Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 4.713
IF4.713
IF 5-year value: 4.927
IF 5-year
4.927
CiteScore value: 8.0
CiteScore
8.0
SNIP value: 1.425
SNIP1.425
IPP value: 4.65
IPP4.65
SJR value: 2.353
SJR2.353
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 53
h5-index53
Volume 6, issue 1
The Cryosphere, 6, 51–69, 2012
https://doi.org/10.5194/tc-6-51-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Modeling the spatial dynamics of permafrost and seasonally...

The Cryosphere, 6, 51–69, 2012
https://doi.org/10.5194/tc-6-51-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 13 Jan 2012

Research article | 13 Jan 2012

Comparison of MODIS-derived land surface temperatures with ground surface and air temperature measurements in continuous permafrost terrain

S. Hachem et al.

Related subject area

Remote Sensing
Brief Communication: Update on the GPS reflection technique for measuring snow accumulation in Greenland
Kristine M. Larson, Michael MacFerrin, and Thomas Nylen
The Cryosphere, 14, 1985–1988, https://doi.org/10.5194/tc-14-1985-2020,https://doi.org/10.5194/tc-14-1985-2020, 2020
Short summary
Improving sub-canopy snow depth mapping with unmanned aerial vehicles: lidar versus structure-from-motion techniques
Phillip Harder, John W. Pomeroy, and Warren D. Helgason
The Cryosphere, 14, 1919–1935, https://doi.org/10.5194/tc-14-1919-2020,https://doi.org/10.5194/tc-14-1919-2020, 2020
Short summary
Improved GNSS-R bi-static altimetry and independent digital elevation models of Greenland and Antarctica from TechDemoSat-1
Jessica Cartwright, Christopher J. Banks, and Meric Srokosz
The Cryosphere, 14, 1909–1917, https://doi.org/10.5194/tc-14-1909-2020,https://doi.org/10.5194/tc-14-1909-2020, 2020
Short summary
Opportunistic evaluation of modelled sea ice drift using passively drifting telemetry collars in Hudson Bay, Canada
Ron R. Togunov, Natasha J. Klappstein, Nicholas J. Lunn, Andrew E. Derocher, and Marie Auger-Méthé
The Cryosphere, 14, 1937–1950, https://doi.org/10.5194/tc-14-1937-2020,https://doi.org/10.5194/tc-14-1937-2020, 2020
Short summary
Global Positioning System interferometric reflectometry (GPS-IR) measurements of ground surface elevation changes in permafrost areas in northern Canada
Jiahua Zhang, Lin Liu, and Yufeng Hu
The Cryosphere, 14, 1875–1888, https://doi.org/10.5194/tc-14-1875-2020,https://doi.org/10.5194/tc-14-1875-2020, 2020
Short summary

Cited articles

Ackerman, S. A., Strabala K. I., Menzel, P. W. P., Frey, R. A., Moeller, C. C., and Gumley, L. E: Discriminating clear sky from clouds with MODIS, J. Geophys. Res., 103, 32141–32157, 1998.
Bosilovich, M. G.: A comparison of MODIS land surface temperature with in situ observations, Geophys. Res. Lett., 33, L20112, https://doi.org/10.1029/2006GL027519, 2006.
Bouchard, C.: Simulation du régime thermique des sols pergélisolés: essai du modèle "Tone", Master thesis, Université Laval, 137 pp., 1990.
Coll, C., Caselles, V., Galve, J. M., Valor, E., Niclos, R., Sanchez, J. M., and Rivas, R.:Ground measurements for the validation of land surface temperatures derived from AATSR and MODIS data, Remote Sens. Environ., 97, 288–300, https://doi.org/10.1016/j.rse.2005.05.007, 2005.
Coll, C., Wan, Z., and Galvem, J. M.: Temperature-based and radiance- based validations of the V5 MODIS land surface temperature product, J. Geophys. Res., 114, D20102, https://doi.org/10.1029/2009JD012038, 2009.
Publications Copernicus
Download
Citation