Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.713 IF 4.713
  • IF 5-year value: 4.927 IF 5-year
    4.927
  • CiteScore value: 8.0 CiteScore
    8.0
  • SNIP value: 1.425 SNIP 1.425
  • IPP value: 4.65 IPP 4.65
  • SJR value: 2.353 SJR 2.353
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 71 Scimago H
    index 71
  • h5-index value: 53 h5-index 53
Volume 6, issue 1
The Cryosphere, 6, 85–100, 2012
https://doi.org/10.5194/tc-6-85-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
The Cryosphere, 6, 85–100, 2012
https://doi.org/10.5194/tc-6-85-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 19 Jan 2012

Research article | 19 Jan 2012

Geochemical characterization of supraglacial debris via in situ and optical remote sensing methods: a case study in Khumbu Himalaya, Nepal

K. A. Casey et al.

Related subject area

Remote Sensing
Brief Communication: Update on the GPS reflection technique for measuring snow accumulation in Greenland
Kristine M. Larson, Michael MacFerrin, and Thomas Nylen
The Cryosphere, 14, 1985–1988, https://doi.org/10.5194/tc-14-1985-2020,https://doi.org/10.5194/tc-14-1985-2020, 2020
Short summary
Improving sub-canopy snow depth mapping with unmanned aerial vehicles: lidar versus structure-from-motion techniques
Phillip Harder, John W. Pomeroy, and Warren D. Helgason
The Cryosphere, 14, 1919–1935, https://doi.org/10.5194/tc-14-1919-2020,https://doi.org/10.5194/tc-14-1919-2020, 2020
Short summary
Improved GNSS-R bi-static altimetry and independent digital elevation models of Greenland and Antarctica from TechDemoSat-1
Jessica Cartwright, Christopher J. Banks, and Meric Srokosz
The Cryosphere, 14, 1909–1917, https://doi.org/10.5194/tc-14-1909-2020,https://doi.org/10.5194/tc-14-1909-2020, 2020
Short summary
Opportunistic evaluation of modelled sea ice drift using passively drifting telemetry collars in Hudson Bay, Canada
Ron R. Togunov, Natasha J. Klappstein, Nicholas J. Lunn, Andrew E. Derocher, and Marie Auger-Méthé
The Cryosphere, 14, 1937–1950, https://doi.org/10.5194/tc-14-1937-2020,https://doi.org/10.5194/tc-14-1937-2020, 2020
Short summary
Global Positioning System interferometric reflectometry (GPS-IR) measurements of ground surface elevation changes in permafrost areas in northern Canada
Jiahua Zhang, Lin Liu, and Yufeng Hu
The Cryosphere, 14, 1875–1888, https://doi.org/10.5194/tc-14-1875-2020,https://doi.org/10.5194/tc-14-1875-2020, 2020
Short summary

Cited articles

Abrams, M. J.: The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): data products for the high spatial resolution imager on NASA's Terra platform, Int. J. Remote Sens., 21, 847–859, 2000.
Abrams, M. J., Brown, D., Lepley, L., and Sadowski, R.: Remote sensing for porphyry copper deposits in southern Arizona, Economic Geology, 78, 591–604, 1983.
Adhikary, S., Nakawo, M., and Seko, K.: Dust influence on the melting process of glacier ice: experimental results from Lirung Glacier, Nepal Himalayas, chap. Debris-Covered Glaciers, 43–52, 264, IAHS, 2000.
Analytical Spectral Devices, I.: FieldSpec Pro User's Guide, \urlprefixhttp://support.asdi.com/Document/Viewer.aspx?id=19, 2002.
Atwood, D., Meyer, F., and Arendt, A.: Using L-band SAR coherence to delineate glacier extent, Can. J. Remote Sens., S186–S195, 2010.
Publications Copernicus
Download
Citation