodynamic properties of the Greenland Ice Sheet surface using either UAV or ICESat-2 elevation data. We show that this new method is able to reproduce the important spatiotemporal variability in surface aerodynamic roughness, measured by the field observations. The new maps of surface roughness can be used in atmospheric models to improve simulations of surface turbulent heat fluxes and therefore surface energy and mass balance over rough ice worldwide.
Christiaan T. van Dalum, Willem Jan van de Berg, and Michiel R. van den Broeke
The Cryosphere, 15, 1823–1844, https://doi.org/10.5194/tc-15-1823-2021, https://doi.org/10.5194/tc-15-1823-2021, 2021
Short summary
Short summary
Absorption of solar radiation is often limited to the surface in regional climate models. Therefore, we have implemented a new radiative transfer scheme in the model RACMO2, which allows for internal heating and improves the surface reflectivity. Here, we evaluate its impact on the surface mass and energy budget and (sub)surface temperature, by using observations and the previous model version for the Greenland ice sheet. New results match better with observations and introduce subsurface melt.
Eric Keenan, Nander Wever, Marissa Dattler, Jan T. M. Lenaerts, Brooke Medley, Peter Kuipers Munneke, and Carleen Reijmer
The Cryosphere, 15, 1065–1085, https://doi.org/10.5194/tc-15-1065-2021, https://doi.org/10.5194/tc-15-1065-2021, 2021
Short summary
Short summary
Snow density is required to convert observed changes in ice sheet volume into mass, which ultimately drives ice sheet contribution to sea level rise. However, snow properties respond dynamically to wind-driven redistribution. Here we include a new wind-driven snow density scheme into an existing snow model. Our results demonstrate an improved representation of snow density when compared to observations and can therefore be used to improve retrievals of ice sheet mass balance.
J. Melchior van Wessem, Christian R. Steger, Nander Wever, and Michiel R. van den Broeke
The Cryosphere, 15, 695–714, https://doi.org/10.5194/tc-15-695-2021, https://doi.org/10.5194/tc-15-695-2021, 2021
Short summary
Short summary
This study presents the first modelled estimates of perennial firn aquifers (PFAs) in Antarctica. PFAs are subsurface meltwater bodies that do not refreeze in winter due to the isolating effects of the snow they are buried underneath. They were first identified in Greenland, but conditions for their existence are also present in the Antarctic Peninsula. These PFAs can have important effects on meltwater retention, ice shelf stability, and, consequently, sea level rise.
Tessa Gorte, Jan T. M. Lenaerts, and Brooke Medley
The Cryosphere, 14, 4719–4733, https://doi.org/10.5194/tc-14-4719-2020, https://doi.org/10.5194/tc-14-4719-2020, 2020
Short summary
Short summary
In this paper, we analyze several spatial and temporal criteria to assess the ability of models in the CMIP5 and CMIP6 frameworks to recreate past Antarctic surface mass balance. We then compared a subset of the top performing models to all remaining models to refine future surface mass balance predictions under different forcing scenarios. We found that the top performing models predict lower surface mass balance by 2100, indicating less buffering than otherwise expected of sea level rise.
Baojuan Huai, Michiel R. van den Broeke, and Carleen H. Reijmer
The Cryosphere, 14, 4181–4199, https://doi.org/10.5194/tc-14-4181-2020, https://doi.org/10.5194/tc-14-4181-2020, 2020
Short summary
Short summary
This study presents the surface energy balance (SEB) of the Greenland Ice Sheet (GrIS) using a SEB model forced with observations from automatic weather stations (AWSs). We correlate ERA5 with AWSs to show a significant positive correlation of GrIS summer surface temperature and melt with the Greenland Blocking Index and weaker and opposite correlations with the North Atlantic Oscillation. This analysis may help explain melting patterns in the GrIS with respect to circulation anomalies.
Marie G. P. Cavitte, Quentin Dalaiden, Hugues Goosse, Jan T. M. Lenaerts, and Elizabeth R. Thomas
The Cryosphere, 14, 4083–4102, https://doi.org/10.5194/tc-14-4083-2020, https://doi.org/10.5194/tc-14-4083-2020, 2020
Short summary
Short summary
Surface mass balance (SMB) and surface air temperature (SAT) are correlated at the regional scale for most of Antarctica, SMB and δ18O. Areas with low/no correlation are where wind processes (foehn, katabatic wind warming, and erosion) are sufficiently active to overwhelm the synoptic-scale snow accumulation. Measured in ice cores, the link between SMB, SAT, and δ18O is much weaker. Random noise can be removed by core record averaging but local processes perturb the correlation systematically.
Xavier Fettweis, Stefan Hofer, Uta Krebs-Kanzow, Charles Amory, Teruo Aoki, Constantijn J. Berends, Andreas Born, Jason E. Box, Alison Delhasse, Koji Fujita, Paul Gierz, Heiko Goelzer, Edward Hanna, Akihiro Hashimoto, Philippe Huybrechts, Marie-Luise Kapsch, Michalea D. King, Christoph Kittel, Charlotte Lang, Peter L. Langen, Jan T. M. Lenaerts, Glen E. Liston, Gerrit Lohmann, Sebastian H. Mernild, Uwe Mikolajewicz, Kameswarrao Modali, Ruth H. Mottram, Masashi Niwano, Brice Noël, Jonathan C. Ryan, Amy Smith, Jan Streffing, Marco Tedesco, Willem Jan van de Berg, Michiel van den Broeke, Roderik S. W. van de Wal, Leo van Kampenhout, David Wilton, Bert Wouters, Florian Ziemen, and Tobias Zolles
The Cryosphere, 14, 3935–3958, https://doi.org/10.5194/tc-14-3935-2020, https://doi.org/10.5194/tc-14-3935-2020, 2020
Short summary
Short summary
We evaluated simulated Greenland Ice Sheet surface mass balance from 5 kinds of models. While the most complex (but expensive to compute) models remain the best, the faster/simpler models also compare reliably with observations and have biases of the same order as the regional models. Discrepancies in the trend over 2000–2012, however, suggest that large uncertainties remain in the modelled future SMB changes as they are highly impacted by the meltwater runoff biases over the current climate.
Christiaan T. van Dalum, Willem Jan van de Berg, Stef Lhermitte, and Michiel R. van den Broeke
The Cryosphere, 14, 3645–3662, https://doi.org/10.5194/tc-14-3645-2020, https://doi.org/10.5194/tc-14-3645-2020, 2020
Short summary
Short summary
The reflectivity of sunlight, which is also known as albedo, is often inadequately modeled in regional climate models. Therefore, we have implemented a new snow and ice albedo scheme in the regional climate model RACMO2. In this study, we evaluate a new RACMO2 version for the Greenland ice sheet by using observations and the previous model version. RACMO2 output compares well with observations, and by including new processes we improve the ability of RACMO2 to make future climate projections.
Thore Kausch, Stef Lhermitte, Jan T. M. Lenaerts, Nander Wever, Mana Inoue, Frank Pattyn, Sainan Sun, Sarah Wauthy, Jean-Louis Tison, and Willem Jan van de Berg
The Cryosphere, 14, 3367–3380, https://doi.org/10.5194/tc-14-3367-2020, https://doi.org/10.5194/tc-14-3367-2020, 2020
Short summary
Short summary
Ice rises are elevated parts of the otherwise flat ice shelf. Here we study the impact of an Antarctic ice rise on the surrounding snow accumulation by combining field data and modeling. Our results show a clear difference in average yearly snow accumulation between the windward side, the leeward side and the peak of the ice rise due to differences in snowfall and wind erosion. This is relevant for the interpretation of ice core records, which are often drilled on the peak of an ice rise.
Heiko Goelzer, Sophie Nowicki, Anthony Payne, Eric Larour, Helene Seroussi, William H. Lipscomb, Jonathan Gregory, Ayako Abe-Ouchi, Andrew Shepherd, Erika Simon, Cécile Agosta, Patrick Alexander, Andy Aschwanden, Alice Barthel, Reinhard Calov, Christopher Chambers, Youngmin Choi, Joshua Cuzzone, Christophe Dumas, Tamsin Edwards, Denis Felikson, Xavier Fettweis, Nicholas R. Golledge, Ralf Greve, Angelika Humbert, Philippe Huybrechts, Sebastien Le clec'h, Victoria Lee, Gunter Leguy, Chris Little, Daniel P. Lowry, Mathieu Morlighem, Isabel Nias, Aurelien Quiquet, Martin Rückamp, Nicole-Jeanne Schlegel, Donald A. Slater, Robin S. Smith, Fiamma Straneo, Lev Tarasov, Roderik van de Wal, and Michiel van den Broeke
The Cryosphere, 14, 3071–3096, https://doi.org/10.5194/tc-14-3071-2020, https://doi.org/10.5194/tc-14-3071-2020, 2020
Short summary
Short summary
In this paper we use a large ensemble of Greenland ice sheet models forced by six different global climate models to project ice sheet changes and sea-level rise contributions over the 21st century.
The results for two different greenhouse gas concentration scenarios indicate that the Greenland ice sheet will continue to lose mass until 2100, with contributions to sea-level rise of 90 ± 50 mm and 32 ± 17 mm for the high (RCP8.5) and low (RCP2.6) scenario, respectively.
Sophie Nowicki, Heiko Goelzer, Hélène Seroussi, Anthony J. Payne, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Patrick Alexander, Xylar S. Asay-Davis, Alice Barthel, Thomas J. Bracegirdle, Richard Cullather, Denis Felikson, Xavier Fettweis, Jonathan M. Gregory, Tore Hattermann, Nicolas C. Jourdain, Peter Kuipers Munneke, Eric Larour, Christopher M. Little, Mathieu Morlighem, Isabel Nias, Andrew Shepherd, Erika Simon, Donald Slater, Robin S. Smith, Fiammetta Straneo, Luke D. Trusel, Michiel R. van den Broeke, and Roderik van de Wal
The Cryosphere, 14, 2331–2368, https://doi.org/10.5194/tc-14-2331-2020, https://doi.org/10.5194/tc-14-2331-2020, 2020
Short summary
Short summary
This paper describes the experimental protocol for ice sheet models taking part in the Ice Sheet Model Intercomparion Project for CMIP6 (ISMIP6) and presents an overview of the atmospheric and oceanic datasets to be used for the simulations. The ISMIP6 framework allows for exploring the uncertainty in 21st century sea level change from the Greenland and Antarctic ice sheets.
Jan T. M. Lenaerts, M. Drew Camron, Christopher R. Wyburn-Powell, and Jennifer E. Kay
The Cryosphere, 14, 2253–2265, https://doi.org/10.5194/tc-14-2253-2020, https://doi.org/10.5194/tc-14-2253-2020, 2020
Michael Kern, Robert Cullen, Bruno Berruti, Jerome Bouffard, Tania Casal, Mark R. Drinkwater, Antonio Gabriele, Arnaud Lecuyot, Michael Ludwig, Rolv Midthassel, Ignacio Navas Traver, Tommaso Parrinello, Gerhard Ressler, Erik Andersson, Cristina Martin-Puig, Ole Andersen, Annett Bartsch, Sinead Farrell, Sara Fleury, Simon Gascoin, Amandine Guillot, Angelika Humbert, Eero Rinne, Andrew Shepherd, Michiel R. van den Broeke, and John Yackel
The Cryosphere, 14, 2235–2251, https://doi.org/10.5194/tc-14-2235-2020, https://doi.org/10.5194/tc-14-2235-2020, 2020
Short summary
Short summary
The Copernicus Polar Ice and Snow Topography Altimeter will provide high-resolution sea ice thickness and land ice elevation measurements and the capability to determine the properties of snow cover on ice to serve operational products and services of direct relevance to the polar regions. This paper describes the mission objectives, identifies the key contributions the CRISTAL mission will make, and presents a concept – as far as it is already defined – for the mission payload.
Simone Tilmes, Douglas G. MacMartin, Jan T. M. Lenaerts, Leo van Kampenhout, Laura Muntjewerf, Lili Xia, Cheryl S. Harrison, Kristen M. Krumhardt, Michael J. Mills, Ben Kravitz, and Alan Robock
Earth Syst. Dynam., 11, 579–601, https://doi.org/10.5194/esd-11-579-2020, https://doi.org/10.5194/esd-11-579-2020, 2020
Short summary
Short summary
This paper introduces new geoengineering model experiments as part of a larger model intercomparison effort, using reflective particles to block some of the incoming solar radiation to reach surface temperature targets. Outcomes of these applications are contrasted based on a high greenhouse gas emission pathway and a pathway with strong mitigation and negative emissions after 2040. We compare quantities that matter for societal and ecosystem impacts between the different scenarios.
Heiko Goelzer, Brice P. Y. Noël, Tamsin L. Edwards, Xavier Fettweis, Jonathan M. Gregory, William H. Lipscomb, Roderik S. W. van de Wal, and Michiel R. van den Broeke
The Cryosphere, 14, 1747–1762, https://doi.org/10.5194/tc-14-1747-2020, https://doi.org/10.5194/tc-14-1747-2020, 2020
Short summary
Short summary
Future sea-level change projections with process-based ice sheet models are typically driven with surface mass balance forcing derived from climate models. In this work we address the problems arising from a mismatch of the modelled ice sheet geometry with the one used by the climate model. The proposed remapping method reproduces the original forcing data closely when applied to the original geometry and produces a physically meaningful forcing when applied to different modelled geometries.
Brice Noël, Leonardus van Kampenhout, Willem Jan van de Berg, Jan T. M. Lenaerts, Bert Wouters, and Michiel R. van den Broeke
The Cryosphere, 14, 1425–1435, https://doi.org/10.5194/tc-14-1425-2020, https://doi.org/10.5194/tc-14-1425-2020, 2020
Short summary
Short summary
We present a reconstruction of historical (1950–2014) surface mass balance of the Greenland ice sheet using the Community Earth System Model (CESM2; ~111 km) to force a high-resolution regional climate model (RACMO2; ~11 km), which is further refined to 1 km spatial resolution. For the first time, an Earth-system-model-based product, assimilating no observations, can reconstruct realistic historical ice sheet surface mass balance as well as the mass loss acceleration that started in the 1990s.
Quentin Dalaiden, Hugues Goosse, François Klein, Jan T. M. Lenaerts, Max Holloway, Louise Sime, and Elizabeth R. Thomas
The Cryosphere, 14, 1187–1207, https://doi.org/10.5194/tc-14-1187-2020, https://doi.org/10.5194/tc-14-1187-2020, 2020
Short summary
Short summary
Large uncertainties remain in Antarctic surface temperature reconstructions over the last millennium. Here, the analysis of climate model outputs reveals that snow accumulation is a more relevant proxy for surface temperature reconstructions than δ18O. We use this finding in data assimilation experiments to compare to observed surface temperatures. We show that our continental temperature reconstruction outperforms reconstructions based on δ18O, especially for East Antarctica.
Markus M. Frey, Sarah J. Norris, Ian M. Brooks, Philip S. Anderson, Kouichi Nishimura, Xin Yang, Anna E. Jones, Michelle G. Nerentorp Mastromonaco, David H. Jones, and Eric W. Wolff
Atmos. Chem. Phys., 20, 2549–2578, https://doi.org/10.5194/acp-20-2549-2020, https://doi.org/10.5194/acp-20-2549-2020, 2020
Short summary
Short summary
A winter sea ice expedition to Antarctica provided the first direct observations of sea salt aerosol (SSA) production during snow storms above sea ice, thereby validating a model hypothesis to account for winter time SSA maxima in Antarctica not explained otherwise. Defining SSA sources is important given the critical roles that aerosol plays for climate, for air quality and as a potential ice core proxy for sea ice conditions in the past.
Hailong Wang, Jeremy G. Fyke, Jan T. M. Lenaerts, Jesse M. Nusbaumer, Hansi Singh, David Noone, Philip J. Rasch, and Rudong Zhang
The Cryosphere, 14, 429–444, https://doi.org/10.5194/tc-14-429-2020, https://doi.org/10.5194/tc-14-429-2020, 2020
Short summary
Short summary
Using a climate model with unique water source tagging, we found that sea-ice anomalies in the Southern Ocean and accompanying SST changes have a significant influence on Antarctic precipitation and its source attribution through their direct impact on moisture sources and indirect impact on moisture transport. This study also highlights the importance of atmospheric dynamics in affecting the thermodynamic impact of sea-ice anomalies on regional Antarctic precipitation.
Matthias O. Willen, Martin Horwath, Ludwig Schröder, Andreas Groh, Stefan R. M. Ligtenberg, Peter Kuipers Munneke, and Michiel R. van den Broeke
The Cryosphere, 14, 349–366, https://doi.org/10.5194/tc-14-349-2020, https://doi.org/10.5194/tc-14-349-2020, 2020
Christiaan T. van Dalum, Willem Jan van de Berg, Quentin Libois, Ghislain Picard, and Michiel R. van den Broeke
Geosci. Model Dev., 12, 5157–5175, https://doi.org/10.5194/gmd-12-5157-2019, https://doi.org/10.5194/gmd-12-5157-2019, 2019
Short summary
Short summary
Climate models are often limited to relatively simple snow albedo schemes. Therefore, we have developed the SNOWBAL module to couple a climate model with a physically based wavelength dependent snow albedo model. Using SNOWBAL v1.2 to couple the snow albedo model TARTES with the regional climate model RACMO2 indicates a potential performance gain for the Greenland ice sheet.
Raymond Sellevold, Leonardus van Kampenhout, Jan T. M. Lenaerts, Brice Noël, William H. Lipscomb, and Miren Vizcaino
The Cryosphere, 13, 3193–3208, https://doi.org/10.5194/tc-13-3193-2019, https://doi.org/10.5194/tc-13-3193-2019, 2019
Short summary
Short summary
We evaluate a downscaling method to calculate ice sheet surface mass balance with global climate models, despite their coarse resolution. We compare it with high-resolution climate modeling. Despite absence of fine-scale simulation of individual energy and mass contributors, the method provides realistic vertical SMB gradients that can be used in forcing of ice sheet models, e.g., for sea level projections. Also, the climate model simulation is improved with the method implemented interactively.
Cristina Pérez-Guillén, Kae Tsunematsu, Kouichi Nishimura, and Dieter Issler
Earth Surf. Dynam., 7, 989–1007, https://doi.org/10.5194/esurf-7-989-2019, https://doi.org/10.5194/esurf-7-989-2019, 2019
Short summary
Short summary
Avalanches and slush flows from Mt. Fuji are a major natural hazard as they may attain run-out distances of up to 4 km and destroy parts of the forest and infrastructure. We located and tracked them for the first time using seismic data. Numerical simulations were conducted to assess the precision of the seismic tracking. We also inferred dynamical properties characterizing these hazardous mass movements. This information is indispensable for assessing avalanche risk in the Mt. Fuji region.
Vincent Verjans, Amber A. Leeson, C. Max Stevens, Michael MacFerrin, Brice Noël, and Michiel R. van den Broeke
The Cryosphere, 13, 1819–1842, https://doi.org/10.5194/tc-13-1819-2019, https://doi.org/10.5194/tc-13-1819-2019, 2019
Short summary
Short summary
Firn models rely on empirical approaches for representing the percolation and refreezing of meltwater through the firn column. We develop liquid water schemes of different levels of complexity for firn models and compare their performances with respect to observations of density profiles from Greenland. Our results demonstrate that physically advanced water schemes do not lead to better agreement with density observations. Uncertainties in other processes contribute more to model discrepancy.
Tyler C. Sutterley, Thorsten Markus, Thomas A. Neumann, Michiel van den Broeke, J. Melchior van Wessem, and Stefan R. M. Ligtenberg
The Cryosphere, 13, 1801–1817, https://doi.org/10.5194/tc-13-1801-2019, https://doi.org/10.5194/tc-13-1801-2019, 2019
Short summary
Short summary
Most of the Antarctic ice sheet is fringed by ice shelves, floating extensions of ice that help to modulate the flow of the glaciers that float into them. We use airborne laser altimetry data to measure changes in ice thickness of ice shelves around West Antarctica and the Antarctic Peninsula. Each of our target ice shelves is susceptible to short-term changes in ice thickness. The method developed here provides a framework for processing NASA ICESat-2 data over ice shelves.
Xin Yang, Markus M. Frey, Rachael H. Rhodes, Sarah J. Norris, Ian M. Brooks, Philip S. Anderson, Kouichi Nishimura, Anna E. Jones, and Eric W. Wolff
Atmos. Chem. Phys., 19, 8407–8424, https://doi.org/10.5194/acp-19-8407-2019, https://doi.org/10.5194/acp-19-8407-2019, 2019
Short summary
Short summary
This is a comprehensive model–data comparison aiming to evaluate the proposed mechanism of sea salt aerosol (SSA) production from blowing snow on sea ice. Some key parameters such as snow salinity and blowing-snow size distribution were constrained by data collected in the Weddell Sea. The good agreement between modelled SSA and the cruise data strongly indicates that sea ice surface is a large SSA source in polar regions, a process which has not been considered in current climate models.
Leonardus van Kampenhout, Alan M. Rhoades, Adam R. Herrington, Colin M. Zarzycki, Jan T. M. Lenaerts, William J. Sacks, and Michiel R. van den Broeke
The Cryosphere, 13, 1547–1564, https://doi.org/10.5194/tc-13-1547-2019, https://doi.org/10.5194/tc-13-1547-2019, 2019
Short summary
Short summary
A new tool is evaluated in which the climate and surface mass balance (SMB) of the Greenland ice sheet are resolved at 55 and 28 km resolution, while the rest of the globe is modelled at ~110 km. The local refinement of resolution leads to improved accumulation (SMB > 0) compared to observations; however ablation (SMB < 0) is deteriorated in some regions. This is attributed to changes in cloud cover and a reduced effectiveness of a model-specific vertical downscaling technique.
Constantijn L. Jakobs, Carleen H. Reijmer, Peter Kuipers Munneke, Gert König-Langlo, and Michiel R. van den Broeke
The Cryosphere, 13, 1473–1485, https://doi.org/10.5194/tc-13-1473-2019, https://doi.org/10.5194/tc-13-1473-2019, 2019
Short summary
Short summary
We use 24 years of observations at Neumayer Station, East Antarctica, to calculate the surface energy balance and the associated surface melt, which we find to be mainly driven by the absorption of solar radiation. Meltwater can refreeze in the subsurface snow layers, thereby decreasing the surface albedo and hence allowing for more absorption of solar radiation. By implementing an albedo parameterisation, we show that this feedback accounts for a threefold increase in surface melt at Neumayer.
Alexandra Gossart, Stephen P. Palm, Niels Souverijns, Jan T. M. Lenaerts, Irina V. Gorodetskaya, Stef Lhermitte, and Nicole P. M. van Lipzig
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-25, https://doi.org/10.5194/tc-2019-25, 2019
Manuscript not accepted for further review
Short summary
Short summary
Blowing snow measurements are scarce, both in time and space over the Antarctic ice sheet. We compare here CALIPSO satellite blowing snow measurements, to ground-base remote sensing ceilometer retrievals at two coastal stations in East Antarctica. Results indicate that 95 % of the blowing snow occurs under cloudy conditions, and are missed by the satellite. In addition, difficulties arise if comparing point locations to satellite overpasses.
Ludwig Schröder, Martin Horwath, Reinhard Dietrich, Veit Helm, Michiel R. van den Broeke, and Stefan R. M. Ligtenberg
The Cryosphere, 13, 427–449, https://doi.org/10.5194/tc-13-427-2019, https://doi.org/10.5194/tc-13-427-2019, 2019
Short summary
Short summary
We developed an approach to combine measurements of seven satellite altimetry missions over the Antarctic Ice Sheet. Our resulting monthly grids of elevation changes between 1978 and 2017 provide unprecedented details of the long-term and interannual variation. Derived mass changes agree well with contemporaneous data of surface mass balance and satellite gravimetry and show which regions were responsible for the significant accelerations of mass loss in recent years.
Cécile Agosta, Charles Amory, Christoph Kittel, Anais Orsi, Vincent Favier, Hubert Gallée, Michiel R. van den Broeke, Jan T. M. Lenaerts, Jan Melchior van Wessem, Willem Jan van de Berg, and Xavier Fettweis
The Cryosphere, 13, 281–296, https://doi.org/10.5194/tc-13-281-2019, https://doi.org/10.5194/tc-13-281-2019, 2019
Short summary
Short summary
Antarctic surface mass balance (ASMB), a component of the sea level budget, is commonly estimated through modelling as observations are scarce. The polar-oriented regional climate model MAR performs well in simulating the observed ASMB. MAR and RACMO2 share common biases we relate to drifting snow transport, with a 3 times larger magnitude than in previous estimates. Sublimation of precipitation in the katabatic layer modelled by MAR is of a magnitude similar to an observation-based estimate.
Gilbert Guyomarc'h, Hervé Bellot, Vincent Vionnet, Florence Naaim-Bouvet, Yannick Déliot, Firmin Fontaine, Philippe Puglièse, Kouichi Nishimura, Yves Durand, and Mohamed Naaim
Earth Syst. Sci. Data, 11, 57–69, https://doi.org/10.5194/essd-11-57-2019, https://doi.org/10.5194/essd-11-57-2019, 2019
Short summary
Short summary
The paper introduces a meteorological and blowing snow data set from Col du Lac Blanc (2720 m a.s.l., French Alps) allowing physical parameterizations and numerical models of blowing snow to be developed and evaluated. In situ winter season data consist of wind, snow depth, air temperature measurements and a database of blowing snow occurrence (2000–2016) complemented by measurements of blowing snow fluxes (2010–2016). Atmospheric data from a meteorological reanalysis and a DEM are also provided.
Michalea D. King, Ian M. Howat, Seongsu Jeong, Myoung J. Noh, Bert Wouters, Brice Noël, and Michiel R. van den Broeke
The Cryosphere, 12, 3813–3825, https://doi.org/10.5194/tc-12-3813-2018, https://doi.org/10.5194/tc-12-3813-2018, 2018
Short summary
Short summary
We derive the first continuous record of total ice discharged from all large Greenland outlet glaciers over the 2000–2016 period, resolving a distinct pattern of seasonal variability. We compare these results to glacier retreat and meltwater runoff and find that while runoff has a limited impact on ice discharge in summer, long-term changes in discharge are highly correlated to retreat. These results help to better understand Greenland outlet glacier sensitivity over a range of timescales.
Nicole-Jeanne Schlegel, Helene Seroussi, Michael P. Schodlok, Eric Y. Larour, Carmen Boening, Daniel Limonadi, Michael M. Watkins, Mathieu Morlighem, and Michiel R. van den Broeke
The Cryosphere, 12, 3511–3534, https://doi.org/10.5194/tc-12-3511-2018, https://doi.org/10.5194/tc-12-3511-2018, 2018
Short summary
Short summary
Using NASA supercomputers and a novel framework, in which Sandia National Laboratories' statistical software is embedded in the Jet Propulsion Laboratory's ice sheet model, we run a range of 100-year warming scenarios for Antarctica. We find that 1.2 m of sea level contribution is achievable, but not likely. Also, we find that bedrock topography beneath the ice drives potential for regional sea level contribution, highlighting the need for accurate bedrock mapping of the ice sheet interior.
Jiangjun Ran, Miren Vizcaino, Pavel Ditmar, Michiel R. van den Broeke, Twila Moon, Christian R. Steger, Ellyn M. Enderlin, Bert Wouters, Brice Noël, Catharina H. Reijmer, Roland Klees, Min Zhong, Lin Liu, and Xavier Fettweis
The Cryosphere, 12, 2981–2999, https://doi.org/10.5194/tc-12-2981-2018, https://doi.org/10.5194/tc-12-2981-2018, 2018
Short summary
Short summary
To accurately predict future sea level rise, the mechanisms driving the observed mass loss must be better understood. Here, we combine data from the satellite gravimetry, surface mass balance, and ice discharge to analyze the mass budget of Greenland at various temporal scales. This study, for the first time, suggests the existence of a substantial meltwater storage during summer, with a peak value of 80–120 Gt in July. We highlight its importance for understanding ice sheet mass variability
Rajashree Tri Datta, Marco Tedesco, Cecile Agosta, Xavier Fettweis, Peter Kuipers Munneke, and Michiel R. van den Broeke
The Cryosphere, 12, 2901–2922, https://doi.org/10.5194/tc-12-2901-2018, https://doi.org/10.5194/tc-12-2901-2018, 2018
Short summary
Short summary
Surface melting on the East Antarctic Peninsula (East AP) has been linked to ice shelf collapse, including the Larsen A (1995) and Larsen B (2002) ice shelves. Regional climate models (RCMs) are a valuable tool to understand how wind patterns and general warming can impact the stability of ice shelves through surface melt. Here, we evaluate one such RCM (Modèle Atmosphérique Régionale) over the East AP, including the remaining Larsen C ice shelf, by comparing it to satellite and ground data.
Stefan R. M. Ligtenberg, Peter Kuipers Munneke, Brice P. Y. Noël, and Michiel R. van den Broeke
The Cryosphere, 12, 1643–1649, https://doi.org/10.5194/tc-12-1643-2018, https://doi.org/10.5194/tc-12-1643-2018, 2018
Short summary
Short summary
Firn is the transitional product between fresh snow and glacier ice, and a 10-100 m thick layer covers the Greenland ice sheet. It has the capacity to store meltwater and thereby mitigate runoff to the ocean. Using a model and improved atmospheric forcing, we simulate firn density and temperature that agrees well with observations from firn cores. Especially in the regions with substantial melt, and therefore the most sensitive to a warming climate, the results improved significantly.
Jan Melchior van Wessem, Willem Jan van de Berg, Brice P. Y. Noël, Erik van Meijgaard, Charles Amory, Gerit Birnbaum, Constantijn L. Jakobs, Konstantin Krüger, Jan T. M. Lenaerts, Stef Lhermitte, Stefan R. M. Ligtenberg, Brooke Medley, Carleen H. Reijmer, Kristof van Tricht, Luke D. Trusel, Lambertus H. van Ulft, Bert Wouters, Jan Wuite, and Michiel R. van den Broeke
The Cryosphere, 12, 1479–1498, https://doi.org/10.5194/tc-12-1479-2018, https://doi.org/10.5194/tc-12-1479-2018, 2018
Short summary
Short summary
We present a detailed evaluation of the latest version of the regional atmospheric climate model RACMO2.3p2 (1979-2016) over the Antarctic ice sheet. The model successfully reproduces the present-day climate and surface mass balance (SMB) when compared with an extensive set of observations and improves on previous estimates of the Antarctic climate and SMB.
This study shows that the latest version of RACMO2 can be used for high-resolution future projections over the AIS.
Helmut Rott, Wael Abdel Jaber, Jan Wuite, Stefan Scheiblauer, Dana Floricioiu, Jan Melchior van Wessem, Thomas Nagler, Nuno Miranda, and Michiel R. van den Broeke
The Cryosphere, 12, 1273–1291, https://doi.org/10.5194/tc-12-1273-2018, https://doi.org/10.5194/tc-12-1273-2018, 2018
Short summary
Short summary
We analysed volume change, mass balance and ice flow of glaciers draining into the Larsen A and Larsen B embayments on the Antarctic Peninsula for 2011 to 2013 and 2013 to 2016. The mass balance is based on elevation change measured by the radar satellite mission TanDEM-X and on the mass budget method. The glaciers show continuing losses in ice mass, which is a response to ice shelf break-up. After 2013 the downwasting of glaciers slowed down, coinciding with years of persistent sea ice cover.
Brice Noël, Willem Jan van de Berg, J. Melchior van Wessem, Erik van Meijgaard, Dirk van As, Jan T. M. Lenaerts, Stef Lhermitte, Peter Kuipers Munneke, C. J. P. Paul Smeets, Lambertus H. van Ulft, Roderik S. W. van de Wal, and Michiel R. van den Broeke
The Cryosphere, 12, 811–831, https://doi.org/10.5194/tc-12-811-2018, https://doi.org/10.5194/tc-12-811-2018, 2018
Short summary
Short summary
We present a detailed evaluation of the latest version of the regional climate model RACMO2.3p2 at 11 km resolution (1958–2016) over the Greenland ice sheet (GrIS). The model successfully reproduces the present-day climate and surface mass balance, i.e. snowfall minus meltwater run-off, of the GrIS compared to in situ observations. Since run-off from marginal narrow glaciers is poorly resolved at 11 km, further statistical downscaling to 1 km resolution is required for mass balance studies.
Alex S. Gardner, Geir Moholdt, Ted Scambos, Mark Fahnstock, Stefan Ligtenberg, Michiel van den Broeke, and Johan Nilsson
The Cryosphere, 12, 521–547, https://doi.org/10.5194/tc-12-521-2018, https://doi.org/10.5194/tc-12-521-2018, 2018
Short summary
Short summary
We map present-day Antarctic surface velocities from Landsat imagery and compare to earlier estimates from radar. Flow accelerations across the grounding lines of West Antarctica's Amundsen Sea Embayment, Getz Ice Shelf and the western Antarctic Peninsula, account for 89 % of the observed increase in ice discharge. In contrast, glaciers draining the East Antarctic have been remarkably stable. Our work suggests that patterns of mass loss are part of a longer-term phase of enhanced flow.
Alexandra Gossart, Niels Souverijns, Irina V. Gorodetskaya, Stef Lhermitte, Jan T. M. Lenaerts, Jan H. Schween, Alexander Mangold, Quentin Laffineur, and Nicole P. M. van Lipzig
The Cryosphere, 11, 2755–2772, https://doi.org/10.5194/tc-11-2755-2017, https://doi.org/10.5194/tc-11-2755-2017, 2017
Short summary
Short summary
Blowing snow plays an important role on local surface mass balance of Antarctica. We present here the blowing snow detection algorithm, to retrieve blowing snow occurrence from the attenuated backscatter signal of ceilometers set up at two station. There is a good correspondence in detection of heavy blowing snow by the algorithm and the visual observations performed at Neumayer station. Moreover, most of the blowing snow occurs during events bringing precipitation from the coast inland.
Jeremy Fyke, Jan T. M. Lenaerts, and Hailong Wang
The Cryosphere, 11, 2595–2609, https://doi.org/10.5194/tc-11-2595-2017, https://doi.org/10.5194/tc-11-2595-2017, 2017
Short summary
Short summary
In this CESM modeling study, we uncover regional relationships in snowfall across Antarctica that are corroborated by regional modeling and ice core records. These relationships are driven by variability in large-scale atmospheric moisture transport and dampen overall Antarctic snowfall variability, with implications for Antarctic-sourced sea level variability and detection of an emergent anthropogenic signal in Antarctic mass trends.
Elizabeth R. Thomas, J. Melchior van Wessem, Jason Roberts, Elisabeth Isaksson, Elisabeth Schlosser, Tyler J. Fudge, Paul Vallelonga, Brooke Medley, Jan Lenaerts, Nancy Bertler, Michiel R. van den Broeke, Daniel A. Dixon, Massimo Frezzotti, Barbara Stenni, Mark Curran, and Alexey A. Ekaykin
Clim. Past, 13, 1491–1513, https://doi.org/10.5194/cp-13-1491-2017, https://doi.org/10.5194/cp-13-1491-2017, 2017
Short summary
Short summary
Regional Antarctic snow accumulation derived from 79 ice core records is evaluated as part of the PAGES Antarctica 2k working group. Our results show that surface mass balance for the total Antarctic ice sheet has increased at a rate of 7 ± 0.13 Gt dec-1 since 1800 AD, representing a net reduction in sea level of ~ 0.02 mm dec-1 since 1800 and ~ 0.04 mm dec-1 since 1900 AD. The largest contribution is from the Antarctic Peninsula.
Christian R. Steger, Carleen H. Reijmer, and Michiel R. van den Broeke
The Cryosphere, 11, 2507–2526, https://doi.org/10.5194/tc-11-2507-2017, https://doi.org/10.5194/tc-11-2507-2017, 2017
Short summary
Short summary
Mass loss from the Greenland Ice Sheet, which contributes to sea level rise, is currently dominated by surface melt and run-off. The relation between these two variables is rather uncertain due to the firn layer’s potential to buffer melt in solid (refreezing) or liquid (firn aquifer) form. To address this uncertainty, we analyse output of a numerical firn model run over 1960–2014. Results show a spatially variable response of the ice sheet to increasing melt and an upward migration of aquifers.
Peter Kuipers Munneke, Daniel McGrath, Brooke Medley, Adrian Luckman, Suzanne Bevan, Bernd Kulessa, Daniela Jansen, Adam Booth, Paul Smeets, Bryn Hubbard, David Ashmore, Michiel Van den Broeke, Heidi Sevestre, Konrad Steffen, Andrew Shepherd, and Noel Gourmelen
The Cryosphere, 11, 2411–2426, https://doi.org/10.5194/tc-11-2411-2017, https://doi.org/10.5194/tc-11-2411-2017, 2017
Short summary
Short summary
How much snow falls on the Larsen C ice shelf? This is a relevant question, because this ice shelf might collapse sometime this century. To know if and when this could happen, we found out how much snow falls on its surface. This was difficult, because there are only very few measurements. Here, we used data from automatic weather stations, sled-pulled radars, and a climate model to find that melting the annual snowfall produces about 20 cm of water in the NE and over 70 cm in the SW.
Riccardo E. M. Riva, Thomas Frederikse, Matt A. King, Ben Marzeion, and Michiel R. van den Broeke
The Cryosphere, 11, 1327–1332, https://doi.org/10.5194/tc-11-1327-2017, https://doi.org/10.5194/tc-11-1327-2017, 2017
Short summary
Short summary
The reduction of ice masses stored on land has made an important contribution to sea-level rise over the last century, as well as changed the Earth's shape. We model the solid-earth response to ice mass changes and find significant vertical deformation signals over large continental areas. We show how deformation rates have varied strongly throughout the last century, which affects the interpretation and extrapolation of recent observations of vertical land motion and sea-level change.
Koji Fujita, Hiroshi Inoue, Takeki Izumi, Satoru Yamaguchi, Ayako Sadakane, Sojiro Sunako, Kouichi Nishimura, Walter W. Immerzeel, Joseph M. Shea, Rijan B. Kayastha, Takanobu Sawagaki, David F. Breashears, Hiroshi Yagi, and Akiko Sakai
Nat. Hazards Earth Syst. Sci., 17, 749–764, https://doi.org/10.5194/nhess-17-749-2017, https://doi.org/10.5194/nhess-17-749-2017, 2017
Short summary
Short summary
We create multiple DEMs from photographs taken by helicopter and UAV and reveal the deposit volumes over the Langtang village, which was destroyed by avalanches induced by the Gorkha earthquake. Estimated snow depth in the source area is consistent with anomalously large snow depths observed at a neighboring glacier. Comparing with a long-term observational data, we conclude that this anomalous winter snow amplified the disaster induced by the 2015 Gorkha earthquake in Nepal.
Harry Zekollari, Philippe Huybrechts, Brice Noël, Willem Jan van de Berg, and Michiel R. van den Broeke
The Cryosphere, 11, 805–825, https://doi.org/10.5194/tc-11-805-2017, https://doi.org/10.5194/tc-11-805-2017, 2017
Short summary
Short summary
In this study the dynamics of the world’s northernmost ice cap are investigated with a 3-D ice flow model. Under 1961–1990 climatic conditions
an ice cap similar to the observed one is obtained, with comparable geometry and surface velocities. The southern part of the ice cap is very unstable,
and under early-21st-century climatic conditions this part of the ice cap fully disappears. In a projected warmer and wetter climate the ice cap will at
first steepen, before eventually disappearing.
Stephen F. Price, Matthew J. Hoffman, Jennifer A. Bonin, Ian M. Howat, Thomas Neumann, Jack Saba, Irina Tezaur, Jeffrey Guerber, Don P. Chambers, Katherine J. Evans, Joseph H. Kennedy, Jan Lenaerts, William H. Lipscomb, Mauro Perego, Andrew G. Salinger, Raymond S. Tuminaro, Michiel R. van den Broeke, and Sophie M. J. Nowicki
Geosci. Model Dev., 10, 255–270, https://doi.org/10.5194/gmd-10-255-2017, https://doi.org/10.5194/gmd-10-255-2017, 2017
Short summary
Short summary
We introduce the Cryospheric Model Comparison Tool (CmCt) and propose qualitative and quantitative metrics for evaluating ice sheet model simulations against observations. Greenland simulations using the Community Ice Sheet Model are compared to gravimetry and altimetry observations from 2003 to 2013. We show that the CmCt can be used to score simulations of increasing complexity relative to observations of dynamic change in Greenland over the past decade.
Brice Noël, Willem Jan van de Berg, Horst Machguth, Stef Lhermitte, Ian Howat, Xavier Fettweis, and Michiel R. van den Broeke
The Cryosphere, 10, 2361–2377, https://doi.org/10.5194/tc-10-2361-2016, https://doi.org/10.5194/tc-10-2361-2016, 2016
Short summary
Short summary
We present a 1 km resolution data set (1958–2015) of daily Greenland ice sheet surface mass balance (SMB), statistically downscaled from the data of RACMO2.3 at 11 km using elevation dependence, precipitation and bare ice albedo corrections. The data set resolves Greenland narrow ablation zones and local outlet glaciers, and shows more realistic SMB patterns, owing to enhanced runoff at the ice sheet margins. An evaluation of the product against SMB measurements shows improved agreement.
Nicole-Jeanne Schlegel, David N. Wiese, Eric Y. Larour, Michael M. Watkins, Jason E. Box, Xavier Fettweis, and Michiel R. van den Broeke
The Cryosphere, 10, 1965–1989, https://doi.org/10.5194/tc-10-1965-2016, https://doi.org/10.5194/tc-10-1965-2016, 2016
Short summary
Short summary
We investigate Greenland Ice Sheet mass change from 2003–2012 by comparing observations from GRACE with state-of-the-art atmospheric and ice sheet model simulations. We find that the largest discrepancies (in the northwest and southeast) are likely controlled by errors in modeled surface climate as well as ice–ocean interaction and hydrological processes (not included in the models). Models should consider such processes at monthly to seasonal resolutions in order to improve future projections.
Michiel R. van den Broeke, Ellyn M. Enderlin, Ian M. Howat, Peter Kuipers Munneke, Brice P. Y. Noël, Willem Jan van de Berg, Erik van Meijgaard, and Bert Wouters
The Cryosphere, 10, 1933–1946, https://doi.org/10.5194/tc-10-1933-2016, https://doi.org/10.5194/tc-10-1933-2016, 2016
Short summary
Short summary
We present recent (1958–2015) mass balance time series for the Greenland ice sheet. We show that recent mass loss is caused by a combination of increased surface meltwater runoff and solid ice discharge. Most meltwater above 2000 m a.s.l. refreezes in the cold firn and does not leave the ice sheet, but this goes at the expense of firn heating and densifying. In spite of a temporary rebound in 2013, it appears that the ice sheet remains in a state of persistent mass loss.
Zheng Xu, Ernst J. O. Schrama, Wouter van der Wal, Michiel van den Broeke, and Ellyn M. Enderlin
The Cryosphere, 10, 895–912, https://doi.org/10.5194/tc-10-895-2016, https://doi.org/10.5194/tc-10-895-2016, 2016
Short summary
Short summary
In this paper, we compare the regional mass changes of the Greenland ice sheet between the solutions based on GRACE data and input/output method. Differences are found in some regions and indicate errors in those solutions. Therefore we improve our GRACE and IOM solutions by applying a simulation. We show the improved regional mass changes approximations are more consistent in regions. The remaining difference in the northwester Greenland is due to the underestimated uncertainty in IOM solution.
Wenshan Wang, Charles S. Zender, Dirk van As, Paul C. J. P. Smeets, and Michiel R. van den Broeke
The Cryosphere, 10, 727–741, https://doi.org/10.5194/tc-10-727-2016, https://doi.org/10.5194/tc-10-727-2016, 2016
Short summary
Short summary
We identify and correct station-tilt-induced biases in insolation observed by automatic weather stations on the Greenland Ice Sheet. Without tilt correction, only 40 % of clear days have the correct solar noon time (±0.5 h). The largest hourly bias exceeds 20 %. We estimate the tilt angles based on solar geometric relationship between insolation observed on horizontal surfaces and that on tilted surfaces, and produce shortwave radiation and albedo that agree better with independent data sets.
Ioana S. Muresan, Shfaqat A. Khan, Andy Aschwanden, Constantine Khroulev, Tonie Van Dam, Jonathan Bamber, Michiel R. van den Broeke, Bert Wouters, Peter Kuipers Munneke, and Kurt H. Kjær
The Cryosphere, 10, 597–611, https://doi.org/10.5194/tc-10-597-2016, https://doi.org/10.5194/tc-10-597-2016, 2016
Short summary
Short summary
We use a regional 3-D outlet glacier model to simulate the behaviour of Jakobshavn Isbræ (JI) during 1990–2014. The model simulates two major accelerations in 1998 and 2003 that are consistent with observations. We find that most of the JI retreat during the simulated period is driven by the ocean parametrization used, and the glacier's subsequent response, which is largely governed by bed geometry. The study shows progress in modelling the temporal variability of the flow at JI.
J. M. van Wessem, S. R. M. Ligtenberg, C. H. Reijmer, W. J. van de Berg, M. R. van den Broeke, N. E. Barrand, E. R. Thomas, J. Turner, J. Wuite, T. A. Scambos, and E. van Meijgaard
The Cryosphere, 10, 271–285, https://doi.org/10.5194/tc-10-271-2016, https://doi.org/10.5194/tc-10-271-2016, 2016
Short summary
Short summary
This study presents the first high-resolution (5.5 km) modelled estimate of surface mass balance (SMB) over the period 1979–2014 for the Antarctic Peninsula (AP). Precipitation (snowfall and rain) largely determines the SMB, and is exceptionally high over the western mountain slopes, with annual values > 4 m water equivalent. Snowmelt is widespread over the AP, but only runs off into the ocean at some locations: the Larsen B,C, and Wilkins ice shelves, and along the north-western mountains.
C. Charalampidis, D. van As, J. E. Box, M. R. van den Broeke, W. T. Colgan, S. H. Doyle, A. L. Hubbard, M. MacFerrin, H. Machguth, and C. J. P. P. Smeets
The Cryosphere, 9, 2163–2181, https://doi.org/10.5194/tc-9-2163-2015, https://doi.org/10.5194/tc-9-2163-2015, 2015
P. Kuipers Munneke, S. R. M. Ligtenberg, B. P. Y. Noël, I. M. Howat, J. E. Box, E. Mosley-Thompson, J. R. McConnell, K. Steffen, J. T. Harper, S. B. Das, and M. R. van den Broeke
The Cryosphere, 9, 2009–2025, https://doi.org/10.5194/tc-9-2009-2015, https://doi.org/10.5194/tc-9-2009-2015, 2015
Short summary
Short summary
The snow layer on top of the Greenland Ice Sheet is changing: it is thickening in the high and cold interior due to increased snowfall, while it is thinning around the margins. The marginal thinning is caused by compaction, and by more melt.
This knowledge is important: there are satellites that measure volume change of the ice sheet. It can be caused by increased ice discharge, or by compaction of the snow layer. Here, we quantify the latter, so that we can translate volume to mass change.
B. Noël, W. J. van de Berg, E. van Meijgaard, P. Kuipers Munneke, R. S. W. van de Wal, and M. R. van den Broeke
The Cryosphere, 9, 1831–1844, https://doi.org/10.5194/tc-9-1831-2015, https://doi.org/10.5194/tc-9-1831-2015, 2015
Short summary
Short summary
We compare Greenland Ice Sheet surface mass balance (SMB) from the updated polar version of the regional climate model RACMO2.3 and the previous version 2.1. RACMO2.3 has an adjusted rainfall-to-snowfall conversion favouring summer snowfall over rainfall. Enhanced summer snowfall reduce melt rates in the ablation zone by covering dark ice with highly reflective fresh snow. This improves the modelled SMB-elevation gradient and surface energy balance compared to observations in west Greenland.
S. L. Cornford, D. F. Martin, A. J. Payne, E. G. Ng, A. M. Le Brocq, R. M. Gladstone, T. L. Edwards, S. R. Shannon, C. Agosta, M. R. van den Broeke, H. H. Hellmer, G. Krinner, S. R. M. Ligtenberg, R. Timmermann, and D. G. Vaughan
The Cryosphere, 9, 1579–1600, https://doi.org/10.5194/tc-9-1579-2015, https://doi.org/10.5194/tc-9-1579-2015, 2015
Short summary
Short summary
We used a high-resolution ice sheet model capable of resolving grounding line dynamics (BISICLES) to compute responses of the major West Antarctic ice streams to projections of ocean and atmospheric warming. This is computationally demanding, and although other groups have considered parts of West Antarctica, we think this is the first calculation for the whole region at the sub-kilometer resolution that we show is required.
S. de la Peña, I. M. Howat, P. W. Nienow, M. R. van den Broeke, E. Mosley-Thompson, S. F. Price, D. Mair, B. Noël, and A. J. Sole
The Cryosphere, 9, 1203–1211, https://doi.org/10.5194/tc-9-1203-2015, https://doi.org/10.5194/tc-9-1203-2015, 2015
Short summary
Short summary
This paper presents an assessment of changes in the near-surface structure of the accumulation zone of the Greenland Ice Sheet caused by an increase of melt at higher elevations in the last decade, especially during the unusually warm years of 2010 and 2012. The increase in melt and firn densification complicate the interpretation of changes in the ice volume, and the observed increase in firn ice content may reduce the important meltwater buffering capacity of the Greenland Ice Sheet.
R. S. W. van de Wal, C. J. P. P. Smeets, W. Boot, M. Stoffelen, R. van Kampen, S. H. Doyle, F. Wilhelms, M. R. van den Broeke, C. H. Reijmer, J. Oerlemans, and A. Hubbard
The Cryosphere, 9, 603–611, https://doi.org/10.5194/tc-9-603-2015, https://doi.org/10.5194/tc-9-603-2015, 2015
Short summary
Short summary
This paper addresses the feedback between ice flow and melt rates. Using 20 years of data covering the whole ablation area, we show that there is not a strong positive correlation between annual ice velocities and melt rates. Rapid variations around the equilibrium line indicate the possibility of rapid variations high on the ice sheet.
P. M. Alexander, M. Tedesco, X. Fettweis, R. S. W. van de Wal, C. J. P. P. Smeets, and M. R. van den Broeke
The Cryosphere, 8, 2293–2312, https://doi.org/10.5194/tc-8-2293-2014, https://doi.org/10.5194/tc-8-2293-2014, 2014
B. Noël, X. Fettweis, W. J. van de Berg, M. R. van den Broeke, and M. Erpicum
The Cryosphere, 8, 1871–1883, https://doi.org/10.5194/tc-8-1871-2014, https://doi.org/10.5194/tc-8-1871-2014, 2014
S. R. M. Ligtenberg, P. Kuipers Munneke, and M. R. van den Broeke
The Cryosphere, 8, 1711–1723, https://doi.org/10.5194/tc-8-1711-2014, https://doi.org/10.5194/tc-8-1711-2014, 2014
S. A. Khan, K. K. Kjeldsen, K. H. Kjær, S. Bevan, A. Luckman, A. Aschwanden, A. A. Bjørk, N. J. Korsgaard, J. E. Box, M. van den Broeke, T. M. van Dam, and A. Fitzner
The Cryosphere, 8, 1497–1507, https://doi.org/10.5194/tc-8-1497-2014, https://doi.org/10.5194/tc-8-1497-2014, 2014
H. Fréville, E. Brun, G. Picard, N. Tatarinova, L. Arnaud, C. Lanconelli, C. Reijmer, and M. van den Broeke
The Cryosphere, 8, 1361–1373, https://doi.org/10.5194/tc-8-1361-2014, https://doi.org/10.5194/tc-8-1361-2014, 2014
B. Medley, I. Joughin, B. E. Smith, S. B. Das, E. J. Steig, H. Conway, S. Gogineni, C. Lewis, A. S. Criscitiello, J. R. McConnell, M. R. van den Broeke, J. T. M. Lenaerts, D. H. Bromwich, J. P. Nicolas, and C. Leuschen
The Cryosphere, 8, 1375–1392, https://doi.org/10.5194/tc-8-1375-2014, https://doi.org/10.5194/tc-8-1375-2014, 2014
B. C. Gunter, O. Didova, R. E. M. Riva, S. R. M. Ligtenberg, J. T. M. Lenaerts, M. A. King, M. R. van den Broeke, and T. Urban
The Cryosphere, 8, 743–760, https://doi.org/10.5194/tc-8-743-2014, https://doi.org/10.5194/tc-8-743-2014, 2014
J. M. van Wessem, C. H. Reijmer, J. T. M. Lenaerts, W. J. van de Berg, M. R. van den Broeke, and E. van Meijgaard
The Cryosphere, 8, 125–135, https://doi.org/10.5194/tc-8-125-2014, https://doi.org/10.5194/tc-8-125-2014, 2014
I. Sasgen, H. Konrad, E. R. Ivins, M. R. Van den Broeke, J. L. Bamber, Z. Martinec, and V. Klemann
The Cryosphere, 7, 1499–1512, https://doi.org/10.5194/tc-7-1499-2013, https://doi.org/10.5194/tc-7-1499-2013, 2013
A. K. Rennermalm, L. C. Smith, V. W. Chu, J. E. Box, R. R. Forster, M. R. Van den Broeke, D. Van As, and S. E. Moustafa
The Cryosphere, 7, 1433–1445, https://doi.org/10.5194/tc-7-1433-2013, https://doi.org/10.5194/tc-7-1433-2013, 2013
M. M. Helsen, W. J. van de Berg, R. S. W. van de Wal, M. R. van den Broeke, and J. Oerlemans
Clim. Past, 9, 1773–1788, https://doi.org/10.5194/cp-9-1773-2013, https://doi.org/10.5194/cp-9-1773-2013, 2013
I. Joughin, S. B. Das, G. E. Flowers, M. D. Behn, R. B. Alley, M. A. King, B. E. Smith, J. L. Bamber, M. R. van den Broeke, and J. H. van Angelen
The Cryosphere, 7, 1185–1192, https://doi.org/10.5194/tc-7-1185-2013, https://doi.org/10.5194/tc-7-1185-2013, 2013
W. J. van de Berg, M. R. van den Broeke, E. van Meijgaard, and F. Kaspar
Clim. Past, 9, 1589–1600, https://doi.org/10.5194/cp-9-1589-2013, https://doi.org/10.5194/cp-9-1589-2013, 2013
C. L. Vernon, J. L. Bamber, J. E. Box, M. R. van den Broeke, X. Fettweis, E. Hanna, and P. Huybrechts
The Cryosphere, 7, 599–614, https://doi.org/10.5194/tc-7-599-2013, https://doi.org/10.5194/tc-7-599-2013, 2013
X. Fettweis, B. Franco, M. Tedesco, J. H. van Angelen, J. T. M. Lenaerts, M. R. van den Broeke, and H. Gallée
The Cryosphere, 7, 469–489, https://doi.org/10.5194/tc-7-469-2013, https://doi.org/10.5194/tc-7-469-2013, 2013
I. M. Howat, S. de la Peña, J. H. van Angelen, J. T. M. Lenaerts, and M. R. van den Broeke
The Cryosphere, 7, 201–204, https://doi.org/10.5194/tc-7-201-2013, https://doi.org/10.5194/tc-7-201-2013, 2013
M. M. Helsen, R. S. W. van de Wal, M. R. van den Broeke, W. J. van de Berg, and J. Oerlemans
The Cryosphere, 6, 255–272, https://doi.org/10.5194/tc-6-255-2012, https://doi.org/10.5194/tc-6-255-2012, 2012
M. R. van den Broeke, C. J. P. P. Smeets, and R. S. W. van de Wal
The Cryosphere, 5, 377–390, https://doi.org/10.5194/tc-5-377-2011, https://doi.org/10.5194/tc-5-377-2011, 2011
M. A. G. den Ouden, C. H. Reijmer, V. Pohjola, R. S. W. van de Wal, J. Oerlemans, and W. Boot
The Cryosphere, 4, 593–604, https://doi.org/10.5194/tc-4-593-2010, https://doi.org/10.5194/tc-4-593-2010, 2010
M. van den Broeke, P. Smeets, J. Ettema, C. van der Veen, R. van de Wal, and J. Oerlemans
The Cryosphere, 2, 179–189, https://doi.org/10.5194/tc-2-179-2008, https://doi.org/10.5194/tc-2-179-2008, 2008
Related subject area
Field Studies
Spectral induced polarization imaging to monitor seasonal and annual dynamics of frozen ground at a mountain permafrost site in the Italian Alps
Spatially distributed snow depth, bulk density, and snow water equivalent from ground-based and airborne sensor integration at Grand Mesa, Colorado, USA
Assessing the key concerns in snow storage: a case study for China
Sea ice melt pond bathymetry reconstructed from aerial photographs using photogrammetry: a new method applied to MOSAiC data
Observations and modeling of areal surface albedo and surface types in the Arctic
Ice plate deformation and cracking revealed by an in situ-distributed acoustic sensing array
Brief communication: Alternation of thaw zones and deep permafrost in the cold climate conditions of the East Siberian Mountains, Suntar-Khayata Range
Monitoring glacier calving using underwater sound
Brief communication: Measuring and modelling the ice thickness of the Grigoriev ice cap (Kyrgyzstan) and comparison with global datasets
Elucidation of Spatiotemporal structures from high-resolution blowing snow observations
A field study on ice melting and breakup in a boreal lake, Pääjärvi, in Finland
Brief communication: Combining borehole temperature, borehole piezometer and cross-borehole electrical resistivity tomography measurements to investigate seasonal changes in ice-rich mountain permafrost
Geophysical measurements of the southernmost microglacier in Europe suggest permafrost occurrence in the Pirin Mountains (Bulgaria)
Thickness of multi-year sea ice on the northern Canadian polar shelf: a second look after 40 years
Spectral induced polarization imaging to investigate an ice-rich mountain permafrost site in Switzerland
Contrasting geophysical signatures of a relict and an intact Andean rock glacier
Rapid and accurate polarimetric radar measurements of ice crystal fabric orientation at the Western Antarctic Ice Sheet (WAIS) Divide ice core site
Ground-penetrating radar imaging reveals glacier's drainage network in 3D
Evaluating a prediction system for snow management
A portable lightweight in situ analysis (LISA) box for ice and snow analysis
Downhole distributed acoustic seismic profiling at Skytrain Ice Rise, West Antarctica
Implications of surface flooding on airborne estimates of snow depth on sea ice
Deciphering the evolution of the Bleis Marscha rock glacier (Val d'Err, eastern Switzerland) with cosmogenic nuclide exposure dating, aerial image correlation, and finite element modeling
First investigation of perennial ice in Winter Wonderland Cave, Uinta Mountains, Utah, USA
A low-cost method for monitoring snow characteristics at remote field sites
Soil respiration of alpine meadow is controlled by freeze–thaw processes of active layer in the permafrost region of the Qinghai–Tibet Plateau
The RHOSSA campaign: multi-resolution monitoring of the seasonal evolution of the structure and mechanical stability of an alpine snowpack
On the Green's function emergence from interferometry of seismic wave fields generated in high-melt glaciers: implications for passive imaging and monitoring
Glacier algae accelerate melt rates on the south-western Greenland Ice Sheet
Revisiting Austfonna, Svalbard, with potential field methods – a new characterization of the bed topography and its physical properties
Measurement of specific surface area of fresh solid precipitation particles in heavy snowfall regions of Japan
The evolution of snow bedforms in the Colorado Front Range and the processes that shape them
Supraglacial debris thickness variability: impact on ablation and relation to terrain properties
Pore morphology of polar firn around closure revealed by X-ray tomography
Estimating the snow water equivalent on a glacierized high elevation site (Forni Glacier, Italy)
Snowmobile impacts on snowpack physical and mechanical properties
In situ nuclear magnetic resonance response of permafrost and active layer soil in boreal and tundra ecosystems
Climate change threatens archaeologically significant ice patches: insights into their age, internal structure, mass balance and climate sensitivity
Scaling-up permafrost thermal measurements in western Alaska using an ecotype approach
Ground penetrating radar detection of subsnow slush on ice-covered lakes in interior Alaska
Stand-alone single-frequency GPS ice velocity observations on Nordenskiöldbreen, Svalbard
Theresa Maierhofer, Adrian Flores Orozco, Nathalie Roser, Jonas K. Limbrock, Christin Hilbich, Clemens Moser, Andreas Kemna, Elisabetta Drigo, Umberto Morra di Cella, and Christian Hauck
The Cryosphere, 18, 3383–3414, https://doi.org/10.5194/tc-18-3383-2024, https://doi.org/10.5194/tc-18-3383-2024, 2024
Short summary
Short summary
In this study, we apply an electrical method in a high-mountain permafrost terrain in the Italian Alps, where long-term borehole temperature data are available for validation. In particular, we investigate the frequency dependence of the electrical properties for seasonal and annual variations along a 3-year monitoring period. We demonstrate that our method is capable of resolving temporal changes in the thermal state and the ice / water ratio associated with seasonal freeze–thaw processes.
Tate G. Meehan, Ahmad Hojatimalekshah, Hans-Peter Marshall, Elias J. Deeb, Shad O'Neel, Daniel McGrath, Ryan W. Webb, Randall Bonnell, Mark S. Raleigh, Christopher Hiemstra, and Kelly Elder
The Cryosphere, 18, 3253–3276, https://doi.org/10.5194/tc-18-3253-2024, https://doi.org/10.5194/tc-18-3253-2024, 2024
Short summary
Short summary
Snow water equivalent (SWE) is a critical parameter for yearly water supply forecasting and can be calculated by multiplying the snow depth by the snow density. We combined high-spatial-resolution snow depth information with ground-based radar measurements to solve for snow density. Extrapolated density estimates over our study area resolved detailed patterns that agree with the known interactions of snow with wind, terrain, and vegetation and were utilized in the calculation of SWE.
Xing Wang, Feiteng Wang, Jiawen Ren, Dahe Qin, and Huilin Li
The Cryosphere, 18, 3017–3031, https://doi.org/10.5194/tc-18-3017-2024, https://doi.org/10.5194/tc-18-3017-2024, 2024
Short summary
Short summary
This work addresses snow storage at sports facilities in China. The snow pile at Big Air Shougang (BAS) lost 158.6 m3 snow (6.7 %) during pre-competition and Winter Olympic competition days in winter 2022. There were no significant variations in the snow quality of the snow piles at BAS and the National Biathlon Center except for in the upper part of the snow piles. The 0.7 and 0.4 m thick cover layers protected half the snow height over the summer at Beijing and Chongli, respectively.
Niels Fuchs, Luisa von Albedyll, Gerit Birnbaum, Felix Linhardt, Natascha Oppelt, and Christian Haas
The Cryosphere, 18, 2991–3015, https://doi.org/10.5194/tc-18-2991-2024, https://doi.org/10.5194/tc-18-2991-2024, 2024
Short summary
Short summary
Melt ponds are key components of the Arctic sea ice system, yet methods to derive comprehensive pond depth data are missing. We present a shallow-water bathymetry retrieval to derive this elementary pond property at high spatial resolution from aerial images. The retrieval method is presented in a user-friendly way to facilitate replication. Furthermore, we provide pond properties on the MOSAiC expedition floe, giving insights into the three-dimensional pond evolution before and after drainage.
Evelyn Jäkel, Sebastian Becker, Tim R. Sperzel, Hannah Niehaus, Gunnar Spreen, Ran Tao, Marcel Nicolaus, Wolfgang Dorn, Annette Rinke, Jörg Brauchle, and Manfred Wendisch
The Cryosphere, 18, 1185–1205, https://doi.org/10.5194/tc-18-1185-2024, https://doi.org/10.5194/tc-18-1185-2024, 2024
Short summary
Short summary
The results of the surface albedo scheme of a coupled regional climate model were evaluated against airborne and ground-based measurements conducted in the European Arctic in different seasons between 2017 and 2022. We found a seasonally dependent bias between measured and modeled surface albedo for cloudless and cloudy situations. The strongest effects of the albedo model bias on the net irradiance were most apparent in the presence of optically thin clouds.
Jun Xie, Xiangfang Zeng, Chao Liang, Sidao Ni, Risheng Chu, Feng Bao, Rongbing Lin, Benxin Chi, and Hao Lv
The Cryosphere, 18, 837–847, https://doi.org/10.5194/tc-18-837-2024, https://doi.org/10.5194/tc-18-837-2024, 2024
Short summary
Short summary
Seismology can help study the mechanism of disintegration of floating ice plates. We conduct a seismic experiment on a frozen lake using a distributed acoustic sensing array. Icequakes and low-frequency events are detected with an artificial intelligence method. Our study demonstrates the merit of distributed acoustic sensing array in illuminating the internal failure process and properties of the ice shelf, which eventually contributes to the understanding and prediction of ice shelf collapse.
Robert Sysolyatin, Sergei Serikov, Anatoly Kirillin, Andrey Litovko, and Maxim Sivtsev
The Cryosphere, 17, 4601–4608, https://doi.org/10.5194/tc-17-4601-2023, https://doi.org/10.5194/tc-17-4601-2023, 2023
Short summary
Short summary
Permafrost conditions of the East Siberian Mountains are poorly known because of the severe climate, extreme terrain, and farness and scarcity of data. The ground temperature regime plays a key role in mountainous regions, influencing the environment, slope stability, geomorphological processes and hydrological processes. We present the results of recent examinations of the permafrost thickness variations, temperature regime of thaw zones (taliks) and permafrost of the Suntar-Khayata Range.
Jarosław Tęgowski, Oskar Glowacki, Michał Ciepły, Małgorzata Błaszczyk, Jacek Jania, Mateusz Moskalik, Philippe Blondel, and Grant B. Deane
The Cryosphere, 17, 4447–4461, https://doi.org/10.5194/tc-17-4447-2023, https://doi.org/10.5194/tc-17-4447-2023, 2023
Short summary
Short summary
Receding tidewater glaciers are important contributors to sea level rise. Understanding their dynamics and developing models for their attrition has become a matter of global concern. Long-term monitoring of glacier frontal ablation is very difficult. Here we show for the first time that calving fluxes can be estimated from the underwater sounds made by icebergs impacting the sea surface. This development has important application to understanding the response of glaciers to warming oceans.
Lander Van Tricht, Chloë Marie Paice, Oleg Rybak, and Philippe Huybrechts
The Cryosphere, 17, 4315–4323, https://doi.org/10.5194/tc-17-4315-2023, https://doi.org/10.5194/tc-17-4315-2023, 2023
Short summary
Short summary
We performed a field campaign to measure the ice thickness of the Grigoriev ice cap (Central Asia). We interpolated the ice thickness data to obtain an ice thickness distribution representing the state of the ice cap in 2021, with a total volume of ca. 0.4 km3. We then compared our results with global ice thickness datasets composed without our local measurements. The main takeaway is that these datasets do not perform well enough yet for ice caps such as the Grigoriev ice cap.
Kouichi Nishimura, Masaki Nemoto, Yoichi Ito, Satoru Omiya, Kou Shimoyama, and Hirofumi Niiya
EGUsphere, https://doi.org/10.5194/egusphere-2023-1845, https://doi.org/10.5194/egusphere-2023-1845, 2023
Short summary
Short summary
It is crucial to consider organized structures such as turbulence sweeps and ejections when discussing the onset and development of snow transport. This study aims to systematically measure blowing and drifting snow to investigate their spatiotemporal structures. To achieve this goal, we have deployed fifteen Snow Particle Counters (SPCs) in designated test areas and are conducting measurements using an equal number of ultrasonic anemometers, providing high temporal resolution data.
Yaodan Zhang, Marta Fregona, John Loehr, Joonatan Ala-Könni, Shuang Song, Matti Leppäranta, and Zhijun Li
The Cryosphere, 17, 2045–2058, https://doi.org/10.5194/tc-17-2045-2023, https://doi.org/10.5194/tc-17-2045-2023, 2023
Short summary
Short summary
There are few detailed studies during the ice decay period, primarily because in situ observations during decay stages face enormous challenges due to safety issues. In the present work, ice monitoring was based on foot, hydrocopter, and boat to get a full time series of the evolution of ice structure and geochemical properties. We argue that the rapid changes in physical and geochemical properties of ice have an important influence on regional climate and the ecological environment under ice.
Marcia Phillips, Chasper Buchli, Samuel Weber, Jacopo Boaga, Mirko Pavoni, and Alexander Bast
The Cryosphere, 17, 753–760, https://doi.org/10.5194/tc-17-753-2023, https://doi.org/10.5194/tc-17-753-2023, 2023
Short summary
Short summary
A new combination of temperature, water pressure and cross-borehole electrical resistivity data is used to investigate ice/water contents in an ice-rich rock glacier. The landform is close to 0°C and has locally heterogeneous characteristics, ice/water contents and temperatures. The techniques presented continuously monitor temporal and spatial phase changes to a depth of 12 m and provide the basis for a better understanding of accelerating rock glacier movements and future water availability.
Gergana Georgieva, Christian Tzankov, and Atanas Kisyov
The Cryosphere, 16, 4847–4863, https://doi.org/10.5194/tc-16-4847-2022, https://doi.org/10.5194/tc-16-4847-2022, 2022
Short summary
Short summary
The southernmost microglacier in Europe is Snezhnika in the Pirin Mountains, Bulgaria. We use geophysical methods to investigate its thickness and the subsurface structure beneath it. While its size has been well monitored for more than 20 years, information about its thickness is poor. Our results show the presence of ice-rich permafrost near Snezhnika, which was observed in 3 consecutive years. Our results provide important information on the extent and the state of permafrost in Bulgaria.
Humfrey Melling
The Cryosphere, 16, 3181–3197, https://doi.org/10.5194/tc-16-3181-2022, https://doi.org/10.5194/tc-16-3181-2022, 2022
Short summary
Short summary
The Canadian polar shelf has the world’s thickest old sea ice. Its islands impede ice drift to warmer seas. The first year of data from up-looking sonar viewing this shelf’s ice reveal that thick (> 3 m) old ice remains plentiful here, in contrast to its growing scarcity elsewhere. Arctic circulation continues to pack ice against the islands and during storms to create by ridging the very thick ice found here. This study reveals the importance of ridging to the mass balance of Arctic sea ice.
Theresa Maierhofer, Christian Hauck, Christin Hilbich, Andreas Kemna, and Adrián Flores-Orozco
The Cryosphere, 16, 1903–1925, https://doi.org/10.5194/tc-16-1903-2022, https://doi.org/10.5194/tc-16-1903-2022, 2022
Short summary
Short summary
We extend the application of electrical methods to characterize alpine permafrost using the so-called induced polarization (IP) effect associated with the storage of charges at the interface between liquid and solid phases. We investigate different field protocols to enhance data quality and conclude that with appropriate measurement and processing procedures, the characteristic dependence of the IP response of frozen rocks improves the assessment of thermal state and ice content in permafrost.
Giulia de Pasquale, Rémi Valois, Nicole Schaffer, and Shelley MacDonell
The Cryosphere, 16, 1579–1596, https://doi.org/10.5194/tc-16-1579-2022, https://doi.org/10.5194/tc-16-1579-2022, 2022
Short summary
Short summary
We presented a geophysical study of one intact and one relict rock glacier in semi-arid Chile. The interpretation of the collected data through different methods identifies geophysical signature differences between the two rock glaciers and characterizes their subsurface structure and composition. This is of great importance because of rock glaciers' relevant role in freshwater production, transfer and storage, especially in this area of increasing human pressure and high rainfall variability.
Tun Jan Young, Carlos Martín, Poul Christoffersen, Dustin M. Schroeder, Slawek M. Tulaczyk, and Eliza J. Dawson
The Cryosphere, 15, 4117–4133, https://doi.org/10.5194/tc-15-4117-2021, https://doi.org/10.5194/tc-15-4117-2021, 2021
Short summary
Short summary
If the molecules that make up ice are oriented in specific ways, the ice becomes softer and enhances flow. We use radar to measure the orientation of ice molecules in the top 1400 m of the Western Antarctic Ice Sheet Divide. Our results match those from an ice core extracted 10 years ago and conclude that the ice flow has not changed direction for the last 6700 years. Our methods are straightforward and accurate and can be applied in places across ice sheets unsuitable for ice coring.
Gregory Church, Andreas Bauder, Melchior Grab, and Hansruedi Maurer
The Cryosphere, 15, 3975–3988, https://doi.org/10.5194/tc-15-3975-2021, https://doi.org/10.5194/tc-15-3975-2021, 2021
Short summary
Short summary
In this field study, we acquired a 3D radar survey over an active drainage network that transported meltwater through a Swiss glacier. We successfully imaged both englacial and subglacial pathways and were able to confirm long-standing glacier hydrology theory regarding meltwater pathways. The direction of these meltwater pathways directly impacts the glacier's velocity, and therefore more insightful field observations are needed in order to improve our understanding of this complex system.
Pirmin Philipp Ebner, Franziska Koch, Valentina Premier, Carlo Marin, Florian Hanzer, Carlo Maria Carmagnola, Hugues François, Daniel Günther, Fabiano Monti, Olivier Hargoaa, Ulrich Strasser, Samuel Morin, and Michael Lehning
The Cryosphere, 15, 3949–3973, https://doi.org/10.5194/tc-15-3949-2021, https://doi.org/10.5194/tc-15-3949-2021, 2021
Short summary
Short summary
A service to enable real-time optimization of grooming and snow-making at ski resorts was developed and evaluated using both GNSS-measured snow depth and spaceborne snow maps derived from Copernicus Sentinel-2. The correlation to the ground observation data was high. Potential sources for the overestimation of the snow depth by the simulations are mainly the impact of snow redistribution by skiers, compensation of uneven terrain, or spontaneous local adaptions of the snow management.
Helle Astrid Kjær, Lisa Lolk Hauge, Marius Simonsen, Zurine Yoldi, Iben Koldtoft, Maria Hörhold, Johannes Freitag, Sepp Kipfstuhl, Anders Svensson, and Paul Vallelonga
The Cryosphere, 15, 3719–3730, https://doi.org/10.5194/tc-15-3719-2021, https://doi.org/10.5194/tc-15-3719-2021, 2021
Short summary
Short summary
Ice core analyses are often done in home laboratories after costly transport of samples from the field. This limits the amount of sample that can be analysed.
Here, we present the first truly field-portable continuous flow analysis (CFA) system for the analysis of impurities in snow, firn and ice cores while still in the field: the lightweight in situ analysis (LISA) box.
LISA is demonstrated in Greenland to reconstruct accumulation, conductivity and peroxide in snow cores.
Alex M. Brisbourne, Michael Kendall, Sofia-Katerina Kufner, Thomas S. Hudson, and Andrew M. Smith
The Cryosphere, 15, 3443–3458, https://doi.org/10.5194/tc-15-3443-2021, https://doi.org/10.5194/tc-15-3443-2021, 2021
Short summary
Short summary
How ice sheets flowed in the past is written into the structure and texture of the ice sheet itself. Measuring this structure and properties of the ice can help us understand the recent behaviour of the ice sheets. We use a relatively new technique, not previously attempted in Antarctica, to measure the seismic vibrations of a fibre optic cable down a borehole. We demonstrate the potential of this technique to unravel past ice flow and see hints of these complex signals from the ice flow itself.
Anja Rösel, Sinead Louise Farrell, Vishnu Nandan, Jaqueline Richter-Menge, Gunnar Spreen, Dmitry V. Divine, Adam Steer, Jean-Charles Gallet, and Sebastian Gerland
The Cryosphere, 15, 2819–2833, https://doi.org/10.5194/tc-15-2819-2021, https://doi.org/10.5194/tc-15-2819-2021, 2021
Short summary
Short summary
Recent observations in the Arctic suggest a significant shift towards a snow–ice regime caused by deep snow on thin sea ice which may result in a flooding of the snowpack. These conditions cause the brine wicking and saturation of the basal snow layers which lead to a subsequent underestimation of snow depth from snow radar mesurements. As a consequence the calculated sea ice thickness will be biased towards higher values.
Dominik Amschwand, Susan Ivy-Ochs, Marcel Frehner, Olivia Steinemann, Marcus Christl, and Christof Vockenhuber
The Cryosphere, 15, 2057–2081, https://doi.org/10.5194/tc-15-2057-2021, https://doi.org/10.5194/tc-15-2057-2021, 2021
Short summary
Short summary
We reconstruct the Holocene history of the Bleis Marscha rock glacier (eastern Swiss Alps) by determining the surface residence time of boulders via their exposure to cosmic rays. We find that this stack of lobes formed in three phases over the last ~9000 years, controlled by the regional climate. This work adds to our understanding of how these permafrost landforms reacted in the past to climate oscillations and helps to put the current behavior of rock glaciers in a long-term perspective.
Jeffrey S. Munroe
The Cryosphere, 15, 863–881, https://doi.org/10.5194/tc-15-863-2021, https://doi.org/10.5194/tc-15-863-2021, 2021
Short summary
Short summary
This study investigated a cave in Utah (USA) that contains a deposit of perennial ice. Such ice caves are important sources of information about past climate and are currently threatened by rising temperatures. The origin (precipitation), thickness (3 m), and age (several centuries) of the ice were constrained by a variety of methods. Liquid water recently entered the cave for the first time in many years, suggesting a destabilization of the cave environment.
Rosamond J. Tutton and Robert G. Way
The Cryosphere, 15, 1–15, https://doi.org/10.5194/tc-15-1-2021, https://doi.org/10.5194/tc-15-1-2021, 2021
Short summary
Short summary
Snow cover is critical to everyday life for people around the globe. Regular measurements of snow cover usually occur only in larger communities because snow monitoring equipment is costly. In this study, we developed a new low-cost method for estimating snow depth and tested it continuously for 1 year at six remote field locations in coastal Labrador, Canada. Field testing suggests that this new method provides a promising option for researchers in need of a low-cost snow measurement system.
Junfeng Wang, Qingbai Wu, Ziqiang Yuan, and Hojeong Kang
The Cryosphere, 14, 2835–2848, https://doi.org/10.5194/tc-14-2835-2020, https://doi.org/10.5194/tc-14-2835-2020, 2020
Short summary
Short summary
The active layer, a buffer between permafrost and the atmosphere, is more sensitive and responds more quickly to climate change. How the freeze–thaw action at different stages regulates carbon emissions is still unclear. We conducted 2-year continuous in situ measurements in an alpine meadow permafrost ecosystem in the Qinghai–Tibet Plateau and found the freeze–thaw process modified the Rs dynamics differently in different stages. Results suggest great changes in freeze–thaw process patterns.
Neige Calonne, Bettina Richter, Henning Löwe, Cecilia Cetti, Judith ter Schure, Alec Van Herwijnen, Charles Fierz, Matthias Jaggi, and Martin Schneebeli
The Cryosphere, 14, 1829–1848, https://doi.org/10.5194/tc-14-1829-2020, https://doi.org/10.5194/tc-14-1829-2020, 2020
Short summary
Short summary
During winter 2015–2016, the standard program to monitor the structure and stability of the snowpack at Weissflujoch, Swiss Alps, was complemented by additional measurements to compare between various traditional and newly developed techniques. Snow micro-penetrometer measurements allowed monitoring of the evolution of the snowpack's internal structure at a daily resolution throughout the winter. We show the potential of such high-resolution data for detailed evaluations of snowpack models.
Amandine Sergeant, Małgorzata Chmiel, Fabian Lindner, Fabian Walter, Philippe Roux, Julien Chaput, Florent Gimbert, and Aurélien Mordret
The Cryosphere, 14, 1139–1171, https://doi.org/10.5194/tc-14-1139-2020, https://doi.org/10.5194/tc-14-1139-2020, 2020
Short summary
Short summary
This study explores the capacity to apply ambient noise interferometry to passive seismic recordings in glaciers. Green's function between two seismometers represents the impulse response of the elastic medium. It can be approximated from cross-correlation of random seismic wave fields. For glaciers, its recovery is notoriously difficult due to weak ice seismic scattering. We propose three methods to bridge the gap and show the potential for passive seismic imaging and monitoring of glaciers.
Joseph M. Cook, Andrew J. Tedstone, Christopher Williamson, Jenine McCutcheon, Andrew J. Hodson, Archana Dayal, McKenzie Skiles, Stefan Hofer, Robert Bryant, Owen McAree, Andrew McGonigle, Jonathan Ryan, Alexandre M. Anesio, Tristram D. L. Irvine-Fynn, Alun Hubbard, Edward Hanna, Mark Flanner, Sathish Mayanna, Liane G. Benning, Dirk van As, Marian Yallop, James B. McQuaid, Thomas Gribbin, and Martyn Tranter
The Cryosphere, 14, 309–330, https://doi.org/10.5194/tc-14-309-2020, https://doi.org/10.5194/tc-14-309-2020, 2020
Short summary
Short summary
Melting of the Greenland Ice Sheet (GrIS) is a major source of uncertainty for sea level rise projections. Ice-darkening due to the growth of algae has been recognized as a potential accelerator of melting. This paper measures and models the algae-driven ice melting and maps the algae over the ice sheet for the first time. We estimate that as much as 13 % total runoff from the south-western GrIS can be attributed to these algae, showing that they must be included in future mass balance models.
Marie-Andrée Dumais and Marco Brönner
The Cryosphere, 14, 183–197, https://doi.org/10.5194/tc-14-183-2020, https://doi.org/10.5194/tc-14-183-2020, 2020
Short summary
Short summary
The subglacial bed of Austfonna is investigated using potential field methods. Airborne gravity data provide a new bed topography, improving on the traditional ground-penetrating radar measurements. Combined with airborne magnetic data, a 2-D forward model reveals the heterogeneity of the subsurface lithology and the physical properties of the bed. Our approach also assesses the presence of softer bed, carbonates and magmatic intrusions under Austfonna, which contribute to subglacial processes.
Satoru Yamaguchi, Masaaki Ishizaka, Hiroki Motoyoshi, Sent Nakai, Vincent Vionnet, Teruo Aoki, Katsuya Yamashita, Akihiro Hashimoto, and Akihiro Hachikubo
The Cryosphere, 13, 2713–2732, https://doi.org/10.5194/tc-13-2713-2019, https://doi.org/10.5194/tc-13-2713-2019, 2019
Short summary
Short summary
The specific surface area (SSA) of solid precipitation particles (PPs) includes detailed information of PP. This work is based on field measurement of SSA of PPs in Nagaoka, the city with the heaviest snowfall in Japan. The values of SSA strongly depend on wind speed (WS) and wet-bulb temperature (Tw) on the ground. An equation to empirically estimate the SSA of fresh PPs with WS and Tw was established and the equation successfully reproduced the fluctuation of SSA in Nagaoka.
Kelly Kochanski, Robert S. Anderson, and Gregory E. Tucker
The Cryosphere, 13, 1267–1281, https://doi.org/10.5194/tc-13-1267-2019, https://doi.org/10.5194/tc-13-1267-2019, 2019
Short summary
Short summary
Wind-blown snow does not lie flat. It forms dunes, ripples, and anvil-shaped sastrugi. These features ornament much of the snow on Earth and change the snow's effects on polar climates, but they have rarely been studied. We spent three winters watching snow move through the Colorado Front Range and present our findings here, including the first time-lapse videos of snow dune and sastrugi growth.
Lindsey I. Nicholson, Michael McCarthy, Hamish D. Pritchard, and Ian Willis
The Cryosphere, 12, 3719–3734, https://doi.org/10.5194/tc-12-3719-2018, https://doi.org/10.5194/tc-12-3719-2018, 2018
Short summary
Short summary
Ground-penetrating radar of supraglacial debris thickness is used to study local thickness variability. Freshly emergent debris cover appears to have higher skewness and kurtosis than more mature debris covers. Accounting for debris thickness variability in ablation models can result in markedly different ice ablation than is calculated using the mean debris thickness. Slope stability modelling reveals likely locations for locally thin debris with high ablation.
Alexis Burr, Clément Ballot, Pierre Lhuissier, Patricia Martinerie, Christophe L. Martin, and Armelle Philip
The Cryosphere, 12, 2481–2500, https://doi.org/10.5194/tc-12-2481-2018, https://doi.org/10.5194/tc-12-2481-2018, 2018
Short summary
Short summary
Three-dimensional imaging of the pore network of polar firn from Antarctica was realized in order to relate the morphological evolution of pores with their progressive closure with depth. Evaluating the closed porosity was found to be very dependent on the size of samples and image reconstructions. A connectivity index, which is a parameter less dependent on such issues, was proposed and proved to accurately predict the close-off depths and densities of two polar sites.
Antonella Senese, Maurizio Maugeri, Eraldo Meraldi, Gian Pietro Verza, Roberto Sergio Azzoni, Chiara Compostella, and Guglielmina Diolaiuti
The Cryosphere, 12, 1293–1306, https://doi.org/10.5194/tc-12-1293-2018, https://doi.org/10.5194/tc-12-1293-2018, 2018
Short summary
Short summary
We present and compare 11 years of snow data measured by an automatic weather station and corroborated by data from field campaigns on the Forni Glacier in Italy. The methodology we present is interesting for remote locations such as glaciers or high alpine regions, as it makes it possible to estimate the total snow water equivalent (SWE) using a relatively inexpensive, low-power, low-maintenance, and reliable instrument such as the sonic ranger.
Steven R. Fassnacht, Jared T. Heath, Niah B. H. Venable, and Kelly J. Elder
The Cryosphere, 12, 1121–1135, https://doi.org/10.5194/tc-12-1121-2018, https://doi.org/10.5194/tc-12-1121-2018, 2018
Short summary
Short summary
We conducted a series of experiments to determine how snowpack properties change with varying snowmobile traffic. Experiments were initiated at a shallow (30 cm) and deep (120 cm) snow depth at two locations. Except for initiation at 120 cm, snowmobiles significantly changed the density, hardness, ram resistance, and basal layer crystal size. Temperature was not changed. A density change model was developed and tested. The results inform management of lands with snowmobile traffic.
M. Andy Kass, Trevor P. Irons, Burke J. Minsley, Neal J. Pastick, Dana R. N. Brown, and Bruce K. Wylie
The Cryosphere, 11, 2943–2955, https://doi.org/10.5194/tc-11-2943-2017, https://doi.org/10.5194/tc-11-2943-2017, 2017
Short summary
Short summary
Geophysical methods have wide applications to permafrost studies. We show that borehole nuclear magnetic resonance is a valuable geophysical tool to rapidly characterize the liquid water content and unfrozen pore space in warm permafrost through simulation and field study. This technique is also sensitive to the ice nucleation process in situ. This method, which is applicable in a variety of soil types, can be used for single observations or for time-lapse monitoring of permafrost changes.
Rune Strand Ødegård, Atle Nesje, Ketil Isaksen, Liss Marie Andreassen, Trond Eiken, Margit Schwikowski, and Chiara Uglietti
The Cryosphere, 11, 17–32, https://doi.org/10.5194/tc-11-17-2017, https://doi.org/10.5194/tc-11-17-2017, 2017
Short summary
Short summary
Despite numerous spectacular archaeological discoveries worldwide related to melting ice, governing processes related to ice patch development are still largely unexplored. We present new results from Jotunheimen in central southern Norway showing that the Juvfonne ice patch has existed continuously since ca. 7600 cal years BP. This is the oldest dating of ice in mainland Norway. Moss mats along the margin of Juvfonne in 2014 were covered by the expanding ice patch about 2000 years ago.
William L. Cable, Vladimir E. Romanovsky, and M. Torre Jorgenson
The Cryosphere, 10, 2517–2532, https://doi.org/10.5194/tc-10-2517-2016, https://doi.org/10.5194/tc-10-2517-2016, 2016
Short summary
Short summary
Permafrost temperatures in Alaska are increasing, yet in many areas we lack data needed to assess future changes and potential risks. In this paper we show that classifying the landscape into landcover types is an effective way to scale up permafrost temperature data collected from field monitoring sites. Based on these results, a map of mean annual ground temperature ranges at 1 m depth was produced. The map should be useful for land use decision making and identifying potential risk areas.
A. Gusmeroli and G. Grosse
The Cryosphere, 6, 1435–1443, https://doi.org/10.5194/tc-6-1435-2012, https://doi.org/10.5194/tc-6-1435-2012, 2012
M. A. G. den Ouden, C. H. Reijmer, V. Pohjola, R. S. W. van de Wal, J. Oerlemans, and W. Boot
The Cryosphere, 4, 593–604, https://doi.org/10.5194/tc-4-593-2010, https://doi.org/10.5194/tc-4-593-2010, 2010
Cited articles
Bintanja, R.: Snowdrift suspension and atmospheric turbulence, Part 1: Theoretical background and model description, Bound.-Lay. Meteorol., 95, 343–368, 2000.
Bougamont, M., Bamber, J. L., and Greuell, W.: A surface mass balance model for the Greenland Ice Sheet, J. Geophys. Res., 110, F04018, https://doi.org/10.1029/2005JF000348, 2005.
Budd, W. F., Dingle, W. R. J., and Radok, U.: The B}yrd Snowdrift Project: Outline and Basic Results, vol. 9 of {Antarctic research series, AGU, 1966.
Cierco, F.-X., Naaim-Bouvet, F., and Bellot, H.: Acoustic sensors for snowdrift measurements: how should they be used for research purposes?, Cold. Reg. Sci. Technol., 49, 74–87, https://doi.org/10.1016/j.coldregions.2007.01.002, 2007.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Déry, S. J. and Yau, M. K.: A bulk blowing snow model, Bound.-Lay. Meteorol., 93, 237–251, 1999.
Déry, S. J. and Yau, M. K.: Simulation of blowing snow in the Canadian Arctic using a double-moment model, Bound.-Lay. Meteorol., 99, 297–316, 2001.
ECMWF-IFS: Part IV: Physical Processes (CY33R1), Tech. Rep., European Centre for Medium-Range Weather Forecasts (ECMWF), Reading, UK, 2008.
Ettema, J., van den Broeke, M. R., Van Meijgaard, E., Van de Berg, W. J., Bamber, J. L., Box, J. E., and Bales, R. C.: Higher surface mass balance of the Greenland ice sheet revealed by high-resolution climate modeling, Geophys. Res. Lett., 36, L12501, https://doi.org/10.1029/2009GL038110, 2009.
Ettema, J., van den Broeke, M. R., van Meijgaard, E., van de Berg, W. J., Box, J. E., and Steffen, K.: Climate of the Greenland ice sheet using a high-resolution climate model – Part 1: Evaluation, The Cryosphere, 4, 511–527, https://doi.org/10.5194/tc-4-511-2010, 2010.
Fettweis, X.: Reconstruction of the 1979–2006 Greenland ice sheet surface mass balance using the regional climate model MAR, The Cryosphere, 1, 21–40, https://doi.org/10.5194/tc-1-21-2007, 2007.
Gallée, H., Trouvilliez, A., Agosta, C., Genthon, C., Favier, V., and Naaim-Bouvet, F.: Transport of snow by the wind: a comparison between observations in Adélie land, Antarctica, and simulations made with the regional climate model MAR, Bound.-Layer Meteor., 146, 133–147, https://doi.org/10.1007/s10546-012-9764-z, 2013.
Guyomarc'h, G. and Mérindol, L.: Validation of a forecasting application of blowing snow periods, Ann. Glaciol., 26, 138–143, 1998.
Hanna, E., Navarro, F. J., Pattyn, F., Domingues, C. M., Fettweis, X., Ivins, E. R., Nicholls, R. J., Ritz, C., Smith, B., Tulaczyk, S., Whitehouse, P. L., and Zwally, H. J.: Ice-sheet mass balance and climate change, Nature, 498, 51–59, https://doi.org/10.1038/nature12238, 2013.
Hawley, R. L., Morris, E. M., Cullen, R., Nixdorf, U., Shepherd, A. P., and Wingham, D. J.: ASIRAS airborne radar resolves internal annual layers in the dry-snow zone of Greenland, Geophys. Res. Lett., 33, L04502, https://doi.org/10.1029/2005GL025147, 2006.
Hou, S., Li, Y., Xiao, C., and Ren, J.: Recent accumulation rate at Dome A, Antarctica, Chinese Science Bulletin, 52, 428–431, https://doi.org/10.1007/s11434-007-0041-3, 2007.
Kuipers Munneke, P., van den Broeke, M. R., Lenaerts, J. T. M., Flanner, M. G., Gardner, A., and van de Berg, W. J.: A new albedo scheme for use in climate models over the Antarctic ice sheet, J. Geophys. Res., 116, D05114, https://doi.org/10.1029/2010JD015113, 2011.
Lenaerts, J. T. M., van den Broeke, M. R., Déry, S. J., König-Langlo, G., Ettema, J., and Munneke, P. K.: Modelling snowdrift sublimation on an Antarctic ice shelf, The Cryosphere, 4, 179–190, https://doi.org/10.5194/tc-4-179-2010, 2010.
Lenaerts, J. T. M., van den Broeke, M. R., Déry, S. J., van Meijgaard, E., van de Berg, W. J., Palm, S. P., and Sanz Rodrigo, J.: Regional climate modeling of drifting snow in Antarctica, Part I: Methods and model evaluation, J. Geophys. Res., 117, D05108, https://doi.org/10.1029/2011JD016145, 2012a.
Lenaerts, J. T. M., van den Broeke, M. R., van Angelen, J. H., van Meijgaard, E., and Déry, S. J.: Drifting snow climate of the Greenland ice sheet: a study with a regional climate model, The Cryosphere, 6, 891–899, https://doi.org/10.5194/tc-6-891-2012, 2012b.
Ligtenberg, S. R. M., Helsen, M. M., and van den Broeke, M. R.: An improved semi-empirical model for the densification of Antarctic firn, The Cryosphere, 5, 809–819, https://doi.org/10.5194/tc-5-809-2011, 2011.
Lyapustin, A., Tedesco, M., Wang, Y., Aoki, T., Hori, M., and Kokhanovsky, A.: Retrieval of snow grain size over Greenland from MODIS, Remote Sens. Environ., 113, 1976–1987, https://doi.org/10.1016/j.rse.2009.05.008, 2009.
Mann, G. W., Anderson, P. S., and Mobbs, S. D.: Profile measurements of blowing snow at Halley, Antarctica, J. Geophys. Res., 105, 24491–24508, https://doi.org/10.1029/2000JD900247, 2000.
Nishimura, K. and Nemoto, M.: Blowing snow at Mizuho station, Antarctica, Philos. T. Roy. Soc. A, 363, 1647–1662, 2005.
Noone, D., Turner, J., and Mulvaney, R.: Atmospheric Signals and Characteristics of Accumulation in Dronning Maud Land, Antarctica, J. Geophys. Res., 104, 19191–19212, https://doi.org/10.1029/1999JD900376, 1999.
Pomeroy, J., Gray, D., and Landine, P.: The Prairie Blowing Snow Model: characteristics, validation, operation, J. Hydrol., 144, 165–192, https://doi.org/10.1016/0022-1694(93)90171-5, 1993.
Rae, J. G. L., A\dhalgeirsdóttir, G., Edwards, T. L., Fettweis, X., Gregory, J. M., Hewitt, H. T., Lowe, J. A., Lucas-Picher, P., Mottram, R. H., Payne, A. J., Ridley, J. K., Shannon, S. R., van de Berg, W. J., van de Wal, R. S. W., and van den Broeke, M. R.: Greenland ice sheet surface mass balance: evaluating simulations and making projections with regional climate models, The Cryosphere, 6, 1275–1294, https://doi.org/10.5194/tc-6-1275-2012, 2012.
Reijmer, C. and Oerlemans, J.: Temporal and spatial variability of the surface energy balance in Dronning Maud Land, Antarctica, J. Geophys. Res., 107, 4759–4770, 2002.
Rignot, E., Velicogna, I., van den Broeke, M. R., Monaghan, A., and Lenaerts, J. T. M.: Acceleration of the contribution of Greenland and Antarctic ice sheets to sea level rise, Geophys. Res. Lett., 38, L05503, https://doi.org/10.1029/2011GL046583, 2011.
Sanz Rodrigo, J., Buchlin, J.-M., van Beeck, J., Lenaerts, J. T. M., and van den Broeke, M. R.: Evaluation of the A}ntarctic surface wind climate from {ERA reanalyses and RACMO2/ANT simulations based on Automatic Weather Stations, Clim. Dynam., 1–24, https://doi.org/10.1007/s00382-012-1396-y, 2012.
Sato, T., Kimura, T., Ishimaru, T., and Maruyama, T.: Field test of a new snow-particle counter (SPC) system, Ann. Glaciol., 18, 149–154, 1993.
Scambos, T., Haran, T., Fahnestock, M., Painter, T., and Bohlander, J.: MODIS-based Mosaic of Antarctica (MOA) data sets: continent-wide surface morphology and snow grain size, Remote Sens. Environ., 111, 242–257, https://doi.org/10.1016/j.rse.2006.12.020, 2007.
Schmidt, R.: Vertical profiles of wind speed, snow concentration and humidity in blowing snow, Bound.-Layer Meteor., 223–246, 1982.
Shepherd, A., Ivins, E. R., A, G., Barletta, V. R., Bentley, M. J., Bettadpur, S., Briggs, K. H., Bromwich, D. H., Forsberg, R., Galin, N., Horwath, M., Jacobs, S., Joughin, I., King, M. A., Lenaerts, J. T. M., Li, J., Ligtenberg, S. R. M., Luckman, A., Luthcke, S. B., McMillan, M., Meister, R., Milne, G., Mouginot, J., Muir, A., Nicolas, J. P., Paden, J., Payne, A. J., Pritchard, H., Rignot, E., Rott, H., Sörensen, L. S., Scambos, T. A., Scheuchl, B., Schrama, E. J. O., Smith, B., Sundal, A. V., van Angelen, J. H., van de Berg, W. J., van den Broeke, M. R., Vaughan, D. G., Velicogna, I., Wahr, J., Whitehouse, P. L., Wingham, D. J., Yi, D., Young, D., and Zwally, H. J.: A reconciled estimate of ice-sheet mass balance, Science, 338, 1183–1189, https://doi.org/10.1126/science.1228102, 2012.
Sugiura, K., Ohata, T., Yang, D., Sato, T., and Sato, A.: Application of a snow particle counter to solid precipitation measurements under Arctic conditions, Cold. Reg. Sci. Technol., 58, 77–83, https://doi.org/10.1016/j.coldregions.2009.03.010, 2009.
Undén, P., Rontu, L., Järvinen, H., Lynch, P., Calvo, J., Cats, G., Cuxart, J., Eerola, K., Fortelius, C., Garcia-Moya, J., Jones, C., Lenderlink, G., McDonald, A., McGrath, R., Navascues, B., Nielsen, N. W., Ødegaard, V., Rodriguez, E., Rummukainen, M., Rööm, R., Sattler, K., Sass, B. H., Savijärvi, H., Schreur, B. W., Sigg, R., The, H., and Tijm, A.: HIRLAM-5 Scientific Documentation, Tech. Rep., Swed. Meteorol., and Hydrol. Inst., Norrköping, Sweden, 2002.
Van Angelen, J. H., van den Broeke, M. R., and van de Berg, W. J.: Momentum budget of the atmospheric boundary layer over the Greenland ice sheet and its surrounding seas, J. Geophys. Res.-Atmos., 116, D10101, https://doi.org/10.1029/2010JD015485, 2011.
Van Angelen, J. H., Broeke, M. R., Wouters, B., and Lenaerts, J. T. M.: Contemporary (1960–2012) Evolution of the Climate and Surface Mass Balance of the Greenland Ice Sheet, Surv. Geophys., 1–20, https://doi.org/10.1007/s10712-013-9261-z, 2013.
Van de Wal, R. S. W., Boot, W., Smeets, C. J. P. P., Snellen, H., van den Broeke, M. R., and Oerlemans, J.: Twenty-one years of mass balance observations along the K-transect, West Greenland, Earth Syst. Sci. Data, 4, 31–35, https://doi.org/10.5194/essd-4-31-2012, 2012.
Van den Broeke, M. R., Bamber, J. L., Ettema, J., Rignot, E., Schrama, E., van de Berg, W. J., van Meijgaard, E., Velicogna, I., and Wouters, B.: Partitioning recent Greenland mass loss, Science, 326, 984–986, https://doi.org/10.1126/science.1178176, 2009.
Van Wessem, J. M., Reijmer, C. H., M. Lenaerts, J. T., van de Berg, W. J., van den Broeke, M. R., and van Meijgaard, E.: Updated cloud physics in a regional atmospheric climate model improves the modelled surface energy balance of Antarctica, The Cryosphere, 8, 125–135, https://doi.org/10.5194/tc-8-125-2014, 2014.
Vionnet, V., Guyomarch, G., Naaim-Bouvet, F., Martin, E., Durand, Y., Bellot, H., Bel, C., and Pugliese, P.: Occurrence of blowing snow events at an alpine site over a 10-year period: observations and modelling, Adv. Water Resour., 55, 53–63, https://doi.org/10.1016/j.advwatres.2012.05.004, 2012.
Walden, V. P., Warren, S. G., and Tuttle, E.: Atmospheric ice crystals over the Antarctic Plateau in winter, J. Appl. Meteorol., 42, 1391–1405, https://doi.org/10.1175/1520-0450(2003)042<:AICOTA>2.0.CO;2, 2003.
Wouters, B., Bamber, J. L., van den Broeke, M. R., Lenaerts, J. T. M., and Sasgen, I.: Limits in detecting acceleration of ice sheet mass loss due to climate variability, Nat. Geosci., 6, 613–616, https://doi.org/10.1038/ngeo1874, 2013.
Yang, J. and Yau, M.: A new triple-moment blowing snow model, Bound.-Lay. Meteorol., 126, 137–155, https://doi.org/10.1007/s10546-007-9215-4, 2008.